Evaluation of the Microbial Quality of Hermetia illucens Larvae for Animal Feed and Human Consumption: Study of Different Type of Rearing Substrates
Abstract
:1. Introduction
2. Materials and Methods
2.1. Systematic Review of the Microbiological Quality of BSF Larvae, Substrate and Frass
2.1.1. Search Strategy
2.1.2. Eligibility Criteria
2.1.3. Extraction, Collation, and Standardization of Data
2.2. Experimental Design and Sample Collection
2.3. Rearing Condition
2.4. Sample Preparation and Microbiological Analysis
2.5. Statistical Analyses
3. Results
3.1. Data Extracted from Systematic Review
3.1.1. Synthesis of the Systematic Search
3.1.2. Summary of Articles Included in the Systematic Review on Hermetia illucens
3.1.3. Microbiological Contamination of Hermetia illucens Larvae, Substrates, and Frass
3.2. Experimental Results
3.2.1. Microbiological Analysis for Bacterial Indicators
3.2.2. Detection and Quantification of Major Bacterial Pathogens in Samples Analyzed
4. Discussion
4.1. Microbiological Analysis of Hermetia illucens Larvae, Substrate, and Frass
4.1.1. Levels of Microbial Indicators in Substrate, Hermetia illucens Larvae, and Frass
Substrate
Frass
Larvae
4.1.2. Major Pathogens Found in Substrate, Hermetia illucens Larvae, and Frass
4.2. Impact of Susbtrates on Hermetia illucens Comtamination
4.3. Microbial Criteria of Control
4.4. Limitis of Cultural Methods and Potential of Combining with Sequencing Methods
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Van der Spiegel, M.; Noordam, M.Y.; van der Fels-Klerx, H.J. Safety of Novel Protein Sources (Insects, Microalgae, Seaweed, Duckweed, and Rapeseed) and Legislative Aspects for Their Application in Food and Feed Production. Compr. Rev. Food Sci. Food Saf. 2013, 12, 662–678. [Google Scholar] [CrossRef] [PubMed]
- Van Huis, A. Potential of Insects as Food and Feed in Assuring Food Security. Annu. Rev. Entomol. 2013, 58, 563–583. [Google Scholar] [CrossRef] [PubMed]
- Makkar, H.P.S.; Tran, G.; Heuzé, V.; Ankers, P. State-of-the-Art on Use of Insects as Animal Feed. Anim. Feed Sci. Technol. 2014, 197, 1–33. [Google Scholar] [CrossRef]
- Gahukar, R.T. Entomophagy and Human Food Security. Int. J. Trop. Insect Sci. 2011, 31, 129–144. [Google Scholar] [CrossRef]
- FAO. Looking at Edible Insects from a Food Safety Perspective: Challenges and Opportunities for the Sector; FAO: Rome, Italy, 2021; ISBN 978-92-5-134196-4. [Google Scholar]
- Ordoñez-Araque, R.; Egas-Montenegro, E. Edible Insects: A Food Alternative for the Sustainable Development of the Planet. Int. J. Gastron. Food Sci. 2021, 23, 100304. [Google Scholar] [CrossRef]
- Laroche, M.; Perreault, V.; Marciniak, A.; Gravel, A.; Chamberland, J.; Doyen, A. Comparison of Conventional and Sustainable Lipid Extraction Methods for the Production of Oil and Protein Isolate from Edible Insect Meal. Foods 2019, 8, 572. [Google Scholar] [CrossRef] [PubMed]
- Rehman, K.U.; Hollah, C.; Wiesotzki, K.; Heinz, V.; Aganovic, K.; ur Rehman, R.; Petrusan, J.-I.; Zheng, L.; Zhang, J.; Sohail, S.; et al. Insect-Derived Chitin and Chitosan: A Still Unexploited Resource for the Edible Insect Sector. Sustainability 2023, 15, 4864. [Google Scholar] [CrossRef]
- Shahrajabian, M.H.; Chaski, C.; Polyzos, N.; Tzortzakis, N.; Petropoulos, S.A. Sustainable Agriculture Systems in Vegetable Production Using Chitin and Chitosan as Plant Biostimulants. Biomolecules 2021, 11, 819. [Google Scholar] [CrossRef]
- Turan, M.; Yildirim, E. New Generation of Organic Fertilizers; BoD—Books on Demand: Norderstedt, Germany, 2022; ISBN 978-1-83969-212-3. [Google Scholar]
- Manzano-Agugliaro, F.; Sanchez-Muros, M.J.; Barroso, F.G.; Martínez-Sánchez, A.; Rojo, S.; Pérez-Bañón, C. Insects for Biodiesel Production. Renew. Sustain. Energy Rev. 2012, 16, 3744–3753. [Google Scholar] [CrossRef]
- Rindhe, S.N.; Chatli, M.K.; Wagh, R.V.; Kaur, A.; Mehta, N.; Kumar, P.; Malav, O.P. Black Soldier Fly: A New Vista for Waste Management and Animal Feed. Int. J. Curr. Microbiol. App. Sci. 2019, 8, 1329–1342. [Google Scholar] [CrossRef]
- Stadtlander, T.; Stamer, A.; Buser, A.; Wohlfahrt, J.; Leiber, F.; Sandrock, C. Hermetia illucens Meal as Fish Meal Replacement for Rainbow Trout on Farm. J. Insects Food Feed 2017, 3, 165–175. [Google Scholar] [CrossRef]
- Henry, M.; Gasco, L.; Piccolo, G.; Fountoulaki, E. Review on the Use of Insects in the Diet of Farmed Fish: Past and Future. Anim. Feed Sci. Technol. 2015, 203, 1–22. [Google Scholar] [CrossRef]
- Maurer, V.; Holinger, M.; Amsler, Z.; Früh, B.; Wohlfahrt, J.; Stamer, A.; Leiber, F. Replacement of Soybean Cake by Hermetia illucens Meal in Diets for Layers. J. Insects Food Feed 2016, 2, 83–90. [Google Scholar] [CrossRef]
- Wang, Y.-S.; Shelomi, M. Review of Black Soldier Fly (Hermetia illucens) as Animal Feed and Human Food. Foods 2017, 6, 91. [Google Scholar] [CrossRef]
- Zheng, L.; Li, Q.; Zhang, J.; Yu, Z. Double the Biodiesel Yield: Rearing Black Soldier Fly Larvae, Hermetia illucens, on Solid Residual Fraction of Restaurant Waste after Grease Extraction for Biodiesel Production. Renew. Energy 2012, 41, 75–79. [Google Scholar] [CrossRef]
- Elieh-Ali-Komi, D.; Hamblin, M.R. Chitin and Chitosan: Production and Application of Versatile Biomedical Nanomaterials. Int. J. Adv. Res. 2016, 4, 411–427. [Google Scholar]
- Antoine, V. Pertes et Gaspillages Alimentaires: L’état des Lieux et Leur Gestion par Etapes de la Chaîne Alimentaire; 2016. Available online: https://multimedia.ademe.fr/dossier-presse-etude-masses-pertes-gaspillages/index.html (accessed on 24 April 2024).
