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Abstract: Apples are usually bagged during the growing process, which can effectively improve
the quality. Establishing an in situ nondestructive testing model for in-tree apples is very important
for fruit companies in selecting raw apple materials for valuation. Low-maturity apples and high-
maturity apples were acquired separately by a handheld tester for the internal quality assessment
of apples developed by our group, and the effects of the two maturity levels on the soluble solids
content (SSC) detection of apples were compared. Four feature selection algorithms, like ant colony
optimization (ACO), were used to reduce the spectral complexity and improve the apple SSC detection
accuracy. The comparison showed that the diffuse reflectance spectra of high-maturity apples better
reflected the internal SSC information of the apples. The diffuse reflectance spectra of the high-
maturity apples combined with the ACO algorithm achieved the best results for SSC prediction, with
a prediction correlation coefficient (Rp) of 0.88, a root mean square error of prediction (RMSEP) of
0.5678 ◦Brix, and a residual prediction deviation (RPD) value of 2.466. Additionally, the fruit maturity
was predicted using PLS-LDA based on color data, achieveing accuracies of 99.03% and 99.35% for
low- and high-maturity fruits, respectively. These results suggest that in-tree apple in situ detection
has great potential to enable improved robustness and accuracy in modeling apple quality.

Keywords: NIR spectroscopy; apple; dynamic detection; machine learning; maturity

1. Introduction

In recent years, apple, as a highly favored fruit, has shown continuous growth in both
global production and consumption [1]. Apples are bagged during growth to prevent and
remove fruit rust and surface blemishes, promote coloration, reduce pesticide residues, and
improve storability [2]. Apples are removed from their protective bags about 14–20 days be-
fore the harvest period, which is very important for surface coloring and sugar conversion.
It is also important for fruit harvesting companies to select apple materials for valorization
and harvesting. However, current studies are still limited to the static quality inspection of
fruits, while in-depth studies on the dynamic changes in apple quality during the harvest-
ing period are relatively limited [3]. In fact, apples undergo a series of physiological and
chemical changes after harvest, such as respiration and sugar metabolism, processes that
directly affect their taste and storage life [4]. Therefore, establishing a dynamic nondestruc-
tive testing model for apple quality during harvesting is of great practical significance in
realizing the comprehensive monitoring of fruit production, storage, and marketing.
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A commonly used technique to achieve this goal is near-infrared (NIR) spectroscopy,
because of its efficient and nondestructive nature [5–7]. With the development of chemo-
metric methods and the availability of instruments, NIR spectroscopy has been widely
used for the determination of fruit SSC [8]. Research in the field of fruit detection using
NIR spectroscopy mainly focuses on establishing spectral signal models and developing
corresponding processing methods. In terms of model building, intelligent algorithms such
as principal component analysis (PCA), partial least squares (PLS), and support vector
machines (SVM) have been realized to construct static models for the nondestructive test-
ing of fruit quality [9–12]. Numerous researchers have conducted studies indicating that
the fruit quality may change significantly due to biological variability, which affects light
propagation and light–substance interactions. The predictive power of the modeling may
be reduced as a result [13]. Peirs et al. [14] found that the orchards, seasons, and varieties
have a great influence on the spectral variation of apples.

The near-infrared spectra of reflectance modes are more readily available and have
relatively high intensity levels [15]. Several studies have been conducted to measure SSC
online using reflectance modes, such as those focusing on blueberries [16], oranges [17], and
apples [18], suggesting that the reflectance mode is suitable for the accurate determination
of fruit’s internal qualities. Therefore, in this study, the diffuse reflectance mode was used
to detect the diffuse reflectance spectra of apples online. Fruit ripening and senescence are
complex physiological as well as biochemical processes. The physicochemical compositions
of fruits vary greatly with the maturity, which may affect the robustness of SSC and hardness
calibration models [19]. The fruit maturity indicators are the soluble solids, titratable acid,
and color. Shao et al. [20] investigated the relationship between soluble solids and the
near-infrared hyperspectral data of medium-ripe and fully ripened winter jujubes. Yu
et al. [21] constructed a quantitative maturity model for Kurrer balsam pears, choosing the
hardness, soluble solids content, and titratable acid to quantify the maturity of the pears.
Pourdarbani et al. [22] classified “Fuji” apples into four stages of maturity based on color
and spectral data. Fruits at the freshly bagged and uncolored stage exhibit lower maturity,
and those harvested when they reach the harvest standard demontrate higher maturity.
Zhang et al. [23] collected spectral data on apples to evaluate their maturity levels. On the
other hand, DeLong et al. [24] used a handheld chlorophyll meter to obtain chlorophyll
content data on apples, and the developed model was used to succesfully assess the harvest
maturity of “Minneiska” apples. Therefore, the nondestructive testing of dynamic change
processes in new application scenarios is necessary to investigate the effect of ripeness on
apple quality detection during the harvesting period. The goal is to establish a quality
detection model that is insensitive to changes in apple ripeness while on the tree.

