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Abstract: As a prominent topic in food computing, cross-modal recipe retrieval has garnered substan-
tial attention. However, the semantic alignment across food images and recipes cannot be further
enhanced due to the lack of intra-modal alignment in existing solutions. Additionally, a critical issue
named food image ambiguity is overlooked, which disrupts the convergence of models. To these ends,
we propose a novel Multi-Modal Alignment Method for Cross-Modal Recipe Retrieval (MMACMR).
To consider inter-modal and intra-modal alignment together, this method measures the ambiguous
food image similarity under the guidance of their corresponding recipes. Additionally, we enhance
recipe semantic representation learning by involving a cross-attention module between ingredients
and instructions, which is effective in supporting food image similarity measurement. We conduct
experiments on the challenging public dataset Recipe1M; as a result, our method outperforms several
state-of-the-art methods in commonly used evaluation criteria.

Keywords: cross-modal recipe retrieval; multi-modal alignment; food image ambiguity; deep learning

1. Introduction

With rising awareness of health and sustainability, issues such as food safety [1,2] and
nutrition [3] have gained unprecedented attention. Food computing [4–8] plays a crucial
role in promoting healthier lifestyles, mitigating food waste, and enhancing both the quality
and safety of food products. Cross-modal recipe retrieval [9,10] is one of the hot topics in
food computing, leveraging artificial intelligence (AI) [11,12] which aims to retrieve the
corresponding recipes by queries of food images or vice versa. In this task, food images
depict finished dishes, while recipes comprise text encompassing three key components: a
title, a list of ingredients, and detailed instructions outlining the cooking process.

The principal challenge in cross-modal recipe retrieval lies in mitigating the inherent
heterogeneity between two distinct modalities: the recipes and the food images. To solve
this challenging task, numerous studies have delved into additional interactions between
the two modalities. For instance, Refs. [13–15] tried to learn the consistent feature distri-
bution of food images and recipe texts. Refs. [16–19] boosted the interaction between two
modalities through cross-modal attention. Ref. [20] employed a joint transformer encoder to
promote alignment. Due to the complexity of image–recipe pairs, many existing studies focused
on exploiting the latent semantic information within a modality. As typical studies, refs. [21–25]
aimed to focus on the crucial term within recipes, while others [26–28] attempted to capture the
salient objects or regions from food images to improve the cross-modal similarity measure-
ment. Due to the complexity of the textual structure in recipes, other researchers [29–33]
investigated the interaction among the title, ingredients, and instructions to excavate impor-
tant semantics. Furthermore, some studies introduced diverse augmentation mechanisms
to enhance cross-modal feature representations. For example, Refs. [34–38] employed
various Generative Adversarial Networks (GANs) to reconstruct information from food
images and recipes to bridge the heterogeneity gap across modalities, while refs. [39,40]
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leveraged multilingual translation to enrich the recipe information. Crowdsourcing strategy
is also used to construct program representations of recipes [41]. Thanks to the flourishing
development of visual language pre-training recently, some pioneers [42–45] have further
embedded complex semantic relationship information into common feature subspace by
leveraging the pre-trained Contrastive Language–Image Pre-Training model (CLIP).

Despite the significant progress made so far, there is still room for further improvement
in semantic distribution alignment across food images and recipes. To be specific, the
prevailing efforts [18,29,30] concentrate on exploring inter-modal semantic alignment using
conventional metric learning strategies, such as triplet loss. As shown in Figure 1a, the
conventional metric learning strategy is devoted to reducing the distance between positive
image–recipe pairs (the circles and squares with the same color) and enlarging the distance
between negative samples (the circles and the gray squares) and is proficient in learning
similarity relations within each image–recipe pair. However, semantic relations exist not
only within each image–recipe pair, but extensively between different pairs. For example,
the two image–recipe pairs in Figure 1a belong to the same food (chilli sauce), indicating
strong semantic relations (highlighted by red lines) between the two food images as well as
the two recipes. The conventional metric learning method (e.g., triplet loss), however, fails
to capture this relation information. To be sure, there are lots of image pairs belonging to the
same food in practical time. This situation indicates that effectively enhancing intra-modal
semantic alignment is significant for improving recipe retrieval performance.

Title: Sweet Chilli Sauce
Ingredients: 
1 tablespoon sunflower oil;
2 red chilies, finely hopped
2 tablespoons tomato...
Instructions:
Heat the oil in a small pan.
Add the tomatoes and 
seasoning. stirring until 
softened...

Title: Chilli Sauce
Ingredients: 
1 can chopped tomato;
olive oil; salt; pepper...
Instructions:
Heat the oil.
Add the tomatoes and 
seasoning. Simmer for 5- 
10 minutes. Put in the 
blender and blitz...

Title: Raspberry Smoothie
Ingredients:
1 (8 ounce) carton lemon 
low fat yogurt; 1/2 cups 
frozen reduced-calorie 
whipped topping; 2 cups 
raspberries...
Instructions:Combine 
yogurt, whipped topping, 
raspberries, and ice cubes...

Title: Chilli Sauce
Ingredients: 
1 can chopped tomato;
olive oil; salt; pepper...
Instructions:
Heat the oil.
Add the tomatoes and 
seasoning. Simmer for 5- 
10 minutes. Put in the 
blender and blitz...

(a)

(b) (c)

Title: Chilli Sauce
Ingredients: 
1 can chopped tomato;
olive oil; salt; pepper...
Instructions:
Heat the oil.
Add the tomatoes and 
seasoning. Simmer for 5- 
10 minutes. Put in the 
blender and blitz...

projectproject

reduce inter-modal distance reduce inter-modal distance 

enlarge inter-modal distance enlarge inter-modal distance 

reduce intra-modal distance reduce intra-modal distance 

ambiguous food imagesambiguous food images

guideguide

intra-modal semantic relationintra-modal semantic relation

Title: Sweet Chilli Sauce
Ingredients: 
1 tablespoon sunflower oil;
2 red chilies, finely hopped
2 tablespoons tomato...
Instructions:
Heat the oil in a small pan.
Add the tomatoes and 
seasoning. stirring until 
softened...