- Boafo, H.A.; Gbemavo, D.S.J.C.; Timpong-Jones, E.C.; Eziah, V.; Billah, M.; Chia, S.Y.; Aidoo, O.F.; Clottey, V.A.; Kenis, M. Substrates Most Preferred for Black Soldier Fly Hermetia illucens (L.) Oviposition Are Not the Most Suitable for Their Larval Development. J. Insects Food Feed 2023, 9, 183–192. [Google Scholar] [CrossRef]
- Ferri, M.; Di Federico, F.; Damato, S.; Proscia, F.; Grabowski, N. Insects as Feed and Human Food and the Public Health Risk: A Review. Berl. Münchener Tierärztliche Wochenschr. 2019, 132, 191–218. [Google Scholar] [CrossRef]
- Regulation (EU) 2015/2283 of the European Parliament and of the Council on novel foods, amending Regulation (EU) No 1169/2011of the European Parliament and of the Council and repealing Regulation (EC) No 258/97 of the European Parliament and of the Council and Commission Regulation (EC) No 1852/2001 (2013/0435 (COD). OJ L 2015, 327, 1–22.
- Insects as Feed EU Legislation—Aquaculture, Poultry & Pig Species. International Platform of Insects for Food and Feed, Brussels. Available online: https://ipiff.org/insects-eu-legislation-general/ (accessed on 25 March 2024).
- Lähteenmäki-Uutela, A.; Marimuthu, S.B.; Meijer, N. Regulations on Insects as Food and Feed: A Global Comparison. J. Insects Food Feed 2021, 7, 849–856. [Google Scholar] [CrossRef]
- IPIFF-Guide-on-Good-Hygiene-Practices. Available online: https://ipiff.org/good-hygiene-practices/ (accessed on 25 March 2024).
- Regulation (EC) No 1069/2009 of the European Parliament and of the Council of 21 October 2009 laying down health rules as regards animal by-products and derived products not intended for human consumption and repealing Regulation (EC) No 1774/2002 (Animal by-products Regulation). OJ L 2009, 300, 1–33.
- Commission Regulation (EU) No 142/2011 of 25 February 2011 implementing Regulation (EC) No 1069/2009 of the European Parliament and of the Council laying down health rules as regards animal by-products and derived products not intended for human consumption and implementing Council Directive 97/78/EC as regards certain samples and items exempt from veterinary checks at the border under that Directive Text with EEA relevance. OJ L 2011, 54, 1–254.
- Bava, L.; Jucker, C.; Gislon, G.; Lupi, D.; Savoldelli, S.; Zucali, M.; Colombini, S. Rearing of Hermetia illucens on Different Organic By-Products: Influence on Growth, Waste Reduction, and Environmental Impact. Animals 2019, 9, 289. [Google Scholar] [CrossRef] [PubMed]
- Spranghers, T.; Ottoboni, M.; Klootwijk, C.; Ovyn, A.; Deboosere, S.; De Meulenaer, B.; Michiels, J.; Eeckhout, M.; De Clercq, P.; De Smet, S. Nutritional Composition of Black Soldier Fly (Hermetia illucens) Prepupae Reared on Different Organic Waste Substrates. J. Sci. Food Agric. 2017, 97, 2594–2600. [Google Scholar] [CrossRef] [PubMed]
- Bosch, G.; van Zanten, H.H.E.; Zamprogna, A.; Veenenbos, M.; Meijer, N.P.; van der Fels-Klerx, H.J.; van Loon, J.J.A. Conversion of Organic Resources by Black Soldier Fly Larvae: Legislation, Efficiency and Environmental Impact. J. Clean. Prod. 2019, 222, 355–363. [Google Scholar] [CrossRef]
- Salomone, R.; Saija, G.; Mondello, G.; Giannetto, A.; Fasulo, S.; Savastano, D. Environmental Impact of Food Waste Bioconversion by Insects: Application of Life Cycle Assessment to Process Using Hermetia illucens. J. Clean. Prod. 2017, 140, 890–905. [Google Scholar] [CrossRef]
- Wynants, E.; Frooninckx, L.; Crauwels, S.; Verreth, C.; De Smet, J.; Sandrock, C.; Wohlfahrt, J.; Van Schelt, J.; Depraetere, S.; Lievens, B.; et al. Assessing the Microbiota of Black Soldier Fly Larvae (Hermetia illucens) Reared on Organic Waste Streams on Four Different Locations at Laboratory and Large Scale. Microb. Ecol. 2019, 77, 913–930. [Google Scholar] [CrossRef] [PubMed]
- Jeon, H.; Park, S.; Choi, J.; Jeong, G.; Lee, S.-B.; Choi, Y.; Lee, S.-J. The Intestinal Bacterial Community in the Food Waste-Reducing Larvae of Hermetia illucens. Curr. Microbiol. 2011, 62, 1390–1399. [Google Scholar] [CrossRef]
- Dillon, R.; Dillon, V.M. The Gut Bacteria of Insects: Nonpathogenic Interactions. Annu. Rev. Entomol. 2004, 49, 71–92. [Google Scholar] [CrossRef]
- Engel, P.; Moran, N.A. The Gut Microbiota of Insects—Diversity in Structure and Function. FEMS Microbiol. Rev. 2013, 37, 699–735. [Google Scholar] [CrossRef]
- Varotto Boccazzi, I.; Ottoboni, M.; Martin, E.; Comandatore, F.; Vallone, L.; Spranghers, T.; Eeckhout, M.; Mereghetti, V.; Pinotti, L.; Epis, S. A Survey of the Mycobiota Associated with Larvae of the Black Soldier Fly (Hermetia illucens) Reared for Feed Production. PLoS ONE 2017, 12, e0182533. [Google Scholar] [CrossRef] [PubMed]