The purpose of this study is to model the dynamic nondestructive detection of apples
on trees during the harvesting period after the removal of apple bags. The technical
approach is depicted in Figure 1. The specific objectives are to (1) compare and analyze the
change rules of the apple surface coloring and brix on the tree during the harvesting period
and establish a mechanism linking near-infrared spectroscopy and different maturity levels;
(2) analyze and compare the optimization results of reflectance spectral feature algorithms
for two maturity levels of apples before and after the harvesting period, to provide a
recommended solution for the dynamic quality inspection of apples; and (3) study the
effect of color parameters (L*, a*, b*) on the modeling of the dynamic change process. A
classification model was built with PLS-LDA.
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Figure 1. Detecting apple SSC and constructing a dynamic quality detection model for the apple 
harvesting period using a handheld tester. 

2. Materials and Methods 
2.1. Sample Collection 

The apples used in this experiment were produced in an orchard at an 80°16′ eastern 
longitude and 41°18′ northern latitude in the Aksu region, Xinjiang. The Fuji variety 
apples were similar to those available in the market and represented the predominant 
cultivar in the area. The color of the sun-exposed and shaded sides of the apples was 
determined when the apples were first bagged, and the spectra of the apples were detected 
in situ on the tree using a prototype handheld monitoring terminal developed by our 
group. The apples were then collected to determine their physicochemical information. 
Then, 14 days later, when the harvest standard was reached, as identified by a professional 
harvester, samples that were relatively the same size as those of the low-maturity apples 
and had no scars on their surfaces were detected in situ on the tree. The harvest dates and 
numbers of samples at different maturity stages are shown in Table 1. The sample surfaces 
were wiped with damp gauze and allowed to dry naturally. Then, the samples were 
numbered one by one and the spectral and physicochemical information of the samples 
was collected. 

Table 1. Harvest date and number of samples at different maturity stages. 

Date Samples Maturity 
4 October 2023 100 LM 
5 October 2023 100 LM 

28 October 2023 80 HM 
29 October 2023 80 HM 

2.2. Color Measurement 
The color of the samples was measured with a spectrophotometer (CM-2300d, Konica 

Minolta, Osaka, Japan). In the CIE L*a*b* color space, the color is estimated by three 
parameters: L* denotes the luminance from black (0) to white (100); a* denotes the green–
red trend, with negative values toward green (−) and positive values toward red (+); and 
b* denotes the blue–yellow trend, with negative values toward blue (−) and positive values 
toward yellow (+) [25–27]. The spectrophotometer was first calibrated with a standard 
white calibration plate CM-A145. Then, two separate equatorial measurements were 

Figure 1. Detecting apple SSC and constructing a dynamic quality detection model for the apple
harvesting period using a handheld tester.

2. Materials and Methods
2.1. Sample Collection

The apples used in this experiment were produced in an orchard at an 80◦16′ eastern
longitude and 41◦18′ northern latitude in the Aksu region, Xinjiang. The Fuji variety apples
were similar to those available in the market and represented the predominant cultivar
in the area. The color of the sun-exposed and shaded sides of the apples was determined
when the apples were first bagged, and the spectra of the apples were detected in situ on
the tree using a prototype handheld monitoring terminal developed by our group. The
apples were then collected to determine their physicochemical information. Then, 14 days
later, when the harvest standard was reached, as identified by a professional harvester,
samples that were relatively the same size as those of the low-maturity apples and had no
scars on their surfaces were detected in situ on the tree. The harvest dates and numbers of
samples at different maturity stages are shown in Table 1. The sample surfaces were wiped
with damp gauze and allowed to dry naturally. Then, the samples were numbered one by
one and the spectral and physicochemical information of the samples was collected.

Table 1. Harvest date and number of samples at different maturity stages.