Figure 1. The demonstration of multi-modal alignment schemes for cross-modal recipe retrieval.
(a) The prevailing learning strategy that ignores intra-modal alignment. (b) The food image ambiguity
issue. (c) Our solution (negative samples are omitted). Circles represent images, and squares represent
recipes. Shapes of the same color indicate positive pairs, while gray shapes indicate negative samples.

For this purpose, a straightforward method applied in lots of cross-modal retrieval
tasks [46–48] is to utilize metric learning or contrastive learning strategy within each
modality. However, there is a non-trivial issue, i.e., food image ambiguity, in cross-modal
recipe retrieval that has not been considered. Specifically, foods that look similar may
be made from quite different materials and via different preparation methods. Thus,
these similar food images correspond to significantly distinct recipes. For example, in
Figure 1b, the top food image is a cup of raspberry smoothie, and the bottom one is a bowl
of chilli sauce. Theses two foods are visually similar to each other, yet they are crafted
from distinct ingredients and have undergone quite different instructions. Unfortunately,
existing methods embed their semantics from the two modalities to the common subspace
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independently. Due to the resemblance in appearance, these two images will be close in
the common space, while their corresponding recipes will not. This leads to a dilemma;
embeddings that have a large similarity (small distance) in the visual modality may have
a small similarity (large distance) in the text modality. As a result, the two modalities are
hard to align with each other, and the models are difficult to converge, which reduces
the accuracy of retrieval. Stumped by this stand-out drawback, we observe that recipes
are the more reliable modality. In other words, foods prepared using similar recipes will
have similar visual appearances. Therefore, this study aims to answer the following two
questions:

• Q1: How can we measure the similarity between ambiguous food images guided by
their corresponding recipes?

• Q2: How can we further improve the fine-grained semantic alignment between
ingredients and instructions within each recipe to support food image similarity
measurement?

To this end, we propose a novel cross-modal recipe retrieval method called the Multi-
Modal Alignment Method for Cross-Modal Recipe Retrieval (MMACMR). To answer
Q1, we design a novel strategy, the Multi-Modal Disambiguity and Alignment strategy
(MDA for short), which calculates the intra-modal similarity of recipes and guides the
distances between corresponding images. As shown in Figure 1c, the green square is a
recipe (chilli sauce) similar to the one shown by the orange square (sweet chilli sauce).
Our MDA strategy attempts to pull them close and guide the distance between the green
and orange circles (their corresponding images). For Q2, considering ingredients play a
significant role within instructions, we introduce sentence-level cross-attention to focus on
important ingredients in the instructions and further enhance the representations of recipes.
In a nutshell, this work is a pioneering effort to further narrow cross-modal heterogeneity
between food images and recipes by considering both multi-modal (inter-modal and intra-
modal) alignment while mitigating the impact of food image ambiguity.

To sum up, the main contributions of this article are four fold:

• We propose a novel framework called MMACMR which addresses the problem of
ambiguous food images in cross-modal recipe retrieval;

• We introduce a novel deep learning strategy named MDA which promotes the align-
ment of two modalities without adding new parameters;

• We enhance the representation of recipes by focusing on important ingredients within
instructions at the sentence level;

• We conduct extensive experiments on the challenging dataset Recipe1M. The results
demonstrate that the proposed technique outperforms several state-of-the-art methods.

The remainder of this article is organized as follows. The technical details and specific
learning process are outlined in Section 2, the experimental particulars are discussed in
Section 3, and we conclude the paper in Section 4.

2. Method

In this section, we first present the notations involved in this paper and provide the
problem formulation for cross-modal recipe retrieval in Section 2.1. Then, we elaborate on
the technique details of our method MMACMR, including the models in Section 2.2, the
strategy in Section 2.3, and the algorithm in Section 2.4.

2.1. Notations and Problem Formulations
2.1.1. Notations

Without loss of generality, we denote sets as uppercase, handwritten, bold letters (e.g.,
D) and matrices as uppercase letters (e.g., W). The i-th row of W is denoted by Wi, and
the element found in the j-th column of i-th row in W is denoted as Wij. We represent
the transpose of a matrix W as W⊤. Notation ∥·∥2 denotes the L2 norm of a matrix. We
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use so f tmax(·) to represent the softmax function. To ease reading, we summarize the
frequently used notations in Table 1.

Table 1. Summary of notations.

Notation Definition

D A cross-modal recipe dataset
Xv

i The food image of the i-th pair
Xr

i The recipe of the i-th pair
Xtit

i The title of the recipe Xr
i

Xing
i The ingredients of the recipe Xr

i
Xins

i The instructions of the recipe Xr
i

Etit
i The embedding of the title in a recipe Xr

i
Eing

i The embedding of the ingredients in a recipe Xr
i

Eins
i The embedding of the instructions in a recipe Xr

i
R The recipe embedding
V The food image embedding
f r The recipe encoder
f v The image encoder
θr The parameters of recipe encoder
θv The parameters of image encoder
Ltri The N-pairs triplet loss function
LRGI The RGI loss function

2.1.2. Problem Formulations

Let D = {Xv
i , Xr

i }n
i=1 denote a cross-modal recipe dataset comprising n image–recipe

pairs, where Xv
i and Xr

i = ⟨Xtit
i , Xing

i , Xins
i ⟩ represent the food image and recipe of the

i-th pair, respectively. Xtit
i , Xing

i , and Xins
i denote the title, list of ingredients, and list of

instructions of the recipe, respectively. Note that each title comprises a single sentence,
while both ingredients and instructions consist of several sentences. Given a recipe Xr

i as a
query, cross-modal recipe retrieval aims to search for the most similar food image Xv

i from
this dataset D, or vise versa. To enhance consistent feature distribution alignment across
food images and recipes, we attempt to optimize an improved recipe encoder R = f r(Xr; θr)
and an image encoder V = f r(Xv; θv) under the guidance of a novel learning strategy
dubbed MDA. This strategy integrates two losses: an N-pairs triplet loss Ltri to focus on
inter-modal semantic alignment and an RGI loss LRGI to focus on semantic consistency
within the same modality. By considering both inter-modal and intra-modal alignment,
this approach effectively avoids the harmful effects of food image ambiguity. Therefore,
the objective function is formulated as follows:

(θ̂v, θ̂r) = arg min
θv ,θr

(Ltri + λLRGI), (1)

where θv and θr are two learnable parameter vectors for image and recipe encoders, and λ
is a pre-defined balance parameter.