- EFSA Scientific Committee. Risk Profile Related to Production and Consumption of Insects as Food and Feed. EFSA J. 2015, 13, 4257. [Google Scholar] [CrossRef]
- Čičková, H.; Newton, G.L.; Lacy, R.C.; Kozánek, M. The Use of Fly Larvae for Organic Waste Treatment. Waste Manag. 2015, 35, 68–80. [Google Scholar] [CrossRef] [PubMed]
- Erickson, M.C.; Islam, M.; Sheppard, C.; Liao, J.; Doyle, M.P. Reduction of Escherichia Coli O157:H7 and Salmonella Enterica Serovar Enteritidis in Chicken Manure by Larvae of the Black Soldier Fly. J. Food Prot. 2004, 67, 685–690. [Google Scholar] [CrossRef] [PubMed]
- Kooh, P.; Jury, V.; Laurent, S.; Audiat-Perrin, F.; Sanaa, M.; Tesson, V.; Federighi, M.; Boué, G. Control of Biological Hazards in Insect Processing: Application of HACCP Method for Yellow Mealworm (Tenebrio molitor) Powders. Foods 2020, 9, 1528. [Google Scholar] [CrossRef] [PubMed]
- Yan, M.R.; Hsieh, S.; Ricacho, N. Innovative Food Packaging, Food Quality and Safety, and Consumer Perspectives. Processes 2022, 10, 747. [Google Scholar] [CrossRef]
- Yan, X.; Laurent, S.; Hue, I.; Cabon, S.; Grua-Priol, J.; Jury, V.; Federighi, M.; Boué, G. Quality of Tenebrio molitor Powders: Effects of Four Processes on Microbiological Quality and Physicochemical Factors. Foods 2023, 12, 572. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; Moher, D.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. PRISMA 2020 Explanation and Elaboration: Updated Guidance and Exemplars for Reporting Systematic Reviews. BMJ 2021, 372, n160. [Google Scholar] [CrossRef] [PubMed]
- Bessa, L.W.; Pieterse, E.; Marais, J.; Dhanani, K.; Hoffman, L.C. Food Safety of Consuming Black Soldier Fly (Hermetia illucens) Larvae: Microbial, Heavy Metal and Cross-Reactive Allergen Risks. Foods 2021, 10, 1934. [Google Scholar] [CrossRef]
- Campbell, M.; Ortuño, J.; Stratakos, A.C.; Linton, M.; Corcionivoschi, N.; Elliott, T.; Koidis, A.; Theodoridou, K. Impact of Thermal and High-Pressure Treatments on the Microbiological Quality and In Vitro Digestibility of Black Soldier Fly (Hermetia illucens) Larvae. Animals 2020, 10, 682. [Google Scholar] [CrossRef]
- De Smet, J.; Vandeweyer, D.; Van Moll, L.; Lachi, D.; Van Campenhout, L. Dynamics of Salmonella Inoculated during Rearing of Black Soldier Fly Larvae (Hermetia illucens). Food Res. Int. 2021, 149, 110692. [Google Scholar] [CrossRef] [PubMed]
- Gorrens, E.; Van Looveren, N.; Van Moll, L.; Vandeweyer, D.; Lachi, D.; De Smet, J.; Van Campenhout, L. Staphylococcus Aureus in Substrates for Black Soldier Fly Larvae (Hermetia illucens) and Its Dynamics during Rearing. Microbiol. Spectr. 2021, 9, e0218321. [Google Scholar] [CrossRef]
- Grabowski, N.T.; Klein, G. Microbiology of Processed Edible Insect Products—Results of a Preliminary Survey. Int. J. Food Microbiol. 2017, 243, 103–107. [Google Scholar] [CrossRef] [PubMed]
- Kashiri, M.; Marin, C.; Garzón, R.; Rosell, C.M.; Rodrigo, D.; Martínez, A. Use of High Hydrostatic Pressure to Inactivate Natural Contaminating Microorganisms and Inoculated E. coli O157:H7 on Hermetia illucens Larvae. PLoS ONE 2018, 13, e0194477. [Google Scholar] [CrossRef]
- Larouche, J.; Deschamps, M.-H.; Saucier, L.; Lebeuf, Y.; Doyen, A.; Vandenberg, G.W. Effects of Killing Methods on Lipid Oxidation, Colour and Microbial Load of Black Soldier Fly (Hermetia illucens) Larvae. Animals 2019, 9, 182. [Google Scholar] [CrossRef]
- Nyangena, D.N.; Mutungi, C.; Imathiu, S.; Kinyuru, J.; Affognon, H.; Ekesi, S.; Nakimbugwe, D.; Fiaboe, K.K.M. Effects of Traditional Processing Techniques on the Nutritional and Microbiological Quality of Four Edible Insect Species Used for Food and Feed in East Africa. Foods 2020, 9, 574. [Google Scholar] [CrossRef] [PubMed]
- Osimani, A.; Ferrocino, I.; Corvaglia, M.R.; Roncolini, A.; Milanović, V.; Garofalo, C.; Aquilanti, L.; Riolo, P.; Ruschioni, S.; Jamshidi, E.; et al. Microbial Dynamics in Rearing Trials of Hermetia illucens Larvae Fed Coffee Silverskin and Microalgae. Food Res. Int. 2021, 140, 110028. [Google Scholar] [CrossRef]
- Raimondi, S.; Spampinato, G.; Macavei, L.I.; Lugli, L.; Candeliere, F.; Rossi, M.; Maistrello, L.; Amaretti, A. Effect of Rearing Temperature on Growth and Microbiota Composition of Hermetia illucens. Microorganisms 2020, 8, 902. [Google Scholar] [CrossRef]
- Van Looveren, N.; Vandeweyer, D.; Van Campenhout, L. Impact of Heat Treatment on the Microbiological Quality of Frass Originating from Black Soldier Fly Larvae (Hermetia illucens). Insects 2021, 13, 22. [Google Scholar] [CrossRef]
