Flavor Improvement of Maillard Reaction Intermediates Derived from Enzymatic Hydrolysates of Oudemansiella raphanipes Mushroom
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Preparation of EH
2.3. Preparation of MRIs and MRPs
2.4. Single-Factor Experiment Design of MRI Reaction Conditions
2.5. The Optimization by RSM
2.6. Determination the Flavor Substances of EH, MRIs, and MRPs
2.6.1. E-Nose
2.6.2. GC-IMS
2.6.3. E-Tongue
2.6.4. Sensory Evaluation of EH, MRIs, and MRPs
2.7. Statistical Analysis
3. Results and Discussion
3.1. Single-Factor Analysis
3.2. Optimization of Maillard Reaction Conditions by RSM
3.2.1. Model Fitting and Statistical Analysis
3.2.2. Model Fitting and Statistical Analysis
3.3. E-Nose Detection and Analysis
3.4. GC-IMS Analysis
3.5. E-Tongue Analysis and Sensory Evaluation of EH, MRPs, and MRIs
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Qi, F.; Lai, Y.; Zhang, D.; Lei, H.; Wang, F.; Guo, X.R.; Song, C. Correction to: Gut microbiota regulation and prebiotic properties of polysaccharides from Oudemansiella raphanipes mushroom. World J. Microb. Biot. 2023, 39, 167. [Google Scholar]
- Zeng, X.Y.; Yuan, X.X.; Peng, K.Q.; Pan, Y.T.; Tan, T.J.; Wu, N.; Tian, F.H. Taxonomy and control of Trichoderma hymenopellicola sp. nov. responsible for the first green mold disease on Hymenopellis raphanipes. Front. Microbiol. 2022, 13, 991987. [Google Scholar]
- Xia, R.R.; Wang, Z.C.; Xu, H.R.; Hou, Z.S.; Li, Y.T.; Wang, Y.F.; Feng, Y.; Zhang, X.; Xin, G. Cutting root treatment combined with low-temperature storage regimes on non-volatile and volatile compounds of Oudemansiella raphanipes. LWT-Food Sci. Technol. 2022, 166, 113754. [Google Scholar] [CrossRef]
- Geng, X.R.; Lei, J.Y.; Bau, T.G.; Guo, D.D.; Chang, M.C.; Feng, C.P.; Xu, L.J.; Cheng, Y.F.; Zuo, N.K.; Meng, J.L. Purification, characterization, and immobilization of a novel protease-resistant alpha-galactosidase from Oudemansiella radicata and its application in degradation of raffinose family oligosaccharides from soymilk. Foods 2022, 11, 3091. [Google Scholar] [CrossRef]
- Liu, Q.; Zhu, M.J.; Geng, X.R.; Wang, H.X.; Ng, T. Characterization of polysaccharides with antioxidant and hepatoprotective activities from the edible mushroom Oudemansiella radicata. Molecules 2017, 22, 234. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.L.; Feng, X.; Zhang, D.N.; Li, B.; Sun, B.G.; Tian, H.Y.; Liu, Y. Analysis of volatile compounds in Chinese dry-cured hams by comprehensive two-dimensional gas chromatography with high-resolution time-of-flight mass spectrometry. Meat Sci. 2018, 140, 14–25. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Wang, J.Y.; Zhao, P.F.; McClements, D.J.; Liu, X.B.; Liu, F.G. Effect of ultrasound-assisted Maillard reaction on glycosylation of goat whey protein: Structure and functional properties. Food Chem. 2024, 441, 138292. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Yu, J.Y.; Cui, H.P.; Xia, S.Q.; Zhang, X.M.; Yang, B.R. Effect of temperature on flavor compounds and sensory characteristics of Maillard reaction products derived from mushroom hydrolysate. Molecules 2018, 23, 247. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Burillo, S.; Rufián-Henares, J.Á.; Pastoriza, S. Effect of home cooking on the antioxidant capacity of vegetables: Relationship with Maillard reaction indicators. Food Res. Int. 2019, 121, 514–523. [Google Scholar] [CrossRef] [PubMed]