2.2. Framework Overview

An overview of our method MMACMR is depicted in Figure 2. Following prevailing
solutions [29,49], the backbone of MMACMR comprises an image encoder f v(·; θv) and
a recipe encoder f r(·; θr) which project food images and recipes into a common feature
subspace. In this subspace, the cross-modal features can be aligned effectively so that the
similarity between images and recipes can be measured with accuracy. Below, we provide
details of them.
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Figure 2. The framework of MMACMR, which comprises two branches of modality encoder, f r for
recipe texts and f v for food images, along with the MDA strategy.

2.2.1. Image Encoder

To fully capture the global semantic relations between fine-grained features in the
content of each food image, we adopt the base-size model of Vision Transformer (ViT-
B) [50] as the image encoder f v(·; θv). It is initialized with the weights pre-trained on
ImageNet [51] and fine-tuned on the cross-modal recipe dataset. Given a food image Xv

i ,
the embedding of Xv

i is denoted as Vi = f v(Xv
i ; θv).

2.2.2. Improved Recipe Encoder

To focus on the consistent fine-grained semantics between ingredients and instructions,
we improve the hierarchical transformer-based recipe encoder [29]. This encoder consists of
two levels of transformers, denoted as T1 and T2, with identical architectures. The first level
encodes the title Xtit

i , ingredients Xing
i , and instructions Xins

i at word level and then outputs
their sentence-level embeddings, while the second level encoder receives the sentence-level
embeddings of ingredients and instructions and produces component-level embeddings.
Such a widely adopted recipe embedding scheme unfortunately overlooks a fundamental
yet crucial rule in a recipe; the instructions are steps tailored to the ingredients, with the
ingredients playing a determining role in shaping the instructions to some extent. To obey
this rule, we plug a cross-attention module for instructions between the two transformers
for two purposes: (1) to focus on the salient ingredient and (2) to highlight semantic
relationships between ingredients and instructions.

Specifically, given a recipe set {Xr
i }n

i=1, as shown in Figure 2, the first level module T1
receives the word-level tokens of the three components separately and outputs the average
embeddings of every sentence of every components, denoted as ((Etit

i )′, (Eing
i )′, (Eins

i )′) =

T1(Xtit
i , Xing

i , Xins
i ), where (Eing

i )′ = {(Eing
i )′k}

l
k=1, (Eins

i )′ = {(Eins
i )′k}

m
k=1. To highlight the

effect of ingredients to instructions at sentence level and enhance the semantic relationship
learning, cross-attention is carried out between (Eing

i )′ and (Eins
i ). Firstly, within a recipe,

we construct an affinity matrix W as an attention map:

W = so f tmax(
((Eing

i )′Wing)((Eins
i )′Wins)⊤

d
), (2)

where (Eing
i )′ ∈ Rl×d, (Eins

i )′ ∈ Rm×d, and d is the dimension of each ingredient and each
instruction. Wing ∈ Rd×d and Wins ∈ Rd×d are learnable weight matrices. Each element
Wjk means the normalized correlation between the j-th ingredient and the k-th instruction.
Thereby, the embedding of instructions can be enhanced by focusing on the consistent
semantics between instructions and ingredients as follows:

(Eins
i )′′ = W(Eins

i )′. (3)
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After the second-level processing, we obtain the component-level features of title,
ingredients, and instructions: Etit

i , Eing
i = T2(E

ing
i )′ and Eins

i = T2(Eins
i )′′. Finally, these

three component embeddings are concatenated and fed into a linear layer; thus, we obtain
the final recipe feature, Ri = FC([Etit

i ; Eing
i ; Eins

i ]; θl), where FC(·; θl) is a linear layer, θl are
the parameters of it, and symbol [·; ·; ·] denotes the concatenation operation.

2.3. Multi-Modal Disambiguity and Alignment

To enhance the consistent feature distribution alignment across food images and
recipes, we extend the prevailing learning scheme (only inter-modal metric learning, e.g.,
triplet loss) by considering both inter- and intra-modal alignment. To do so, we employ
N-pairs triplet loss to realize inter-modal alignment within each batch, while we propose
a novel RGI loss to steer the model towards capturing intra-modal consistent semantics
effectively by preventing the misrecognition of ambiguous food images.

2.3.1. Inter-Modal Alignment: N-Pairs Triplet Loss

Given an anchor food image Vi, a positive recipe R+
i , and a negative recipe R−

j , where
i ̸= j, the N-pairs triplet loss for visual modality can be defined as follows:

Lv
tri = ∑

|V|
[(Vi, R+

i , R−
j ) = (S(Vi, R−

j )− S(Vi, R+
i ) + m)]+, (4)

where [·]+ = max(0, ·), S(·) is the similarity function (we use cosine similarity here), |V|
is the number of the image sample in the batch, and m is a pre-defined margin (we set
m = 0.3 in this work). Similarly, the N-pairs triplet loss for text modality can be written in
the same way. Consequently, we formulate the whole N-pairs triplet loss as follows:

Ltri = Lv
tri + Lr

tri. (5)

2.3.2. Intra-Modal Alignment with Disambiguity: RGI Loss

As discussed above, N-pairs triplet loss is a satisfactory scheme for reducing hetero-
geneity between images and recipes. Using it within each modality, however, is far from a
suitable intra-modal alignment solution due to the disturbance of food image ambiguity.
Nor is this all; the prevailing recipe retrieval approaches [18,29] only consider cross-modal
similarity measurement, which narrows the distance between anchor and positive samples
while enlarging the distances between the anchor and negative samples. Such a limitation,
on the one hand, leads to a discrepancy between the two modalities, making it difficult for
model convergence. On the other hand, it is easy to match one of the ambiguous images,
resulting in low retrieval performance.