Date Samples Maturity

4 October 2023 100 LM
5 October 2023 100 LM
28 October 2023 80 HM
29 October 2023 80 HM

2.2. Color Measurement

The color of the samples was measured with a spectrophotometer (CM-2300d, Konica
Minolta, Osaka, Japan). In the CIE L*a*b* color space, the color is estimated by three
parameters: L* denotes the luminance from black (0) to white (100); a* denotes the green–
red trend, with negative values toward green (−) and positive values toward red (+); and
b* denotes the blue–yellow trend, with negative values toward blue (−) and positive values
toward yellow (+) [25–27]. The spectrophotometer was first calibrated with a standard
white calibration plate CM-A145. Then, two separate equatorial measurements were taken
of the sunward and dorsal surfaces of the sample. The color parameters of the sunward
and dorsal sides of the samples were averaged over the two measurements.
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2.3. Measurement of Apple SSC

The SSC measurement procedure was as follows. After removing the peel, a
10 × 10 × 10 mm tissue block was removed at the equator of the apple with a sampler.
The SSC of the apples was determined by squeezing the juice from the removed tissue
blocks wrapped in gauze. A portable refractometer (PAL-1, Atago, Tokyo, Japan) with
automatic temperature compensation was used. The determination of the suspended solids
in the apples was carried out according to the agriculture industry standard (NY/T2637-
2014). The refractometer was first zeroed with pure water and then the squeezed juice was
dropped onto the test lens. The refractometer prism was cleaned with pure water at the
end of each test. The average of the two measurements was considered as the SSC value
for each sample.

2.4. Prototype of Handheld Detection Terminal

The internal quality of a sample can be detected using the apple internal quality
handheld tester. As shown in Figure 2, the apple internal quality handheld tester and
an Internet of Things (IoT) cloud data system comprise the detector. When testing, the
apple internal quality handheld tester can acquire the reflectance spectrum information
of the apple. At the same time, the data are transferred to the IoT cloud data system via a
communication module. In the Internet of Things (IoT) cloud data system, the model of the
inspection is used for calculation and can predict the inspection results. Data can also be
queried, downloaded, and statistically analyzed in the detection database.
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Figure 2. Structure of apple internal quality handheld tester and IoT cloud data testing system.

The hardware of the handheld inspection terminal of the test system mainly consists
of a light-emitting diode (LED) light source, a near-infrared photoelectric sensor, a light-
shielding ring, a rubber gasket, a temperature sensor, a casing, a rechargeable lithium
battery, a control circuit, a display, and so on. The LED point light source is used to irradiate
the tested apple. The rubber gasket protects the apple from mechanical damage. In addition,
the shading ring excludes stray light other than diffuse reflected light, fully ensuring that it
is not affected by ambient light during outdoor inspection. During the detection process,
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the light illuminates the apple and then passes through a series of internal transmissions
and is finally received by the visible near-infrared photoelectric sensor. After the control
circuit processes the received signal, it is then transmitted to the cloud server through the
4G/5G module. The final detection results can be calculated by using the cloud model.

In addition, the apple internal quality handheld detector measures 118 × 50 × 38 mm
and weighs about 0.12 kg. It has the advantages of a small size, high integration, low
energy consumption, and ease of secondary development, making it easy to carry and
more convenient for apple quality assessment. Compared with traditional portable and
handheld NIR detection devices in the market, it has a greatly simplified design structure
and significantly reduced cost. In conclusion, the advantages of this design are low power
consumption, a low cost, and ultra-portability. It can be used by fruit companies, farmers,
and apple producers for a wide range of applications.

2.5. NIR Spectra Acquisition

The diffuse reflectance spectra of the samples were collected using the apple internal
quality handheld detector, as described in the previous section. After starting the spectral
acquisition software, as optimization was performed many times before this experiment,
the average number of times was set to 5, the exposure time was 75 ms, the sampling
frequency was 10 Hz, and the pulse-width modulation (PWM) value was 60. The apple
was attached via the equatorial position to the rubber washer, and, after pressing the
detection button, the miniature light source began to flash and the spectral data appeared
in the spectral acquisition software. The spectral acquisition was completed upon clicking
the save button. Two measurements were taken at the equator of each sample on the
sun-exposed side and the shaded side. Our operations were conducted on the surfaces of
the apples, eliminating the need for peeling. In order to resolve the testing errors caused
by dark noise, a total reflection reference spectrum was acquired using a PTFE reflector
before the apple spectrum acquisition. In addition, dark noise spectra were acquired
simultaneously with the apple spectra and the diffuse reflectance spectral intensity was
converted into the relative absorbance lg(1/R).