- Qiu, J.G.; Li, H.Y.; Liu, Y.; Li, C.; Fang, Z.F.; Hu, B.; Li, X.L.; Zeng, Z.; Liu, Y.T. Changes in flavor and biological activities of Lentinula edodes hydrolysates after Maillard reaction. Food Chem. 2023, 431, 137138. [Google Scholar] [CrossRef] [PubMed]
- Weerawatanakorn, M.; Wu, J.C.; Pan, M.H.; Ho, C.T. Reactivity and stability of selected flavor compounds. Food Drug Anal. 2015, 23, 176–190. [Google Scholar] [CrossRef] [PubMed]
- Jia, W.; Guo, A.A.; Zhang, R.; Shi, L. Mechanism of natural antioxidants regulating advanced glycosylation end products of Maillard reaction. Food Chem. 2023, 4, 134541. [Google Scholar] [CrossRef]
- Li, R.; Yin, X.Q.; Zhang, S.Y.; Yang, J.C.; Zhao, M.Q. Preparation and pyrolysis of two Amadori analogues as flavor precursors. Anal. Appl. Pyrolysis. 2021, 160, 105357. [Google Scholar] [CrossRef]
- Cui, H.P.; Yu, J.Y.; Xia, S.Q.; Duhoranimana, E.; Huang, Q.R.; Zhang, X.M. Improved controlled flavor formation during heat-treatment with a stable Maillard reaction intermediate derived from xylose-phenylalanine. Food Chem. 2019, 271, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Cui, H.P.; Yu, J.H.; Zhai, Y.; Feng, L.H.; Chen, P.S.; Hayat, K.; Xu, Y.; Zhang, X.M.; Ho, C.T. Formation and fate of Amadori rearrangement products in Maillard reaction. Trends Food Sci. Technol. 2021, 115, 391–408. [Google Scholar] [CrossRef]
- Zhou, X.; Cui, H.P.; Zhang, Q.; Hayat, K.; Chen, P.S.; Hayat, K.; Hussain, S.; Xu, Y.; Tahir, M.U.; Zhang, X.M. Taste improvement of Maillard reaction intermediates derived from enzymatic hydrolysates of pea protein. Food Res. Int. 2021, 140, 109985. [Google Scholar] [CrossRef]
- Huang, M.G.; Zhang, X.M.; Karangwa, E. Comparation sensory characteristic, non-volatile compounds, volatile compounds and antioxidant activity of MRPs by novel gradient temperature-elevating and traditional isothermal methods. Food Sci. Technol. 2015, 52, 858–866. [Google Scholar] [CrossRef] [PubMed]
- GB/T 16291.1-2012; Sensory Analysis-General Guidance for the Selection, Training and Monitoring of Assessors-Part 1: Selected Assessors. General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China and National Standardization Administration of China: Beijing, China, 2012.
- Hilgendorf, K.; Wang, Y.R.; Miller, M.J.; Jin, Y.S. Precision fermentation for improving the quality, flavor, safety, and sustainability of foods. Curr. Opin. Biotechnol. 2024, 86, 103084. [Google Scholar] [CrossRef] [PubMed]
- Shen, D.Y.; Li, M.K.; Song, H.L.; Zou, T.T.; Zhang, L.; Xiong, J. Characterization of aroma in response surface optimized no-salt bovine bone protein extract by switchable GC/GC×GC-olfactometry-mass spectrometry, electronic nose, and sensory evaluation. LWT-Food Sci. Technol. 2021, 147, 111559. [Google Scholar] [CrossRef]