Fortunately, recipes, or, more rigorously, text, are the more reliable modality owing
to their ability to abstract semantic expression word by word. Thus, inspired by [52], we
design a novel learning strategy termed RGI loss which chooses the similarity relations
between recipes as guidance to determine the relations between corresponding food images.
Specifically, if we assume that < Ri, Rj > is a recipe pair in a batch, we aim to preserve the
similarity relation for it and project this relation to the corresponding image pair < Vi, Vj >.
Given a recipe Ri, we first rank other recipes in this batch by the similarity to Ri using the
K-nearest neighbors (KNN) algorithm [53]. From the ranked recipes, we select the nearest
neighbor as the positive sample R+

j and a randomly selected recipe that is not among the

top 10 neighbors as the negative recipe R−
k , i ̸= j ̸= k. Inspired by the angular loss [54], our

RGI loss for text modality is defined as follows:

Lr
RGI =

[∥∥∥Ri − R+
j

∥∥∥2

2
− 4tan2α

∥∥R−
k − Ci

∥∥2
2

]
+

, (6)

Ci =
Ri + R+

j

2
, (7)
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where tan2 α = 1 is a pre-defined upper bound. For the visual modality, we no longer
compute the KNN for images, while we adopt the rank of the neighbors of corresponding
recipes directly. The RGI loss for the visual modality is defined in the same way:

Lv
RGI =

[∥∥∥Vi − V+
j

∥∥∥2

2
− 4tan2α

∥∥V−
k − Ci

∥∥2
2

]
+

, (8)

Ci =
Vi + V+

j

2
, (9)

where tan2 α = 1 is a pre-defined upper bound. Note that the indices of the visual modality
are the same as the text modality. Thus, the entire RGI loss is formulated as follows:

LRGI = λ1Lr
GRI + λ2Lv

RGI , (10)

where λ1 and λ2 are hyper-parameters for adjusting the relation projection.

2.3.3. Total Loss

Finally, the total loss can be written as follows:

Ltotal = Ltri + λLRGI , (11)

where λ is a balance hyper-parameter for adjusting the performance of the two loss functions.

2.4. Optimization

Our method undergoes end-to-end optimization. The optimization procedure is
outlined in Algorithm 1.

Algorithm 1 Optimization procedure of MMACMR

Input: cross-modal recipe dataset D = {Xv
i , Xr

j}n
i,j=1, number of epoch T.

Output: parameters θv, θr of modality encoders.
1: Initialize θv, θr;
2: for t = 1 to T do
3: repeat
4: Compute embeddings V and R;
5: for i = 1 to n do
6: Calculate Equation (5)
7: Rank the recipes neighbors via KNN algorithm;
8: Rank the images neighbors follow recipes;
9: Calculate Equation (10);

10: end for
11: Update the parameters θv, θr by Equation (11) via gradient descent algorithm.
12: until Convergence
13: end for

3. Experiments and Discussion

This section presents extensive experiments conducted to assess our method’s perfor-
mance. We begin by introducing the experiment settings, followed by a detailed discussion
of the experimental results.

3.1. Experiment Settings
3.1.1. Dataset

We implement experiments on the Recipe1M [9] dataset, which is by far the largest
public multi-modal recipe dataset available. Recipe1M comprises over 1 million cooking
recipe texts and 800 K food images which are collected from more than 24 popular cooking
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websites. We adhere to the official splits for data, with 238,399 image–recipe pairs allocated
for training, 51,119 pairs for validation, and 51,303 pairs for testing.

3.1.2. Baselines

We benchmark our approach against the state-of-the-art baselines below:

• CCA [9] stands for Canonical Correlation Analysis, a classical statistical method used
to learn a joint embedding space;

• JE [9] was the first to conduct the cross-modal recipe retrieval task on the Recipe1M
dataset. It uses a joint encoder and a classifier to learn the information from food
images and recipes;

• AdaMin [10] combines the retrieval loss and classifies the loss to improve the robust-
ness of models and proposes a novel strategy to mine the significant triplets;

• R2GAN [35] promotes the modality alignment by employing a GAN mechanism
equipped with two discriminators and one generator;

• MCEN [14] bridges the semantic gap between the two modalities using stochastic
latent variable models;

• SN [16] employs three attention mechanisms on three components of recipes to capture
the relationship between sentences;

• SCAN [13] introduces semantic consistency loss to regularize the representations of
images and recipes;

• HF-ICMA [20] exploits the global and local similarity between the two modalities by
considering inter- and intra-modal fusion;

• SEJE [22] constructs a two-phase feature framework and divides the processes of data
pre-processing and model training to extract additional semantic information;

• M-SIA [17] argues that multiple aspects in recipes are related to multiple regions in
food images and leverages multi-head attention to bridge them;

• X-MRS [39] augments recipe representations by utilizing multilingual translation;
• LCWF-GI [31] employs latent weight factors to fuse the three components of recipes

by considering their complex interaction;
• H-T [29] captures the latent semantic information in recipes by applying self-supervised

loss to push components sourced from the same close recipe;
• LMF-CSF [30] introduces a low-rank fusion strategy to combine the components in

recipes and generate superior representations.

3.1.3. Evaluation Criteria

Similar to the majority of previous studies [9,29,44], we sample 1 K and 10 K image–
recipe pairs from the test partition and assess the retrieval performance for image-to-recipe
and and recipe-to-image tasks using median rank (MedR) and recall rate at top k (R@k).
Among these metrics, MedR represents the median index of the retrieved samples for each
query, measuring the ability of models to understand the semantic correlation between two
modalities and the accuracy of retrieval. A lower MedR value indicates better performance.
R@k indicates that the percentage of the ground truth index is among the first k retrieved
samples, which is also known as sensitivity or the true positive rate, measuring the ability
of models to correctly identify all relevant instances. A higher R@k value indicates better
performance. Here, we evaluate the top 1 (R@1), top 5 (R@5), and top 10 (R@10). By using
these two metrics, we can evaluate the comprehensive performance of the models. Every
evaluation is repeated 10 times, and the mean results are returned.