- Van Looveren, N.; Verbaet, L.; Frooninckx, L.; Van Miert, S.; Van Campenhout, L.; Van Der Borght, M.; Vandeweyer, D. Effect of Heat Treatment on Microbiological Safety of Supermarket Food Waste as Substrate for Black Soldier Fly Larvae (Hermetia illucens). Waste Manag. 2023, 164, 209–218. [Google Scholar] [CrossRef]
- Osimani, A.; Milanović, V.; Roncolini, A.; Riolo, P.; Ruschioni, S.; Isidoro, N.; Loreto, N.; Franciosi, E.; Tuohy, K.; Olivotto, I.; et al. Hermetia illucens in Diets for Zebrafish (Danio rerio): A Study of Bacterial Diversity by Using PCR-DGGE and Metagenomic Sequencing. PLoS ONE 2019, 14, e0225956. [Google Scholar] [CrossRef]
- Luparelli, A.V.; Saadoun, J.H.; Lolli, V.; Lazzi, C.; Sforza, S.; Caligiani, A. Dynamic Changes in Molecular Composition of Black Soldier Fly Prepupae and Derived Biomasses with Microbial Fermentation. Food Chem. X 2022, 14, 100327. [Google Scholar] [CrossRef] [PubMed]
- De Smet, J.; Wynants, E.; Cos, P.; Van Campenhout, L. Microbial Community Dynamics during Rearing of Black Soldier Fly Larvae (Hermetia illucens) and Impact on Exploitation Potential. Appl. Environ. Microbiol. 2018, 84, e02722-17. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.T.X.; Tomberlin, J.K.; Vanlaerhoven, S. Ability of Black Soldier Fly (Diptera: Stratiomyidae) Larvae to Recycle Food Waste. Environ. Entomol. 2015, 44, 406–410. [Google Scholar] [CrossRef] [PubMed]
- Diener, S.; Zurbrügg, C.; Tockner, K. Conversion of Organic Material by Black Soldier Fly Larvae: Establishing Optimal Feeding Rates. Waste Manag. Res. 2009, 27, 603–610. [Google Scholar] [CrossRef] [PubMed]
- Gold, M.; Binggeli, M.; Kurt, F.; de Wouters, T.; Reichlin, M.; Zurbrügg, C.; Mathys, A.; Kreuzer, M. Novel Experimental Methods for the Investigation of Hermetia illucens (Diptera: Stratiomyidae) Larvae. J. Insect Sci. 2020, 20, 21. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Xu, S.; Chen, X.; Sun, H.; Hu, M.; Bai, Z.; Zhuang, G.; Zhuang, X. Bacterial Communities Changes during Food Waste Spoilage. Sci. Rep. 2018, 8, 8220. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Hong, J.; Wang, L.; Cai, C.; Mo, H.; Wang, J.; Fang, X.; Liao, Z. Effect of Lactic Acid Bacteria Fermentation on Plant-Based Products. Fermentation 2024, 10, 48. [Google Scholar] [CrossRef]
- Shin, S.C.; Kim, S.-H.; You, H.; Kim, B.; Kim, A.C.; Lee, K.-A.; Yoon, J.-H.; Ryu, J.-H.; Lee, W.-J. Drosophila Microbiome Modulates Host Developmental and Metabolic Homeostasis via Insulin Signaling. Science 2011, 334, 670–674. [Google Scholar] [CrossRef]
- Storelli, G.; Strigini, M.; Grenier, T.; Bozonnet, L.; Schwarzer, M.; Daniel, C.; Matos, R.; Leulier, F. Drosophila Perpetuates Nutritional Mutualism by Promoting the Fitness of Its Intestinal Symbiont Lactobacillus Plantarum. Cell Metab. 2018, 27, 362–377.e8. [Google Scholar] [CrossRef]
- Somroo, A.A.; Ur Rehman, K.; Zheng, L.; Cai, M.; Xiao, X.; Hu, S.; Mathys, A.; Gold, M.; Yu, Z.; Zhang, J. Influence of Lactobacillus Buchneri on Soybean Curd Residue Co-Conversion by Black Soldier Fly Larvae (Hermetia illucens) for Food and Feedstock Production. Waste Manag. 2019, 86, 114–122. [Google Scholar] [CrossRef] [PubMed]
- Mazza, L.; Xiao, X.; ur Rehman, K.; Cai, M.; Zhang, D.; Fasulo, S.; Tomberlin, J.K.; Zheng, L.; Soomro, A.A.; Yu, Z.; et al. Management of Chicken Manure Using Black Soldier Fly (Diptera: Stratiomyidae) Larvae Assisted by Companion Bacteria. Waste Manag. 2020, 102, 312–318. [Google Scholar] [CrossRef] [PubMed]
- Cifuentes, Y.; Vilcinskas, A.; Kämpfer, P.; Glaeser, S.P. Isolation of Hermetia illucens Larvae Core Gut Microbiota by Two Different Cultivation Strategies. Antonie Van. Leeuwenhoek 2022, 115, 821–837. [Google Scholar] [CrossRef]
- Vandeweyer, D.; Crauwels, S.; Lievens, B.; Van Campenhout, L. Microbial Counts of Mealworm Larvae (Tenebrio molitor) and Crickets (Acheta domesticus and Gryllodes sigillatus) from Different Rearing Companies and Different Production Batches. Int. J. Food Microbiol. 2017, 242, 13–18. [Google Scholar] [CrossRef] [PubMed]
- Cifuentes, Y.; Glaeser, S.P.; Mvie, J.; Bartz, J.-O.; Müller, A.; Gutzeit, H.O.; Vilcinskas, A.; Kämpfer, P. The Gut and Feed Residue Microbiota Changing during the Rearing of Hermetia illucens Larvae. Antonie Van. Leeuwenhoek 2020, 113, 1323–1344. [Google Scholar] [CrossRef] [PubMed]
- Schreven, S.J.J.; de Vries, H.; Hermes, G.D.A.; Smidt, H.; Dicke, M.; van Loon, J.J.A. Relative Contributions of Egg-Associated and Substrate-Associated Microorganisms to Black Soldier Fly Larval Performance and Microbiota. FEMS Microbiol. Ecol. 2021, 97, fiab054. [Google Scholar] [CrossRef] [PubMed]