- Chen, Q.Q.; Song, J.X.; Bi, J.F.; Meng, X.J.; Wu, X.Y. Characterization of volatile profile from ten different varieties of Chinese jujubes by HS-SPME/GC-MS coupled with E-nose. Food Res. Int. 2018, 105, 605–615. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Xia, B.; Hu, L.T.; Ni, Z.J.; Thakur, K.; Wei, Z.J. Maillard conjugates and their potential in food and nutritional industries: A review. Food Front. 2020, 1, 382–397. [Google Scholar] [CrossRef]
- Zhai, Y.; Cui, H.P.; Hayat, K.; Hussain, S.; Tahir, M.S.; Yu, J.Y.; Jia, C.S.; Zhang, X.M.; Ho, C.T. Interaction of added l-cysteine with 2-threityl-thiazolidine-4-carboxylic acid derived from the xylose-cysteine system affecting its Maillard Browning. Agric. Food Chem. 2019, 1, 8632–8640. [Google Scholar] [CrossRef] [PubMed]
- Nakagawa, K.; Maeda, H.; Yamaya, Y.; Tonosaki, Y. Maillard reaction intermediates and related phytochemicals in black garlic determined by EPR and HPLC analyses. Molecules 2020, 25, 4578. [Google Scholar] [CrossRef] [PubMed]
- Setiowati, A.D.; Wijaya, W.; der Meeren, P.V. Whey protein-polysaccharide conjugates obtained via dry heat treatment to improve the heat stability of whey protein stabilized emulsions. Trends Food Sci. Technol. 2020, 98, 150–161. [Google Scholar] [CrossRef]
- Zhao, M.G.; He, H.; Ma, A.; Hou, T. Sources, chemical synthesis, functional improvement and applications of food-derived protein/peptide-saccharide cova-lent conjugates: A review. Rev. Food Sci. Nutr. 2022, 63, 5985–6004. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.W.; Ye, X.Q.; Chantapakul, T.; Chen, S.G.; Zheng, J.Q. Manosonication extraction of RG-I pectic polysaccharides from citrus waste: Optimization and kinetics analysis. Carbohydr. Polym. 2020, 235, 115982. [Google Scholar] [CrossRef] [PubMed]
- Harohally, N.V.; Srinivas, S.M.; Umesh, S. ZnCl2-mediated practical protocol for the synthesis of Amadori ketoses. Food Chem. 2014, 158, 340–344. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.J.; Wei, Z.X.; Zhang, H.C.; Xie, L.; Vincenzetti, S.; Polidori, P.; Li, L.J.; Liu, J.Q. Changes in the physical-chemical properties and volatile flavor components of dry-cured donkey leg during processing. Foods 2022, 11, 3542. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.F.; Jia, J.X.; Ren, X.J.; Li, B.H.; Zhang, Q. Extraction, preliminary characterization and in vitro antioxidant activity of polysaccharides from Oudemansiella radicata mushroom. Int. J. Biol. Macromol. 2018, 120, 1760–1769. [Google Scholar] [CrossRef] [PubMed]
- Girard, B.; Durance, T. Durance, Headspace volatiles of sockeye and pink salmon as affected by retort process. Food Sci. 2000, 65, 34–39. [Google Scholar] [CrossRef]
- Zhang, W.W.; Han, Y.Q.; Shi, K.X.; Wang, J.M.; Yang, C.; Xu, X. Effect of different sulfur-containing compounds on the structure, sensory properties and antioxidant activities of Maillard reaction products obtained from Pleurotus citrinopileatus hydrolysates. LWT-Food Sci. Technol. 2022, 171, 114144. [Google Scholar] [CrossRef]