3.1.4. Implementation Details

In line with prior research [49], we use food images with a depth of three channels in
the RGB color space. All the images in our experiments are resized to 256 pixels in their
shorter dimension and then cropped to 224 × 224 pixels. The image encoder utilizes a
pre-trained ViT-based model, yielding an output size of 1024. Regarding recipes, sentences
in three components are truncated to a maximum length of 15, and every ingredients
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or instructions list has a maximum of 20 sentences. Each transformer in the hierarchical
transformer recipe encoder comprises two layers, and each layer has four attention heads.
Every component in the recipes is embedded as 512 dimensions, and the final embedding
of a recipe is output as 1024 dimensions. The model is trained utilizing the Adam optimizer,
the batch size is set as 128, and the learning rate is η = 10−4. The balance parameters
λ1 = 0.09, λ2 = 0.1, and λ = 0.01.

3.1.5. Experimental Environment

Our experiments are conducted using Python 3.7 with the PyTorch 1.31.1 framework.
We utilize a deep learning workstation equipped with an Intel(R) Core i9-12900K 3.9 GHz
processor, 128 GB of RAM, 1 TB SSD, and 2 TB HDD storage. The workstation runs on
the Ubuntu-22.04.1 operating system and is powered by two NVIDIA GeForce RTX 3090Ti
GPUs (NVIDIA, Palo Alto, CA, USA).

3.2. Comparison with State-of-the-Art Methods

We compare the performance of our method with the baselines mentioned above. The
results are reported in Table 2. It is easy to see that MMACMR is superior to the best results
of existing works using all the metrics. Concretely, our method achieves a 3.3, 1.1, 0.6 R{1, 5,
10} improvement for image to recipe and a 3.7, 1.2, 0.7 R{1, 5, 10} improvement for recipe to
image in the 1 K size compared to the SOTA method LMF-CSF [30] and achieves a 3.5, 3.1,
2.7 R{1, 5, 10} improvement for image to recipe and a 4.0, 3.1, 2.8 R{1, 5, 10} improvement for
recipe to image in the 10 K size compared to the SOTA method LMF-CSF [30]. In addition,
the MedR of our method in the 10 K size dataset decreases to 2.1 for image to recipe and
2.2 for recipe to image compared to 3.0 in LMF-CSF [30]. These results demonstrate the
effectiveness of our MMACMR. In other words, our approach to addressing the questions
mentioned above is effective for cross-modal recipe retrieval.

Table 2. Comparison with SOTA methods. MedR(↓) and R@k(↑) in 1 K and 10 K size. The best results
are marked in bold font.

Methods Image to Recipe Recipe to Image
MedR R@1 R@5 R@10 MedR R@1 R@5 R@10

1 K

CCA [9] 15.7 14.0 32.0 43.0 24.8 9.0 24.0 35.0
JE [9] 5.2 24.0 51.0 65.0 5.1 25.0 52.0 65.0

AdaMin [10] 2.0 39.8 69.0 77.4 2.0 40.2 68.1 78.7
R2GAN [35] 2.0 39.1 71.0 81.7 2.0 40.6 72.6 83.3
MCEN [14] 2.0 48.2 75.8 83.6 1.9 48.4 76.1 83.7
ACME [34] 1.0 51.8 80.2 87.5 1.0 52.8 80.2 87.6

SN [16] 1.0 52.7 81.7 88.9 1.0 54.1 81.8 88.9
SCAN [13] 1.0 54.0 81.7 88.8 1.0 54.9 81.9 89.0

HF-ICMA [20] 1.0 55.1 86.7 92.4 1.0 56.8 87.5 93.0
SEJE [22] 1.0 58.1 85.8 92.2 1.0 58.5 86.2 92.3

M-SIA [17] 1.0 59.3 86.3 92.6 1.0 59.8 86.7 92.8
X-MRS [39] 1.0 64.0 88.3 92.6 1.0 63.9 87.6 92.6

H-T [29] 1.0 60.0 87.6 92.9 1.0 60.3 87.6 93.2
LCWF-GI [31] 1.0 59.4 86.8 92.5 1.0 60.1 86.7 92.7
H-T(ViT) [29] 1.0 64.2 89.1 93.4 1.0 64.5 89.3 93.8
LMF-CSF [30] 1.0 65.8 89.7 94.3 1.0 65.5 89.4 94.3

Ours 1.0 69.1 90.8 94.9 1.0 69.2 90.6 95.0
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Table 2. Cont.

Methods Image to Recipe Recipe to Image
MedR R@1 R@5 R@10 MedR R@1 R@5 R@10

10 K

JE [9] 41.9 - - - 39.2 - - -
AdaMin [10] 13.2 14.9 35.3 45.2 12.2 14.8 34.6 46.1
R2GAN [35] 13.9 13.5 33.5 44.9 12.6 14.2 35.0 46.8
MCEN [14] 7.2 20.3 43.3 54.4 6.6 21.4 44.3 55.2
ACME [34] 6.7 22.9 46.8 57.9 6.0 24.4 47.9 59.0

SN [16] 7.0 22.1 45.9 56.9 7.0 23.4 47.3 57.9
SCAN [13] 5.9 23.7 49.3 60.6 5.1 25.3 50.6 61.6

HF-ICMA [20] 5.0 24.0 51.6 65.4 4.2 25.6 54.8 67.3
SEJE [22] 4.2 26.9 54.0 65.6 4.0 27.2 54.4 66.1

M-SIA [17] 4.0 29.2 55.0 66.2 4.0 30.3 55.6 66.5
X-MRS [39] 3.0 32.9 60.6 71.2 3.0 33.0 60.4 70.7

H-T [29] 4.0 27.9 56.4 68.1 4.0 28.3 56.5 68.1
LCWF-GI [31] 4.0 27.9 56.0 67.8 4.0 28.6 55.8 67.5
H-T(ViT) [29] 3.0 33.5 62.1 72.8 3.0 33.7 62.2 72.7
LMF-CSF [30] 3.0 34.6 62.7 73.2 3.0 34.3 62.5 72.8