R =
Iλ − Dλ

Rλ − Dλ

where R is the corrected spectrum; Iλ is the original apple spectrum collected; Dλ is the
dark noise spectrum; and Rλ is the total reflection reference spectrum.

2.6. Data Processing Algorithms
2.6.1. Spectral Preprocessing

In the process of acquiring apples’ diffuse reflectance spectra, the spectral detection
performance may be affected by the influence of instrument errors, manual manipulation,
and variations in the apple samples. To eliminate these effects, spectral preprocessing was
performed. Savitzky–Golay smoothing (SG) was first applied for noise reduction, and
then attempts were made to further process the apple spectra using the standard normal
variable transform (SNV), multiple scattering correction (MSC), normalization (center),
first-order differential (1stD), and further processing [28].

2.6.2. PLS Model

The partial least squares method is the most classical of the chemometric methods for
visible/near-infrared spectral analysis. The partial least squares algorithm first decomposed
the apple spectral matrix and the SSC matrix and obtained the score matrix and the loading
matrix from these two original matrices [29,30]. In turn, a one-way linear regression
relationship between the score matrix of the spectral variable and the score matrix of the
SSC variable was established.
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2.6.3. Feature Variable Selection

The composition of food is usually complex, with a large number of second and third
overtones in the visible/near-infrared region. Interactions between overtone bands result
in spectra containing a large amount of irrelevant information. These factors affect the
accuracy and robustness of spectral prediction models, and the speed of the detection model
may be reduced as a result [31,32]. The four feature variable selection algorithms used
in this experiment were the synergetic interval (SI), the continuous projection algorithm
(UVE), competitive adaptive reweighted sampling (CARS), and the ant colony optimization
algorithm (ACO). The SI algorithm divides the entire spectrum into different subintervals
and then combines these different subintervals to find a combination that gives the model
the highest accuracy [33–35]. To simplify the model, the interval with the smallest RMSEC
is chosen during construction. UVE excludes variables considered “useless” from the
dataset through thresholds such as variance and the correlation coefficient. By excluding
irrelevant variables, redundant and irrelevant information in the data can be effectively
reduced, thus helping to improve the performance of the model. CARS evaluates and
ranks the importance of each feature and obtains a subset of optimal feature variables.
Compared with some other traditional feature selection methods, the CARS algorithm
handles the interrelationships between features better, improving the accuracy and stability
of feature selection [36]. ACO-PLS is a powerful variable selection algorithm used to solve
regression problems. It mimics the behavior of ants in mapping food channels, capturing
the target portion of the spectrum from the spectral data. Firstly, it initializes the pheromone
vector and other related parameters. Then, it initiates the ants and uses the Monte Carlo
roulette wheel spinning method to randomly select a variable from the set until the number
of variables reaches the maximum. After completing the variable selection in stages, it
establishes a partial least squares model and outputs the root mean square error. All four
algorithms are widely used in fruit spectral feature selection.

2.6.4. Model Performance Evaluation

Feature variable selection and PLS regression were performed using MATLAB R2017b
(MathWorks, Natick, MA, USA). Then, the parameters of the PLS model were imported
into the software developed by our group and five preprocessing methods were used to
predict the SSC of the samples with different maturity levels. The correlation coefficient
of calibration (Rc), root mean square error of calibration (RMSEC), correlation coefficient
of prediction (Rp), root mean square error of prediction (RMSEP), and residual prediction
deviation (RPD) were used to compare and evaluate the performance of the model [37].
The degree of linear correlation between the predicted SSC values and true SSC values is
indicated by Rc and Rp. RMSEC and RMSEP indicate the deviation between the predicted
SSC and true SSC. Higher Rc and Rp values and lower RMSEC and RMSEP values indicate
the excellent performance of the established PLS model. The RPD value is the standard
deviation divided by the RMSEP. An RPD value >1.8 indicates good model stability and an
RPD value > 2 indicates that the predictive accuracy of the model is excellent.