- Thomas, C.; Mercier, F.; Tournayre, P.; Martin, J.; Berdagué, J. Effect of added thiamine on the key odorant compounds and aroma of cooked ham. Food Chem. 2015, 173, 790–795. [Google Scholar] [CrossRef] [PubMed]
- Yu, P.; Xu, X.B.; Yu, S.J. The effect of pH and amino acids on the formation of methylglyoxal in a glucose-amino acid model system. Sci. Food Agric. 2017, 97, 3159–3165. [Google Scholar] [CrossRef] [PubMed]
- Shen, C.; Cai, Y.; Wu, X.N.; Gai, S.M.; Wang, B.; Liu, D.Y. Characterization of selected commercially available grilled lamb shashliks based on flavor profiles using GC-MS, GC×GC-TOF-MS, GC-IMS, E-nose and E-tongue combined with chemometrics. Food Chem. 2023, 423, 136257. [Google Scholar] [CrossRef] [PubMed]
- Yu, M.G.; Li, T.; Wan, S.Y.; Song, H.L.; Zhang, Y.; Raza, A.; Wang, C.M.; Wang, H.Q.; Wang, H.W. Sensory-directed establishment of sensory wheel and characterization of key aroma-active compounds for spicy tallow hot pot seasoning. Food Chem. 2023, 405, 13904. [Google Scholar] [CrossRef]
Test Number | A Reaction Time (min) | B Reaction Temperature (°C) | C Amount of Fructose (%) | Total Score |
---|---|---|---|---|
1 | 55 | 60 | 6 | 31.7 |
2 | 55 | 55 | 5 | 30.5 |
3 | 55 | 60 | 4 | 32.9 |
4 | 55 | 65 | 5 | 30.6 |
5 | 60 | 55 | 6 | 33.3 |
6 | 60 | 60 | 5 | 38.5 |
7 | 60 | 60 | 5 | 38.1 |
8 | 60 | 60 | 5 | 37.3 |
9 | 60 | 55 | 4 | 33.7 |
10 | 60 | 60 | 5 | 37.7 |
11 | 60 | 60 | 5 | 36.9 |
12 | 60 | 65 | 4 | 32.5 |
13 | 60 | 65 | 6 | 32.5 |
14 | 65 | 65 | 5 | 30.6 |
15 | 65 | 55 | 5 | 31.7 |
16 | 65 | 60 | 6 | 31.3 |
17 | 65 | 60 | 4 | 35.3 |
Source of Variance | Sum of Squares | df | Mean Square | F-Value | p-Value | Significance |
---|---|---|---|---|---|---|
Model | 126.09 | 9 | 14.01 | 20.93 | 0.0003 | * |
A | 1.28 | 1 | 1.28 | 1.91 | 0.2092 | |
B | 1.12 | 1 | 1.12 | 1.68 | 0.2359 | |
C | 3.92 | 1 | 3.92 | 5.86 | 0.0461 | * |
AB | 0.36 | 1 | 0.36 | 0.54 | 0.4871 | |
AC | 1.96 | 1 | 1.96 | 2.93 | 0.1308 | |
BC | 0.040 | 1 | 0.040 | 0.060 | 0.8139 | |
A2 | 52.32 | 1 | 52.32 | 78.17 | <0.0001 | ** |
B2 | 46.55 | 1 | 46.55 | 69.55 | <0.0001 | ** |
C2 | 7.96 | 1 | 7.96 | 11.89 | 0.0107 | * |
Residuals | 4.68 | 7 | 0.67 | |||
Lack of Fit | 3.08 | 3 | 1.03 | 2.57 | 0.1919 | |
Pure Error | 1.60 | 4 | 0.40 | |||
Cor Total | 130.78 | 16 |
Name | CAS# | Rt (sec) | Molecular Formula | Odor Description | |
---|---|---|---|---|---|
Alcohols | Oct-1-en-3-ol | C3391864 | 330.108 | C8H16O | Mushroom smell |
N-Hexanol | C111273 | 243.806 | C6H14O | Fruity aroma | |
(Z)-4-heptenal | C6728310 | 261.87 | C7H12O | Grassy, oily, and creamy aroma | |
3-Furanmethanol | C4412913 | 222.134 | C5H6O2 | Special bitter and spicy smell | |
Pentan-1-ol | C71410 | 190.255 | C5H12O | Special odor | |
2-Ethyl-1-hexanol-M | C104767 | 393.983 | C8H18O | Special odor | |
2-Ethyl-1-hexanol-D | C104767 | 393.375 | C8H18O | Special odor | |
Aldehydes | Nonanal-M | C124196 | 504.637 | C9H18O | Sweet orange flavor, grease flavor |
Benzene acetaldehyde | C122781 | 406.768 | C8H8O | Flowers, fruits | |
Octanal-M | C124130 | 357.136 | C8H16O | Intense fruity aroma | |