Ours 2.1 38.1 65.8 75.9 2.2 38.3 65.6 75.6

3.3. Scalability Analysis

In order to investigate the scalability of our method, we conduct experiments on
datasets larger than 10 K in size. As shown in Figure 3, the MedR results of MMACMR are
consistently lower than those of all other methods across all dataset sizes. In addition, it can
be seen that, with the increase in test size, the performance gap between our method and
others also widens. We argue that, on the one hand, the enhancement of recipe embedding
promotes the alignment between the two modalities. On the other hand, as the dataset size
increases, so does the number of ambiguous food images, leading to a higher probability of
matching incorrect recipes. By effectively addressing this issue, our method demonstrates
improved robustness and scalability as the dataset size enlarges.
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Figure 3. Scalability analysis. The abscissa represents the dataset size ranging from 10 K to 50 K,
while the ordinate represents the MedR value.

3.4. Ablation Studies

In this subsection, we conduct ablation experiments to assess the contribution of
each part of our model to the overall performance. Table 3 reports the image-to-recipe
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retrieval results of different parts of MMACMR in 1 K and 10 K test size. In Table 3, Base
is the baseline framework consisting of the food image encoder (ViT-B) and the original
hierarchical transformer recipe encoder coupled with the N-pairs triplet loss. IR means
introducation of the improved recipe encoder, and LRGI is our RGI loss. A

√
symbol

under the columns Base, IR, and LRGI indicates the use of that part. On the right, we
list the MedR, R@1, R@5, and R@10 results for the image-to-recipe and recipe-to image
tasks. We first evaluate the Base framework, then introduce the improved recipe encoder
and RGI loss separately. Finally, we combine all three parts. It can be observed that the
addition of both IR and LRGI boosts the baseline model. This indicates that the solutions
we propose to address the questions mentioned above are effective. When employing all
subassemblies, we achieve the best performance, further validating the effectiveness of
each element in our approach. Note that the method without IR obtains the same scores as
the full method in R@5 and R@10 for image to recipe, and R@5 for recipe to image, for the
10 K size dataset. Additionally, it achieves better performance in MedR for recipe to image
in 10 K size. Therefore, we attribute the main contribution to the MDA strategy.

Table 3. Ablation study. MedR (↓) and R@k (↑) in 1 K and 10 K size. The best results are marked in
bold font. A

√
symbol indicates that the corresponding part in this column is being used.

Base I R LRGI
Image to Recipe Recipe to Image

MedR R@1 R@5 R@10 MedR R@1 R@5 R@10

1 K

√
1.0 58.3 86.2 91.8 1.0 59.6 86.1 92.2√ √
1.0 67.2 90.0 94.5 1.0 67.6 90.0 94.5√ √
1.0 68.6 90.5 94.7 1.0 68.2 90.3 94.7√ √ √
1.0 69.1 90.8 94.9 1.0 69.2 90.6 95.0

10 K

√
4.1 26.8 54.7 66.5 4.0 37.5 55.1 66.8√ √
3.0 35.9 64.5 74.7 3.0 36.6 64.7 74.9√ √
2.2 37.7 65.8 75.9 2.0 38.0 65.6 75.4√ √ √
2.1 38.1 65.8 75.9 2.2 38.3 65.6 75.6

3.5. Qualitative Results
3.5.1. Qualitative Results on Image-to-Recipe Retrieval

To more intuitively analyze the representative results of MMACMR in image-to-recipe
retrieval, we select four food images as queries to retrieve the recipes from the test set
using our method and the SOTA method H-T (ViT) [29]. As shown in Figure 4, from left to
right, the queries are “Chickpeas and Spinach with Smoky Paprika”, “Blue Ribbon Apple
Crumb Pie”, “Apricot Nectar Cake”, and “Sweet and Spicy Grilled Pork Tenderloin”. In
the first two samples, the categories of food are relatively easy to distinguish; both of these
methods retrieve approximate recipes. However, in the first example, H-T (ViT) [29] does
not retrieve the main ingredient, apricot nectar, while our method successfully retrieves it.
The same situation occurs in the second example, where H-T (ViT) [29] retrieves a recipe
whose corresponding image is similar to the query image but it misrecognizes the pork
tenderloin as chicken thighs. In contrast, MMACMR retrieves the ground truth recipe. We
attribute this to our MDA strategy, which can better address the problem of ambiguous
food images and recognize the ingredients correctly. In the third example, H-T (ViT) [29]
identifies some beans and vegetable leaf in the image but misclassifies their types, and the
retrieved entire recipe deviates significantly from the ground truth. In the last example,
the food image is difficult to recognize by human eye. H-T (ViT) [29] retrieves a recipe
whose corresponding image has a similar color to the query (actually, it is a shortcut for
models to classify objects which have not been seen before). However, our method retrieves
the correct recipe even though the query image is ambiguous. We believe this is because
MMACMR can reduce the distances between images with similar recipes, allowing the
correct sample to be retrieved even when the query is hard to distinguish.



Foods 2024, 13, 1628 12 of 16

Ours

H-T 
(ViT)

Image

query

Title: Chickpeas and Spinach With Smoky Paprika 
Ingredients: 1 tablespoon olive oil; 4 cups onions, thinly 

sliced; 5 garlic cloves, thinly sliced; 1 teaspoon spanish 

smoked paprika; 12 cup dry white wine; 14 cup vegetable 

broth ; 1/2 ounce can diced fire-roasted tomatoes, 

undrained; 15 ounce  can chickpeas, rinsed and drained; 9 

ounce package fresh spinach; 2 tablespoons fresh parsley, 

chopped; 2 teaspoons sherry wine vinegar. Instructions: 

Heat a Dutch oven over medium heat. Add the oil and 

swirl to coat. Add the onion and garlic; cover and cook 8 

minutes oruntil tender, stirring occasionally. Stir in 

smoked paprika; cook 1 minute, stirring 

constantly. Add wine, broth, and tomatoes; bring to a 

boil. Add the chickpeas. Reduce heat, and simmer until 

the sauce thickens slightly (about 15 minutes); stir 

occasionally. Add spinach; cover and cook 2 minutes or 

until the spinach wilts. Stir in parsley and vinegar.