2.6.5. PLS-LDA Classification Model

Partial least squares–linear discrimination analysis (PLS-LDA) is a multivariate anal-
ysis technique mainly used to deal with classification and discrimination problems; it
combines the ideas of partial least squares regression (PLS) and linear discriminant analysis
(LDA) [38]. PLS-LDA is a supervised discriminant analysis method where the dataset
contains both an independent variable (X) and a dependent variable (Y), with the ability to
model high-dimensional and high-correlation samples that capture the maximum variance
of X associated with Y in the space.
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3. Results
3.1. Apple Quality at Different Maturity Stages
3.1.1. Comparison of Color Parameters

The pigments in the skin of red apples consist mainly of chlorophyll, carotenoids, and
anthocyanins. Among them, chlorophyll contributes to the green color, carotenoids mainly
exhibit a yellow color, and anthocyanins are responsible for the red color of the fruit. The
three major classes of pigments exhibit their own dynamic formation patterns during fruit
development. Chlorophyll and carotenoids mainly form during the early stage of fruit
growth and development, while the formation of pericarp anthocyanins initiates gradually
as the fruit ripens, often serving as a marker for the onset of fruit ripening. As shown
in Table 2, as the harvest period progresses, the maturity of apples gradually increases.
Correspondingly, the L* value gradually decreases, the a* value increases, and the b* value
gradually decreases, culminating in the gradual formation of a red color in apples. The
a*/b* ratio and the a* value are directly correlated to the anthocyanin content.

Table 2. Measured color change statistics of apple samples.

Parameter Maturity Samples Range Mean

L*
LM 200 39.6–84.38 78.45 ± 4.29
HM 160 26.41–82.26 68.69 ± 8.00

a*
LM 200 −5.16–27.87 2.46 ± 5.77
HM 160 −2.41–35.51 13.84 ± 8.89

b*
LM 200 16.31–88.90 27.77 ± 6.16
HM 160 15.15–40.60 26.60 ± 4.87

3.1.2. SSC Measurement Statistics

The SSC ranges of the low- and high-maturity apples were 9.3–17.0 ◦Brix and
11.7–19.4 ◦Brix, respectively. The mean SSC of the low- and high-maturity apples was
13.4 ± 1.2 ◦Brix and 15.1 ± 1.4 ◦Brix, respectively. After removing the outliers using Monte
Carlo outlier detection, accurate predictions were obtained, as shown in Table 3. The
apple samples were randomly divided into calibration and prediction datasets, with a
ratio of 3:2. Calibration and prediction sets are independent of each other and do not
overlap. On the other hand, outliers in normal samples can have a significant impact on
the intelligent algorithms building the model, leading to a decrease in the accuracy of the
model predictions.

Table 3. Statistics of apple SSC values measured for spectral acquisition methods.

Maturity Dataset Samples Range (◦Brix) Mean (◦Brix)

LM
Total 200 9.3–17.0 13.4 ± 1.2

Calibration 120 9.3–17.2 13.2 ± 1.3
Prediction 80 9.6–16.8 13.2 ± 1.0

HM
Total 160 11.7–19.4 15.1 ± 1.4

Calibration 96 11.7–18.5 14.8 ± 1.3
Prediction 64 12.2–19.4 15.0 ± 1.4

3.2. Spectral Analysis and Pretreatment

The raw spectra were converted into reflectance spectra based on white and dark
references. Figure 3 shows the reflectance spectra of the low- and high-maturity apples,
respectively. The principal component analysis of the raw spectra of the low- and high-
maturity apples is shown in Figure 3c. As can be seen from the figure, the calculated scores
of the first three principal components account for 99.57% of the spectral information. There
is less overlap between the spectra of the low- and high-maturity apples, indicating that
the difference in the reflectance spectra of the samples collected at the two maturity levels
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is more significant. The effective spectral range was chosen to be 608–958 nm to avoid
noise at low energy. The wider absorption range showed significant variation in the peel
pigmentation content among apples at different maturity. Both the low- and high-maturity
apples’ reflectance spectra had a chlorophyll-related peak at 675 nm. The trough at 710 nm
may contain important information related to fruit maturity [39], which may affect the SSC
values of the apples. The absorption peak near 750 nm may be the overtone of the O-H
band in water. The absorption peak at 820 nm is associated with the N-H overtone [40].
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As shown in Table 4, the best performance was seen for the reflectance spectra of
highly mature apples combined with the SG-SNV preprocessing model, with Rp, RMSEP,
and RPD values of 0.8350, 0.7876 ◦Brix, and 1.778. Therefore, SG-SNV was chosen as
the preprocessing method before feature selection for the reflectance spectra. In the low-
maturity apples’ reflectance spectra, the SG-SNV method did not have as high an RPD
value as SG-1stD, but it was also chosen for preprocessing in order to control the variables
to obtain a good model of the reflectance spectra.