- Park, S.-I.; Chang, B.S.; Yoe, S.M. Detection of Antimicrobial Substances from Larvae of the Black Soldier Fly, Hermetia illucens (Diptera: Stratiomyidae). Entomol. Res. 2014, 44, 58–64. [Google Scholar] [CrossRef]
- Lalander, C.H.; Fidjeland, J.; Diener, S.; Eriksson, S.; Vinnerås, B. High Waste-to-Biomass Conversion and Efficient Salmonella spp. Reduction Using Black Soldier Fly for Waste Recycling. Agron. Sustain. Dev. 2015, 35, 261–271. [Google Scholar] [CrossRef]
- Lalander, C.; Diener, S.; Magri, M.E.; Zurbrügg, C.; Lindström, A.; Vinnerås, B. Faecal Sludge Management with the Larvae of the Black Soldier Fly (Hermetia illucens)—From a Hygiene Aspect. Sci. Total Environ. 2013, 458–460, 312–318. [Google Scholar] [CrossRef]
- Liu, Q.; Tomberlin, J.K.; Brady, J.A.; Sanford, M.R.; Yu, Z. Black Soldier Fly (Diptera: Stratiomyidae) Larvae Reduce Escherichia Coli in Dairy Manure. Environ. Entomol. 2008, 37, 1525–1530. [Google Scholar] [CrossRef]
- Xiao, X.; Mazza, L.; Yu, Y.; Cai, M.; Zheng, L.; Tomberlin, J.K.; Yu, J.; van Huis, A.; Yu, Z.; Fasulo, S.; et al. Efficient Co-Conversion Process of Chicken Manure into Protein Feed and Organic Fertilizer by Hermetia illucens L. (Diptera: Stratiomyidae) Larvae and Functional Bacteria. J. Environ. Manag. 2018, 217, 668–676. [Google Scholar] [CrossRef] [PubMed]
- Xia, J.; Ge, C.; Yao, H. Antimicrobial Peptides from Black Soldier Fly (Hermetia illucens) as Potential Antimicrobial Factors Representing an Alternative to Antibiotics in Livestock Farming. Animals 2021, 11, 1937. [Google Scholar] [CrossRef] [PubMed]
- Van Moll, L.; De Smet, J.; Paas, A.; Tegtmeier, D.; Vilcinskas, A.; Cos, P.; Van Campenhout, L. In Vitro Evaluation of Antimicrobial Peptides from the Black Soldier Fly (Hermetia illucens) against a Selection of Human Pathogens. Microbiol. Spectr. 2022, 10, e0166421. [Google Scholar] [CrossRef] [PubMed]
- Vogel, H.; Müller, A.; Heckel, D.G.; Gutzeit, H.; Vilcinskas, A. Nutritional Immunology: Diversification and Diet-Dependent Expression of Antimicrobial Peptides in the Black Soldier Fly Hermetia illucens. Dev. Comp. Immunol. 2018, 78, 141–148. [Google Scholar] [CrossRef] [PubMed]
- Franco, A.; Scieuzo, C.; Salvia, R.; Pucciarelli, V.; Borrelli, L.; Addeo, N.F.; Bovera, F.; Laginestra, A.; Schmitt, E.; Falabella, P. Antimicrobial Activity of Lipids Extracted from Hermetia illucens Reared on Different Substrates. Appl. Microbiol. Biotechnol. 2024, 108, 167. [Google Scholar] [CrossRef] [PubMed]
- Joosten, L.; Lecocq, A.; Jensen, A.B.; Haenen, O.; Schmitt, E.; Eilenberg, J. Review of Insect Pathogen Risks for the Black Soldier Fly (Hermetia illucens) and Guidelines for Reliable Production—Joosten—2020—Entomologia Experimentalis et Applicata—Wiley Online Library. Available online: https://onlinelibrary.wiley.com/doi/full/10.1111/eea.12916 (accessed on 29 February 2024).
- Niu, S.-H.; Liu, S.; Deng, W.-K.; Wu, R.-T.; Cai, Y.-F.; Liao, X.-D.; Xing, S.-C. A Sustainable and Economic Strategy to Reduce Risk Antibiotic Resistance Genes during Poultry Manure Bioconversion by Black Soldier Fly Hermetia illucens Larvae: Larval Density Adjustment. Ecotoxicol. Environ. Saf. 2022, 232, 113294. [Google Scholar] [CrossRef] [PubMed]
- Moretta, A.; Salvia, R.; Scieuzo, C.; Di Somma, A.; Vogel, H.; Pucci, P.; Sgambato, A.; Wolff, M.; Falabella, P. A Bioinformatic Study of Antimicrobial Peptides Identified in the Black Soldier Fly (BSF) Hermetia illucens (Diptera: Stratiomyidae). Sci. Rep. 2020, 10, 16875. [Google Scholar] [CrossRef]
- Elhag, O.; Zhou, D.; Song, Q.; Soomro, A.A.; Cai, M.; Zheng, L.; Yu, Z.; Zhang, J. Screening, Expression, Purification and Functional Characterization of Novel Antimicrobial Peptide Genes from Hermetia illucens (L.). PLoS ONE 2017, 12, e0169582. [Google Scholar] [CrossRef]
- Zhan, S.; Fang, G.; Cai, M.; Kou, Z.; Xu, J.; Cao, Y.; Bai, L.; Zhang, Y.; Jiang, Y.; Luo, X.; et al. Genomic Landscape and Genetic Manipulation of the Black Soldier Fly Hermetia illucens, a Natural Waste Recycler. Cell Res. 2020, 30, 50–60. [Google Scholar] [CrossRef]
- Nakagawa, A.; Sakamoto, T.; Kanost, M.R.; Tabunoki, H. The Development of New Methods to Stimulate the Production of Antimicrobial Peptides in the Larvae of the Black Soldier Fly Hermetia illucens. Int. J. Mol. Sci. 2023, 24, 15765. [Google Scholar] [CrossRef]
- Federal Agency for the Safety of the Food Chain (FASFC). Food Safety Aspects of Insects Intended for Human Consumption; Common Advice of the Belgian Scientific Committee of the Federal Agency for the Safety of the Food Chain (FASFC) and of the Superior Health Council (SHC); FASFC: Brussels, Belgium, 2014; Available online: http://tinyurl.com/kwvpb7o (accessed on 24 April 2024).