Title: Aarsis Ultimate Mattar Mushroom Curry 
Ingredients: 4 cups creamini mushrooms; 2 cups green 

peas (called A MatarA in India) ;  2 tablespoons garam 

masala; 1 large red onion; 12 ounces diced tomatoes; 2 

green chilies ;  2 tablespoons coriander powder ;  13 cup 

tomato ketchup;  pinch asafetida powder; 4 bay leaves; 1 

tablespoon red chili powder ;  2 cups water;  2 teaspoons 

salt; 4 tablespoons vegetable oil.

I nstructions : Heat oil in pressure cooker. Add green 

chilies, bay leaves and asafetida to this. Add onions along 

with 1 Tsp of salt to the above. Stir all the above 

ingredients together, and let them cook until the onions 

turn translucent and oil starts separating from them.  Now 

add the diced tomatoes along with garam masala powder, 

coriander powder and red chili powder. Mix all the 

ingredients together and let them cook on medium low 

heat until the mixture starts to separate from oil. Add 

green peas and mushroom to this mixture and saute for 

couple of minutes...

Title: Blue Ribbon Apple Crumb Pie

Ingredients: Crust; 1/2 cups all-purpose flour; 1/2 cup 

vegetable oil ;  3 tablespoons milk ;  2 teaspoons white 

sugar; 1/2 teaspoon salt; Filling; 1/4 cup white sugar; 1 

pinch ground cinnamon, or to taste;  6 Golden Delicious 

apples, peeled and sliced ;  Crumb Topping ;  1 cup all-

purpose flour; 1/2 cup packed dark brown sugar; 1/2 cup 

cold butter.

Instructions: Preheat oven to 350 degrees F (175 degrees 

C). Mix 1 1/2 cups flour, vegetable oil, milk, 2 teaspoons 

sugar, and salt in a bowl until mixture pulls together; 

transfer and press into a 9-inch pie dish to form a crust. 

Combine 1/4 cup sugar and cinnamon in a large bowl; 

toss apples into cinnamon sugar to coat. Transfer apples 

to pie dish. Stir 1 cup flour and brown sugar in a bowl. 

Cut in cold butter with a knife or pastry blender until the 

mixture resembles coarse crumbs. Sprinkle crumbs over 

apples. Bake in preheated oven until golden and bubbly, 

about 45 minutes.

Title: Fruit Cocktail Cake VII

Ingredients: 2 eggs; 1/2 cups white sugar; (15.25 ounce) 

can fruit cocktail with juice; 3/4 cups all-purpose flour; 1/ 
2 teaspoons baking soda ;  1 cup white sugar ; 1/2 cup 

butter; 2/3 cup evaporated milk; 1 cup flaked coconut; 1 

teaspoon vanilla extract.

Instructions: Preheat oven to 350 degrees F (175 degrees 

C). Grease and flour a 9x13 inch pan. Sift together the 

flour, and baking soda; set aside. In a large bowl, 

combine the eggs, sugar and fruit cocktail. Beat in the 

flour mixture. Spread batter into prepared pan. Bake in 

the preheated oven for 30 to 35 minutes, or until a 

toothpick inserted into the center of the cake comes out 

clean. Prick the top with a fork and spread on topping 

while still hot. To make the topping: In a saucepan, 

combine 1 cup sugar, butter, evaporated milk and 

coconut. bring to a rolling boil over medium heat.

Title: Apricot Nectar Cake

I n g r e d i e n t s : 1 box (18.25 Oz. Box) Duncan Hines 

Lemon Supreme Cake Mix ;  1 cup Apricot Nectar ;  4 

whole Eggs; 1/2 cups Sugar; 3/4 cups Vegetable Oil; 2 

whole Lemons, Juiced (Or Less As Needed) ;  1 cup 

Powdered Sugar.

I nstructions : Add all cake ingredients. Combine 

thoroughly. Bake at 350 degrees F in a greased and 

floured bundt pan for about 50 minutes to 1 hour. Mix the 

lemon juice and powdered sugar to make a glaze. When 

cake is done, poke it all over with a fork. Spoon the 

glaze, a little at a time, over the cake until all is soaked 

up.

 Title: Briscoe's Irish Brown Bread (Bread Machine)

I n g r e d i e n t s : 2 large eggs ;  1/2 cup butter plus 2 

tablespoons, 125 grams; 1 cup sugar; 2 cups cake flour; 

2/3 cup milk; 1 teaspoon vanilla extract.

I nstructions : Preheat oven to 180 degrees cup (350F/ 
180C). Combine all ingredients in a small bowl. Beat 

with electric mixer on low until blended, then beat at high 

speed for 2 minutes. Grease round cake tin and line the 

base with greaseproof paper. Pour mixture into tin and 

bake in moderate oven for about 30 to 40 minutes. Your 

choice if you want to leave plain or put incing on top. 

Enjoy.

Title: Sweet and Spicy Grilled Pork Tenderloin

I n g r e d i e n t s : 2 pork tenderloin (12 oz each) ;  6 

tablespoons brown sugar ;  14 cup cilantro, chopped fine 

(parsley can be substituted) ;  12 teaspoon red pepper 

flakes (or to taste); 14 cup olive oil; 12 garlic cloves, just 

crushed and a rough chop; 2 teaspoons mustard, dried and 

ground; 2 teaspoons ground ginger; 1 teaspoon paprika; 

12 cup soy sauce.

Instructions : Marinade -- In a large baggie add all the 

ingredients, close and shake well. Add the pork 

tenderloins and let marinade. Grill -- Let set at room temp 

20-30 minutes to take the chill off and then grill. After 

grilling cover and rest 5-10 minutes. Slice and enjoy.