Table 4. SSC prediction results of PLS LM apples and HM apples with different spectral
preprocessing methods.

Maturity Preprocessing Samples Rc RMSEC Rp RMSEP RPD

LM

SG

200

0.7703 0.7551 0.7916 0.7493 1.601
SG-SNV 0.7649 0.7639 0.7919 0.7414 1.619
SG-MSC 0.7753 0.7462 0.7743 0.7676 1.563

SG-Center 0.7703 0.7551 0.7916 0.7493 1.601
SG-1stD 0.7957 0.7163 0.7977 0.7219 1.662

HM

SG

160

0.7988 0.7954 0.7801 0.8220 1.703
SG-SNV 0.8356 0.7932 0.8350 0.7876 1.778
SG-MSC 0.8343 0.7961 0.8294 0.8022 1.745

SG-Center 0.8456 0.7709 0.8206 0.8186 1.710
SG-1stD 0.8439 0.7747 0.8029 0.8538 1.640
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3.3. Spectral Models Based on Feature Selection
3.3.1. SI-PLS Model Results

The entire spectrum was decomposed into 10 intervals and combined with four
subintervals to build the PLS model with accurate prediction. The best prediction results
were obtained when the combination had the lowest interval RMSEP. For low-maturity
apples, the best combination of selected subintervals was [2 4 7 10], corresponding to
644–678, 716–750, 824–856, and 926–958 nm. For high-maturity apples, the best spectral
subintervals were [5 8 9 10], corresponding to 752–786, 858–890, 892–924, and 926–956 nm.
The SI-PLS model predictions are shown in Figures 4b and 5b. The RPD values of the low-
and high-maturity apples’ spectral models were 1.729 and 1.733. The spectral model of the
low-maturity apples showed less accuracy compared to that of the high-maturity apples.
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3.3.2. UVE-PLS Model Results

During UVE, the spectral matrix can be cross-validated to eliminate invalid wave-
length variables. UVE measures the characteristic wavelength band via controlling the
coefficient of variation. Fourteen and twenty-eight wavelength variables were selected
in the reflectance spectra of low- and high-maturity apples, respectively. The selected
wavelength variables are shown in Figures 4c and 5c. The Rp and RMSEP of the low-
maturity apples’ reflectance spectral model were 0.8420 and 0.6810 ◦Brix, respectively. The
RPD values of the low-maturity apples’ and high-maturity apples’ reflectance spectral
models were 1.762 and 1.819, respectively. An improvement in the accuracy of the re-
flectance spectral models of the apples for both maturity levels was realized compared to
the full-spectrum model.

3.3.3. CARS-PLS Model Results

Fifty Monte Carlo samplings were set up and the optimal model was determined
using five-fold cross-validation based on the RMSEC minimum. The number of samples
was gradually increased, the number of selected variables was gradually decreased, and
the speed of both the coarse and fine selection processes varied from fast to slow. When
the sampling was performed 26 times and 4 times, respectively, the RMSEC value was the
smallest, and then it increased gradually. The established models for Rc, RMSEC, Rp, and
RMSEP are shown in Figures 4f and 5f. The RPD values of the reflectance spectral models
for low- and high-maturity apples were 1.725 and 2.071. However, the RPD value of the
reflectance spectral model for high-maturity apples was >2.

3.3.4. ACO-PLS Model Results

The characteristic wavelength points were extracted from the full spectrum using the
ACO algorithm. The control parameters of the ACO optimization algorithm were verified
by several experiments, as follows: the initial population size was 100, the maximum
number of iterations was 50, the maximum number of loops was 10, the probability thresh-
old of variable selection was 0.3, and the significance factor Q was 0.01. The pheromone
attenuation coefficient p was 0.65, which reliably ensured the comprehensiveness of the
transmitted information and the convergence speed of the algorithm. The selected wave-
length variables are shown in Figures 4g and 5g, and the established models for Rc, RMSEC,
Rp, and RMSEP are shown in Figures 4h and 5h. The RPD values of the reflectance spectral
models for low- and high-maturity apples were 1.868 and 2.466. ACO-PLS achieved the
best results in the reflectance spectral modeling of apples at both maturity levels.