Benzaldehyde-M | C100527 | 312.346 | C7H6O | Almond flavor | |
Benzaldehyde-D | C100527 | 311.188 | |||
Heptanal-M | C111717 | 263.059 | C7H14O | Fruity, delicate | |
3-Methylthiopropanal | C3268493 | 268.288 | C4H8OS | Foul smell, strong onion smell | |
(E)-2-Hexenal | C6728263 | 231.684 | C6H10O | Leaf aroma, vegetable, and fruit aroma | |
Hexanal-M | C66251 | 204.113 | C6H12O | Grassy, winey | |
Hexanal-D | C66251 | 203.4 | |||
Pentanal-M | C110623 | 164.536 | C5H10O | Almond flavor | |
2-Methylbutanal | C96173 | 154.399 | C5H10O | Cocoa aroma, fruity aroma | |
3-Methylbutanal | C590863 | 148.392 | C5H10O | Fruity aroma | |
Butanal | C123728 | 124.551 | C4H8O | A suffocating pungent odor | |
3-Methyl-2-butenal | C107868 | 210.292 | C5H8O | Pungent smell | |
Ketones | 2-Octanone | C111137 | 344.587 | C8H16O | Smell of milk, cheese, mushrooms |
2-Heptanone-M | C110430 | 257.117 | C7H14O | Fruity aroma | |
2-Heptanone-D | C110430 | 255.691 | |||
1-Octen-3-one | C4312996 | 330.562 | C8H14O | — | |
2-Hexanone | C591786 | 198.288 | C6H12O | A pungent odor similar to acetone | |
(E)-3-Penten-2-one-M | C3102338 | 181.431 | C5H8O | — | |
2-Pentanone | C107879 | 159.843 | C5H10O | Acetone-like odor | |
2-Butanone | C78933 | 133.186 | C4H8O | Acetone smell | |
(E)-3-Penten-2-one-D | C3102338 | 179.93 | C5H8O | — | |
Methyl isobutyl ketone | C108101 | 178.305 | C6H12O | Strong aldehyde odor | |
Esters | Methyl acetate | C79209 | 119.483 | C3H6O2 | Honey aroma |
Ethyl acetate | C141786 | 137.504 | C4H8O2 | Fruity, sweet | |
Other compounds | 2-Pentyl furan | C3777693 | 343.538 | C9H14O | Fruity and vegetable, earthy flavor |
2,5-Dimethylpyrazine | C123320 | 277.372 | C6H8N2 | Pungent aroma of fried flowers and chocolate, cream smell | |
Ethylpyrazine-D | C13925003 | 276.006 | C6H8N2 | Nutty, roasted, meaty | |
Ethylpyrazine-M | C13925003 | 276.663 | |||
Methylpyrazine | C109080 | 219.29 | C5H6O2 | Nutty, musty, toasted | |
2,5-Dimethylfuran | C625865 | 167.728 | C6H8O | — |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, F.; Song, S.; Cui, W.; Yu, Z.; Gong, Z.; Wang, Y.; Wang, W. Flavor Improvement of Maillard Reaction Intermediates Derived from Enzymatic Hydrolysates of Oudemansiella raphanipes Mushroom. Foods 2024, 13, 1688. https://doi.org/10.3390/foods13111688
Hou F, Song S, Cui W, Yu Z, Gong Z, Wang Y, Wang W. Flavor Improvement of Maillard Reaction Intermediates Derived from Enzymatic Hydrolysates of Oudemansiella raphanipes Mushroom. Foods. 2024; 13(11):1688. https://doi.org/10.3390/foods13111688
Chicago/Turabian StyleHou, Furong, Shasha Song, Wenjia Cui, Zipeng Yu, Zhiqing Gong, Yansheng Wang, and Wenliang Wang. 2024. "Flavor Improvement of Maillard Reaction Intermediates Derived from Enzymatic Hydrolysates of Oudemansiella raphanipes Mushroom" Foods 13, no. 11: 1688. https://doi.org/10.3390/foods13111688
APA StyleHou, F., Song, S., Cui, W., Yu, Z., Gong, Z., Wang, Y., & Wang, W. (2024). Flavor Improvement of Maillard Reaction Intermediates Derived from Enzymatic Hydrolysates of Oudemansiella raphanipes Mushroom. Foods, 13(11), 1688. https://doi.org/10.3390/foods13111688