- Caparros Megido, R.; Desmedt, S.; Blecker, C.; Béra, F.; Haubruge, É.; Alabi, T.; Francis, F. Microbiological Load of Edible Insects Found in Belgium. Insects 2017, 8, 12. [Google Scholar] [CrossRef] [PubMed]
- Juste, A.; Thomma, B.; Lievens, B. Recent Advances in Molecular Techniques to Study Microbial Communities in Food-Associated Matrices and Processes. Food Microbiol. 2008, 25, 745–761. [Google Scholar] [CrossRef] [PubMed]
- Klunder, H.; Wolkers-Rooijackers, J.C.M.; Korpela, J.; Nout, M.J. Microbiological Aspects of Processing and Storage of Edible Insects. Food Control 2012, 26, 628–631. [Google Scholar] [CrossRef]
- Zheng, X.; Zhu, Q.; Zhou, Z.; Wu, F.; Chen, L.; Cao, Q.; Shi, F. Gut Bacterial Communities across 12 Ensifera (Orthoptera) at Different Feeding Habits and Its Prediction for the Insect with Contrasting Feeding Habits. PLoS ONE 2021, 16, e0250675. [Google Scholar] [CrossRef] [PubMed]
- Garofalo, C.; Osimani, A.; Milanović, V.; Taccari, M.; Cardinali, F.; Aquilanti, L.; Riolo, P.; Ruschioni, S.; Isidoro, N.; Clementi, F. The Microbiota of Marketed Processed Edible Insects as Revealed by High-Throughput Sequencing. Food Microbiol. 2017, 62, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Tegtmeier, D.; Hurka, S.; Mihajlovic, S.; Bodenschatz, M.; Schlimbach, S.; Vilcinskas, A. Culture-Independent and Culture-Dependent Characterization of the Black Soldier Fly Gut Microbiome Reveals a Large Proportion of Culturable Bacteria with Potential for Industrial Applications. Microorganisms 2021, 9, 1642. [Google Scholar] [CrossRef] [PubMed]
- Li, X.-Y.; Mei, C.; Luo, X.-Y.; Wulamu, D.; Zhan, S.; Huang, Y.-P.; Yang, H. Dynamics of the Intestinal Bacterial Community in Black Soldier Fly Larval Guts and Its Influence on Insect Growth and Development. Insect Sci. 2023, 30, 947–963. [Google Scholar] [CrossRef] [PubMed]
- Sirangelo, T. Food Microbiology and Multi-Omics Approaches. Int. J. Adv. Sci. Eng. Technol. 2018, 6, 2321–8991. [Google Scholar]
- Metagenomics Approaches for Improving Food Safety: A Review. Available online: https://pubmed.ncbi.nlm.nih.gov/34706052/ (accessed on 11 March 2024).
- Kariuki, E.G.; Kibet, C.; Paredes, J.C.; Mboowa, G.; Mwaura, O.; Njogu, J.; Masiga, D.; Bugg, T.D.H.; Tanga, C.M. Metatranscriptomic Analysis of the Gut Microbiome of Black Soldier Fly Larvae Reared on Lignocellulose-Rich Fiber Diets Unveils Key Lignocellulolytic Enzymes. Front. Microbiol. 2023, 14, 1120224. [Google Scholar] [CrossRef]
- Belleggia, L.; Milanovic, V.; Cardinali, F.; Garofalo, C.; Pasquini, M.; Tavoletti, S.; Riolo, P.; Ruschioni, S.; Isidoro, N.; Clementi, F.; et al. Listeria Dynamics in a Laboratory-Scale Food Chain of Mealworm Larvae (Tenebrio molitor) Intended for Human Consumption. Food Control 2020, 114, 107246. [Google Scholar] [CrossRef]
- Osimani, A.; Milanović, V.; Cardinali, F.; Garofalo, C.; Clementi, F.; Ruschioni, S.; Riolo, P.; Isidoro, N.; Loreto, N.; Galarini, R.; et al. Distribution of Transferable Antibiotic Resistance Genes in Laboratory-Reared Edible Mealworms (Tenebrio molitor L.). Front. Microbiol. 2018, 9, 2702. [Google Scholar] [CrossRef] [PubMed]
- Milanović, V.; Osimani, A.; Pasquini, M.; Aquilanti, L.; Garofalo, C.; Taccari, M.; Cardinali, F.; Riolo, P.; Clementi, F. Getting Insight into the Prevalence of Antibiotic Resistance Genes in Specimens of Marketed Edible Insects. Int. J. Food Microbiol. 2016, 227, 22–28. [Google Scholar] [CrossRef] [PubMed]
- Kooh, P.; Ververis, E.; Tesson, V.; Boué, G.; Federighi, M. Entomophagy and Public Health: A Review of Microbiological Hazards. Health 2019, 11, 1272–1290. [Google Scholar] [CrossRef]
- Membré, J.-M.; Boué, G. Quantitative Microbiological Risk Assessment in Food Industry: Theory and Practical Application. Food Res. Int. 2018, 106, 1132–1139. [Google Scholar] [CrossRef] [PubMed]
Rearing Farm | Substrate Category | Substrate Recipes | Replicate |
---|---|---|---|
Farm 1 F1 | Classic (cereals, fruits, vegetables) | Apple pomace and wheat bran | 3 batches |
Classic (cereals, fruits, vegetables) | Fruit peel, fruit, vegetable, wheat bran, brewer’s grains, chestnut chips | 3 batches | |
Food at shelf life | Sandwich at shelf life | 1 batch chicken, 1 batch tuna, 1 batch ham | |
Food at shelf life | Meat-based dish prepared at shelf life | 1 batch «Andalusian», 1 batch «Italian», 1 batch «Vendean» | |
Meat-based | Fruit peel, fruit, vegetable, wheat bran, brewer’s grains, chestnut chips with 1% beef | 3 batches | |
Farm 2 F2 | Classic (cereals, fruits, vegetables) | Bananas, variable, wheat bran | 3 batches |
Farm 3 F3 | Classic (cereals, fruits, vegetables) | Organic poultry food * | 3 batches |