3.4. Comparisons of Different PLS Models

Figures 4 and 5 show the modeling results of the low- and high-maturity apples’
reflectance spectra processed through the SI, UVE, CARS, and ACO algorithms. In the
collection of the low-maturity apples’ reflectance spectra, the Rp values were all less than
0.85 and the RPD values were all less than 2. Meanwhile, in the high-maturity apples’
reflectance spectra, the RP values were greater than 0.80; the RPD values were greater than
1.8 after processing with the UVE, CARS, and ACO algorithms; and the RPD values were
greater than 2 after processing with the CARS and ACO algorithms. These suggest that
high-maturity apples can be predicted more accurately with respect to the internal SSC
values. The performance of the reflectance model for low-maturity apples, in descending
order, was ACO-PLS > UVE-PLS > SI-PLS > CARS-PLS > PLS. The performance of the
reflectance model for high-maturity apples, in descending order, was ACO-PLS > CARS-
PLS > UVE-PLS > SI-PLS > PLS. The ACO-PLS model with reflectance spectra had the
best prediction ability for high-maturity apples’ SSC content. Meanwhile, the reflectance
spectral model for high-maturity apples had better performance overall.
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3.5. PLS-LDA Classification Model

To investigate the effect of color on maturity, the color space coordinates (L*, a*,
b*) were used as input variables, and then a PLS-LDA classification model was built by
combining these variables with the SSC. The SSC array was set to −1 for samples with low
maturity and 1 for samples with high maturity. The classification accuracy of the training
set is presented in Figure 6. The accuracy of the training and prediction sets was 99.03%
and 99.35%, respectively. Overall, the PLS-LDA model was effective in analyzing the apple
color during ripening.

Foods 2024, 13, 1698 13 of 16 
 

 

3.5. PLS-LDA Classification Model 
To investigate the effect of color on maturity, the color space coordinates (L*, a*, b*) 

were used as input variables, and then a PLS-LDA classification model was built by 
combining these variables with the SSC. The SSC array was set to −1 for samples with low 
maturity and 1 for samples with high maturity. The classification accuracy of the training 
set is presented in Figure 6. The accuracy of the training and prediction sets was 99.03% 
and 99.35%, respectively. Overall, the PLS-LDA model was effective in analyzing the 
apple color during ripening. 

 
Figure 6. PLS-LDA modeling results with color space coordinates (L*, a*, b*) as input variables, true 
values (*), and predicted values (○). Comparison of prediction results of training set (a) with 99.03% 
accuracy and comparison of prediction results of prediction set (b) with 99.53% accuracy. 

The diffuse reflectance spectra corresponding to the classified color coordinates (L*, 
a*, b*) were preprocessed with SG-SNV and then subjected to PLS modeling. The classified 
low-maturity apples had more acccurate values, with Rp = 0.8139, RMSEP = 0.7013, and 
RPD = 1.711, compared to the PLS model. After classification, high-maturity apples, with 
Rp = 0.8379, RMSEP = 0.7760, and RPD = 1.804, showed slight improvements in the model 
predictions. The results obtained via the LDA method showed reliability, and it could be 
applied to different classification methods supervised by discriminant analysis. 

4. Discussion 
The SSC was obtained for two maturity levels of apples by in situ testing on trees. 

Diffuse reflectance spectra were collected with a handheld inspection system developed 
by our group for the internal quality assessment of apples, aiming to model the dynamic 
in situ inspection of apples on trees for the period from bag removal to harvest. Due to the 
differences in the light transmission properties and cellular structures of apples, the 
original spectral trends of the apples at different maturity levels were generally similar, 
but the spectral intensities varied greatly from 650 nm to 800 nm. 

Comparing the prediction results of the spectra of the two maturity groups of apples, 
the SSC prediction accuracy for high-maturity apples was higher than that for low-
maturity apples among the various feature extraction methods. There are many reasons 
for the differences between the modeling results of low- and high-maturity apples. The 
signals collected by the spectrometer in reflectance mode arise from the apple surface, and 
prediction models developed by applying NIR spectroscopy for the non-invasive 
detection of the fruit SSC are often influenced by biological variability factors. Fruits with 
different physiological stages, varieties, growing regions, or seasons undergo changes in 

Figure 6. PLS-LDA modeling results with color space coordinates (L*, a*, b*) as input variables, true
values (*), and predicted values (#). Comparison of prediction results of training set (a) with 99.03%
accuracy and comparison of prediction results of prediction set (b) with 99.53% accuracy.