Title: Grilled Lime Chicken Thighs

Ingredients: 2 lbs chicken thighs; 1/2 cup fresh lime 

juice ;  1 / 2 cup extra virgin olive oil ;  2 teaspoons dry 

tarragon;  1 tablespoon minced onion;  1/2 teaspoon hot 

sauce; salt and pepper.

Instructions: Place olive oil, lime juice, onion, tarragon, 

salt, and hot sauce into a large, resealable plastic bag; 

shake to mix. Add chicken thighs, coat with marinade, 

squeeze out air, and refrigerate for at least 4 hours. (I 

leave it in overnight). Preheat an outdoor grill for 

medium heat and lightly oil grate. Remove chicken from 

marinade, and shake off excess. Discard remaining 

marinade. Season with salt and pepper. Grill chicken for 

about 30 minutes, or until no longer pink in the center.

Figure 4. Examples of image-to-recipe retrieval results for the 10 K test set. The first row contains
the query images, the second row shows the recipes retrieved using our method (all of which are
the ground truth recipes; therefore, the first row is their corresponding food images), the third row
displays the recipes retrieved using H-T (ViT) [29], and the last row presents the corresponding food
images of the recipes from the third row. The key ingredients not retrieved by H-T [29] but retrieved
by our method are highlighted in red.

3.5.2. Qualitative Results on Recipe-to-Image Retrieval

We also conduct experiments to visualize the results of recipe-to-image retrieval for
the 1 K test set, which are presented in Figure 5. From top to bottom, the query recipes
are titled “Fruit Salad”, “Italian Beef Roast”, and “Pesto Salmon”, followed by the top
five retrieved images using our method and the SOTA method H-T (ViT) [29]. In the first
example, both methods retrieve five food images of fruit salad, but our method retrieves the
ground truth as the top one, while H-T (ViT) [29] retrieves it in the top three. In the second
example, the two methods retrieve the correct image in the top two. However, all the food
images MMACMR retrieves are roast beef, while the third and fifth retrieved images of
H-T (ViT) [29] do not match the recipe query. In the last example, our method retrieves
the ground truth image as the top one, while H-T (ViT) [29] fails to retrieve the correct
food image. At the same time, the second image retrieved by MMACMR is similar to the
correct one, while the first and third images retrieved by H-T (ViT) [29] deviate significantly
from the ground truth. We attribute these achievements to the capability of our method to
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address the problem of ambiguous food images, allowing MMACMR to retrieve images
that have similar recipes.

Title: Italian Beef Roast
Ingredients :  3 cubes Beef Bouillon ;   1/2 cup 
Water ;  1/2 cups Vegetable Oil ;  2 Tablespoons 
Italian Seasoning; 2 Tablespoons Dried Oregano; 2 
Tablespoons Dried Basil ;  2 Tablespoons Minced 
Garlic (from Costco); 1 teaspoon Kosher Salt; 1/4 
teaspoons Dried Red Pepper Flakes ;  4 pounds 
Rump Roast, Inside Round.
Instructions: In a large pot over medium heat, add 
the bouillon and water and bring to a simmer. On a 
piece of aluminium foil add the oil and spices and 
mix up until combined.  Roll the beef in the spice 
mix and then put it into the simmering broth.  Put 
the lid on and cook on low for 3 hours or until 
tender.

Title: Fruit salad

Ingredien ts :  2 Red apples, diced (skin on) ;  2 

Green apples, diced (skin on); 2 medium bananas, 

halved lengthwise and sliced ;  1/4 cup raisins ;  2 

tbsp fresh lemon juice ;  3/4 cup Cool whip (or 

whipped cream) ;  1/4 cup sour cream ;  1/4 cup 

chopped pecans, optional.

Instructions:  Mix apples, bananas, and raisins in 

medium bowl.  Toss with lemon juice.  In small 

bowl, mix together sour cream and cool whip. 

Toss with fruit.  Chill 1 hours.  Sprinkle with nuts, 

if desired.

Title: Pesto Salmon
I n g r e d i e n t s : 4 -6 salmon fillets (no skin) ;  3 
tablespoons extra virgin olive oi ;  fresh ground 
pepper; 34 cup prepared pesto sauce (refrigerated) 
or 34 cup fresh homemade pesto sauce ;  12 cup 
parmesan cheese ; 3 sliced plum tomatoes 
(optional).
I nstructions: Lightly coat a baking pan with 
cooking spray.  Place each salmon fillet in the 
baking pan and drizzle with olive oil.  Apply 
freshly ground pepper to taste over each fillet. 
Gently spread pesto sauce over each fillet. 
Sprinkle parmesean cheese over each fillet. 
Optional: Place plum tomatoes slices on each fillet 
and sprinkle with a bit of additional parmesean 
cheese. Bake prepared salmon fillets in a 350 oven 
for approximately 20 minutes or until fish flakes 
easily with fork.
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Figure 5. Examples of recipe-to-image retrieval results for the 10 K test set. The left side shows the
query recipes, while the right side displays the top 5 retrieved images using our method or H-T
(ViT) [29]. The ground truth images are marked by a red box.

4. Conclusions

In this paper, we propose a novel cross-modal recipe retrieval method named MMACMR
which addresses the problem of ambiguous food images in retrieval using a novel training
strategy, MDA, that guides the similarity within food images by recipe. Additionally, we
improve the recipe encoder to ensure the precision of recipe embeddings. We conduct
extensive experiments on the challenging public dataset Recipe1M, and the experimental
results demonstrate the effectiveness of our method. Given the necessity of analyzing
vast numbers of food data, our method could offer significant practical value in the food
industry by enhancing user convenience and efficiency.

However, due to the complexity of recipe texts, some information representing the
dish preparation program is still not captured by our method. In the future, we aim to
focus on the fine-grained information in recipes using visual language pre-training models.
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MMACMR Multi-Modal Alignment Method for Cross-Modal Recipe Retrieval
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ViT Vision Transformer
CLIP Contrastive Language–Image Pre-training
KNN K-Nearest Neighbors
SOTA State Of The Art
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