Vegetable co-products | Celery pomace | 3 batches | |
Vegetable co-products | Carrot pomace | 3 batches | |
Vegetable co-products | Onion pomace | 3 batches | |
Vegetable co-products | Wheat Silo | 3 batches |
Parameters | Standards |
---|---|
Bacillus cereus (30 °C) | BKR 23/06-02/10 * |
Campylobacter spp. | NF EN ISO 10272-1/A1 |
Clostridium perfringens | NF EN ISO 7937 |
Coagulase-positive staphylococci (37 °C) | NF EN ISO 6888-2 |
Cronobacter spp. | NF EN ISO 22964 |
Enterobacteriaceae (37 °C) | NF V08-054 |
Escherichia coli β-glucuronidase-positive | Adapted from NF ISO 16649-2 (TBX, 21 h ± 3 h) NF ISO 16649-2 |
Lactic acid bacteria (30 °C) | NF ISO 15214 |
Listeria monocytogenes | AES 10/03-09/00/BKR 23/02-11/02 ** |
Molds (on products at aw < 0.96) | Internal methodology (DG18, 120 h ± 3 h) [Gélose GGC 25 °C–120H+/−3H] |
Salmonella spp. | BRD 07/11-12/05 BKR 23/07-10/11 *** |
Yeasts/molds (on products at aw < 0.96) | NF V 08-036 |
Yeasts (on products at aw < 0.96) | Internal methodology (DG18, 120 h ± 3 h) |
Samples and BSF Larvae Forms Analyzed | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Author | Raw Larvae (Unprocessed) | Processed Larvae | Substrates | Frass | Asphyxia | Boiled | Desiccation | Dried (Unspecified) | Fat | Freeze-Dried | Frozen Slaughter | High Pressure | Microwave-Dried | Oven-Dried | Powder | Solar-Dried | Toasted | Sample’s Origin |
Bessa et al., 2021 [44] | X | X | X | X | South Africa | |||||||||||||
Campbell et al., 2020 [45] | X | X | X | X | X | Ireland | ||||||||||||
De smet et al., 2021 [46] | X | X | X | Belgium | ||||||||||||||
Gorrens et al., 2021a [47] | X | X | X | Belgium | ||||||||||||||
Grabowski et al., 2017 [48] | X | X | X | X | Germany or the Netherlands or Europe or Asia | |||||||||||||
Kashiri et al., 2018 [49] | X | X | X | X | Spain | |||||||||||||
Larouche et al., 2019 [50] | X | X | X | X | X | X | X | Canada | ||||||||||
Nyangena et al., 2020 [51] | X | X | X | X | X | X | Kenya | |||||||||||
Osimani et al., 2021 [52] | X | X | X | Italy | ||||||||||||||
Raimondi et al., 2020 [53] | X | X | Italy | |||||||||||||||
Van Looveren et al. 2022a [54] | X | Belgium | ||||||||||||||||
Van Looveren et al. 2022b [55] | X | X | X | X | X | Insect rearing company | ||||||||||||
Wynants et al., 2018 [32] | X | X | X | Belgium, The Netherlands, Switzerland |
Microbiological Parameter | Levels Reported of Hermetia illucens Larvae, Substrate, or Frass (log cfu/g) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Substrate | Frass | Larvae | ||||||||||
Raw 1 | Heat-Treated 2 | Dried 3 | Fat | |||||||||
min | max | min | max | min | max | min | max | min | max | min | max | |
Aerobic mesophilic total viable count | 2.6 | >11.5 | 3.7 | 12.4 | 5.5 | >10.7 | 2.1 | 8.1 | 1.6 | 7.8 | 5.4 * | |
Aerobic mesophilic spore-forming bacteria | 1.1 | 6.3 | 3.2 | 7.6 | 2.4 | 7.9 | / | / | 2.9 | 3.9 | / | / |
Lactic Acid Bacteria | <1.0 | 9.0 | <5.0 | 9.8 | 3.5 | 9.9 | <2.0 | 6.7 | 7.8 | / | / | |
Aspergillus spp. | / | / | / | / | / | / | / | / | / | / | + | |
Bacillus cereus group | <2.0 | n.d. | <3.7 | n.d. | <3.8 | 1.7 | 2.0 | n.d. | + | + | 4.6 | |
Campylobacter spp. | <2.0 | / | / | 3.2 | 4.7 | / | / | / | / | / | / | |
Clostridium perfringens | <1.0 | 3 | n.d. | 2.2 | 0.8 | 1.6 | / | / | <1.0 | / | / | |
Coliforms | / | / | / | / | 4.5 | 7.6 | / | / | / | / | / | / |
Enterobacteriaceae | <1.0 | 4.6 | <1.0 | >9.6 | 2.9 | 9.7 | 0.0 | 6.1 | 0.0 | 8.1 | 0.0 | |
Escherichia coli | / | / | / | / | 4.5 | 1.3 | 1.5 | 5.9 | / | / | ||
Listeria monocytogenes | n.d. | n.d. | n.d. | n.d. | n.d. | / | / | |||||
Listeria spp. | 2.6 | / | / | 4.8 | 7.0 | 5.2 | 5.5 | 5.2 | / | / | ||
Pseudomonas spp. | / | / | / | / | 5.6 | 7.8 | <2.1 | 4.8 | / | / | ||
Salmonella spp. | n.d. | 8.1 | n.d. | 9.5 | n.d. | <5.9 | n.d. | nd | 6.1 | / | / | |
Staphylococcus aureus (coagulase-positive) | <2.0 | 6.6 | n.d. | 7.5 | n.d. | 8.4 | 2.5 | 0.9 | 3.0 | 4.4 | ||
Sulfite-reducing anaerobes | / | / | <1.0 | 8.4 | 9.9 | 4.8 | 6.1 | 7.9 | / | / | ||
Yeasts/molds | <2.0 | 7.7 | 3.6 | 7.8 | 0.7 | 7.6 | 0.0 | 7.8 | 0.0 | 6.8 | + | 2.9 |
Microbiological Parameter | Farm 1 | Farm 2 | Farm 3 |
---|---|---|---|
Bacterial endospores | 6.3 ± 1.4 a | 6.6 ± 2 ab | 7.1 ± 1.7 b |
Enterobacteriaceae | 4.5 ± 0.9 a | 4.2 ± 1 a | 4.7 ± 1.2 a |
Lactic acid bacteria | 5.3 ± 2.4 a | 4.8 ± 1.1 a | 5.5 ± 1.7 a |
Molds | 2.2 ± 1.2 a | 1.8 ± 1.3 ab | 3.2 ± 1.9 b |
Psychotrophic bacteria | 4.0 ± 1.6 a | 4.6 ± 1.3 ab | 5.0 ± 1.7 b |
Total mesophilic flora | 7.7 ± 1.6 a | 8.2 ± 1.5 a | 8.1 ± 1.6 a |
Yeasts | 2.2 ± 1.7 a | 2.6 ± 1.4 a | 2.2 ± 1.8 a |
Microbiological Parameter | Frass | Larvae | Substrate |
---|---|---|---|