The diffuse reflectance spectra corresponding to the classified color coordinates (L*, a*,
b*) were preprocessed with SG-SNV and then subjected to PLS modeling. The classified
low-maturity apples had more acccurate values, with Rp = 0.8139, RMSEP = 0.7013, and
RPD = 1.711, compared to the PLS model. After classification, high-maturity apples, with
Rp = 0.8379, RMSEP = 0.7760, and RPD = 1.804, showed slight improvements in the model
predictions. The results obtained via the LDA method showed reliability, and it could be
applied to different classification methods supervised by discriminant analysis.

4. Discussion

The SSC was obtained for two maturity levels of apples by in situ testing on trees.
Diffuse reflectance spectra were collected with a handheld inspection system developed
by our group for the internal quality assessment of apples, aiming to model the dynamic
in situ inspection of apples on trees for the period from bag removal to harvest. Due to
the differences in the light transmission properties and cellular structures of apples, the
original spectral trends of the apples at different maturity levels were generally similar, but
the spectral intensities varied greatly from 650 nm to 800 nm.

Comparing the prediction results of the spectra of the two maturity groups of apples,
the SSC prediction accuracy for high-maturity apples was higher than that for low-maturity
apples among the various feature extraction methods. There are many reasons for the
differences between the modeling results of low- and high-maturity apples. The signals col-
lected by the spectrometer in reflectance mode arise from the apple surface, and prediction
models developed by applying NIR spectroscopy for the non-invasive detection of the fruit
SSC are often influenced by biological variability factors. Fruits with different physiologi-
cal stages, varieties, growing regions, or seasons undergo changes in physical properties
and chemical composition, which lead to differences in the fruit’s cellular structure and
optical properties.
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The apple samples were randomly divided into mutually independent calibration
and prediction sets. Among the five pretreatment methods (SG, SNV, MSC, center, and
1stD), SG and SNV performed better. This was due to the fact that these two methods can
eliminate the effects of the solid particle size, surface scattering, and light path variations
from the spectra. Among the four feature wavelength extraction methods, the SI algorithm
performed the worst, which may have been due to the fact that the optimal subintervals
selected were not within the effective spectral range and did not effectively represent
the SSC features. Compared to the CARS algorithm, the UVE algorithm removes SSC-
independent variables from the spectral information. Most of the characteristic wavelength
variables selected by the CARS algorithm were related to the internal chemical properties
of the apples, seeking to improve the performance of the model, but potentially valid
information was also removed. Compared to the other three spectral feature selection
algorithms, the ACO algorithm achieved the best optimization results, and the highest
accuracy for SSC prediction model was achieved using the high-maturity apple reflectance
spectral model built by the ACO algorithm. This may have been due to the ability of the
ACO algorithm to screen out highly competitive combinations of feature wavelengths. The
ACO algorithm adaptively adjusted the search behavior through pheromone updating and
showed strong adaptability to environmental changes, enabling it to consistently find a
better solution. Meanwhile, the best results were achieved by using diffuse reflectance
spectroscopy combined with the ACO algorithm to predict the SSC of apples at high
maturity, with Rp, RMSEP, and RPD values of 0.88, 0.5678 ◦Brix, and 2.466, respectively.
The PLS-LDA model was more effective regarding the apple color against ripeness, with
accuracy of 99.03% for the training set model and 99.35% for the prediction set model. The
post-spectral color classification showed great potential in predicting the apples’ SSC.

In addition, the model has the potential to assess the external color and internal quality
for the grading of apples for customer satisfaction. These tested and graded apples can
better satisfy customers’ purchasing needs and improve the efficiency and accuracy of
apple valuation and harvesting.

5. Conclusions

This study acquired the diffuse reflectance spectra of low-maturity and high-maturity
apple samples using a handheld inspection system for the internal quality assessment of
apples developed by our group. Four feature wavelength selection algorithms, namely SI,
UVE, CARS, and ACO, were employed for feature wavelength selection. The established
ACO-PLS models for high-maturity apples achieved the best results in this study. The
model’s Rp, RMSEP, and RPD values were 0.88, 0.5678 ◦Brix, and 2.466, respectively. In
order to consider the influence of color factors on the predictive ability of the model for
low- versus high-ripeness apples during the apple harvest period, a PLS-LDA classification
model for apple ripeness based on color was developed. The accuracy of the training set
model was 99.03% and the accuracy of the prediction set model was 99.35%. The results
showed that the new application scenario of dynamic inspection has great potential to
achieve improved robustness and accuracy in modeling apple quality during the harvest
period. This method can be expanded to other varieties of apples in the future to verify the
generalization and applicability of the model.
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