Bacterial endospores | 7.8 ± 0.8 a | 7.4 ± 1.0 a | 4.8 ± 1.1 b |
Enterobacteriaceae | 5.1 ± 1.3 a | 4.4 ± 0.9 ab | 4.2 ± 0.7 b |
Lactic acid bacteria | 6.4 ± 0.7 a | 6.3 ± 1.1 a | 3.4 ± 2.2 b |
Molds | 2.9 ± 1.7 a | 3.2 ± 1.7 a | 1.7 ± 1.1 b |
Psychotrophic bacteria | 4.4 ± 1.4 a | 4.1 ± 1.7 b | 5.0 ± 1.9 c |
Total mesophilic flora | 9.3 ± 0.7 a | 8.2 ± 0.7 b | 6.2 ± 1.4 c |
Yeasts | 2.3 ± 1.9 a | 2.4 ± 1.7 b | 2.0 ± 1.5 c |
Microbiological Parameter | Classic | Vegetable Co-Products | Food at Shelf Life | Meat Based |
---|---|---|---|---|
Bacterial endospores | 6.4 ± 1.8 a | 5.8 ± 1.1 b | 6.7 ± 0.9 ca | 7.4 ± 1.5 abc |
Enterobacteriaceae | 4.4 ± 1.1 a | 4.3 ± 0.5 a | 4.4 ± 0.4 a | 4.8 ± 1.3 a |
Lactic acid bacteria | 4.8 ± 2.4 a | 6.0 ± 1.4 a | 5.0 ± 3.0 a | 5.6 ± 1.3 a |
Molds | 1.9 ± 1.1 a | 3.0 ± 1.0 cd | 1.5 ± 0.5 bc | 3.5 ± 2.0 da |
Psychotrophic bacteria | 3.7 ± 1.2 ab | 5.0 ± 1.9 cd | 3.0 ± 0.8 ad | 3.5 ± 2.0 da |
Total mesophilic flora | 7.6 ± 2.1 a | 8.1 ± 0.8 a | 7.4 ± 1.3 a | 3.5 ± 2.0 da |
Yeasts | 2.3 ± 1.7 a | 2.4 ± 1.6 a | 1.2 ± 0.4 a | 3.5 ± 2.0 da |
Substrate (n = 33) | Larvae (n = 34) | Frass (n = 36) | |||||||
---|---|---|---|---|---|---|---|---|---|
F1 (n = 15) | F2 (n = 3) | F3 (n = 15) | F1 (n = 15) | F2 (n = 3) | F3 (n = 16) | F1 (n = 15) | F2 (n = 4) | F3 (n = 17) | |
Campylobacter spp. | 0% | 0% | 0% | 0% | 0% | 0% | 0% | 0% | 0% |
Clostridium perfringens presumed | 7% | 0% * | 7% | 0% * | 0% * | 69% | 0% * | 25% | 6% |
Coagulase-positive staphylococci | 0% * | 0% * | 0% * | 0% * | 0% * | 0% * | 0% * | 0% * | 0% * |
Cronobacter spp. | 13% | 0% | 20% | 0% | 0% | 0% | 0% | 0% | 35% |
Escherichia coli β-glucuronidase-positive | 7% | 0% * | 20% | 87% | 33% | 87.5% | 87% | 75% | 59% |
Listeria monocytogenes | 0% | 0% | 0% | 0% | 0% | 0% | 0% | 0% | 0% |
Presumptive Bacillus cereus | 87% | 67% | 53% | 0% * | 0% * | 0% * | 47% | 100% | 65% |
Salmonella spp. | 0% | 0% | 0% | 0% | 0% | 0% | 0% | 0% | 6% |
Substrate (n = 33) | Larvae (n = 34) | Frass (n = 36) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Classic (Cereals, Fruits, Vegetables) (n = 10) | Vegetable Co-Products (n = 14) | Food at Shelf Life (n = 6) | Meat (n = 3) | Classic (n = 10) | Vegetable Co-Products (n = 15) | Food at Shelf Life (n = 6) | Meat (n = 3) | Classic (n = 10) | Vegetable Co-Products (n = 17) | Food at Shelf Life (n = 6) | Meat (n = 3) | |
Campylobacter spp. | 0% | 0% | 0% | 0% | 0% | 0% | 0% | 0% | 0% | 0% | 0% | 0% |
Clostridium perfringens presumed | 10% | 7% | 0% * | 0% * | 0% * | 73% | 0% * | 0% * | 0% * | 12% | 0% * | 0% * |
Coagulase-positive staphylococci | 0% * | 0% * | 0% * | 0% * | 0% * | 0% * | 0% * | 0% * | 0% * | 0% * | 0% * | 0% * |
Cronobacter spp. | 10% | 14% | 33% | 0% | 0% | 20% | 0% | 0% | 0% | 35% | 0% | 0% |
Escherichia coli β-glucuronidase-positive | 0% * | 21% | 17% | 0% * | 100% | 53% | 83% | 100% | 80% | 65% | 67% | 100% |
Listeria monocytogenes | 0% | 0% | 0% | 0% | 0% | 0% | 0% | 0% | 0% | 0% | 0% | 0% |
Presumptive Bacillus cereus | 100% | 43% | 67% | 100% | 0% * | 0% * | 0% * | 0% * | 60% | 71% | 17% | 67% |
Salmonella spp. | 0% | 0% | 0% | 0% | 0% | 0% | 0% | 0% | 0% | 6% | 0% | 0% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brulé, L.; Misery, B.; Baudouin, G.; Yan, X.; Guidou, C.; Trespeuch, C.; Foltyn, C.; Anthoine, V.; Moriceau, N.; Federighi, M.; et al. Evaluation of the Microbial Quality of Hermetia illucens Larvae for Animal Feed and Human Consumption: Study of Different Type of Rearing Substrates. Foods 2024, 13, 1587. https://doi.org/10.3390/foods13101587
Brulé L, Misery B, Baudouin G, Yan X, Guidou C, Trespeuch C, Foltyn C, Anthoine V, Moriceau N, Federighi M, et al. Evaluation of the Microbial Quality of Hermetia illucens Larvae for Animal Feed and Human Consumption: Study of Different Type of Rearing Substrates. Foods. 2024; 13(10):1587. https://doi.org/10.3390/foods13101587
Chicago/Turabian StyleBrulé, Lenaïg, Boris Misery, Guillaume Baudouin, Xin Yan, Côme Guidou, Christophe Trespeuch, Camille Foltyn, Valérie Anthoine, Nicolas Moriceau, Michel Federighi, and et al. 2024. "Evaluation of the Microbial Quality of Hermetia illucens Larvae for Animal Feed and Human Consumption: Study of Different Type of Rearing Substrates" Foods 13, no. 10: 1587. https://doi.org/10.3390/foods13101587
APA StyleBrulé, L., Misery, B., Baudouin, G., Yan, X., Guidou, C., Trespeuch, C., Foltyn, C., Anthoine, V., Moriceau, N., Federighi, M., & Boué, G. (2024). Evaluation of the Microbial Quality of Hermetia illucens Larvae for Animal Feed and Human Consumption: Study of Different Type of Rearing Substrates. Foods, 13(10), 1587. https://doi.org/10.3390/foods13101587