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Abstract: This study focused on L. paracasei strains isolated from fermented palm sap in southern
Thailand that exhibit potential probiotic characteristics, including antibiotic susceptibility, resistance
to gastrointestinal stresses, and antimicrobial activity against various pathogens. However, a thor-
ough investigation of the whole genome sequences of L. paracasei isolates is required to ensure their
safety and probiotic properties for human applications. This study aimed to sequence the genome of
L. paracasei isolated from fermented palm sap, to assess its safety profile, and to conduct a compre-
hensive comparative genomic analysis with other Lacticaseibacillus species. The genome sizes of the
seven L. paracasei strains ranged from 3,070,747 bp to 3,131,129 bp, with a GC content between 46.11%
and 46.17% supporting their classification as nomadic lactobacilli. In addition, the minimal presence
of cloud genes and a significant number of core genes suggest a high degree of relatedness among the
strains. Meanwhile, phylogenetic analysis of core genes revealed that the strains possessed distinct
genes and were grouped into two distinct clades. Genomic analysis revealed key genes associated
with probiotic functions, such as those involved in gastrointestinal, oxidative stress resistance, vi-
tamin synthesis, and biofilm disruption. This study is consistent with previous studies that used
whole-genome sequencing and bioinformatics to assess the safety and potential benefits of probiotics
in various food fermentation processes. Our findings provide valuable insights into the potential use
of seven L. paracasei strains isolated from fermented palm sap as probiotic and postbiotic candidates
in functional foods and pharmaceuticals.

Keywords: probiotic; comparative genome analysis; bacteriocin; antimicrobial activity; lactic acid bacteria

1. Introduction

Lactic acid bacteria (LAB) are gram-positive bacteria that are non-spore-producing,
cocci or rods, catalase-negative, fastidious, tolerant to low pH, and have low G + C con-
tent [1]. The genomes of LAB are distinguished by their compact size, which varies from
1.23 Mb (Lactobacillus sanfranciscensis) to 4.91 Mb (L. parakefiri) [2]. They typically produce
lactic acid as the major metabolic end product [3]. They are found in the guts of humans
and animals and are common in fermented food and drink products, such as yogurt, kefir,
cheese, sauerkraut, pickles, and fermented palm sap [4–6]. LAB genera include Lactococcus,

Foods 2024, 13, 1773. https://doi.org/10.3390/foods13111773 https://www.mdpi.com/journal/foods

https://doi.org/10.3390/foods13111773
https://doi.org/10.3390/foods13111773
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/foods
https://www.mdpi.com
https://orcid.org/0000-0001-6992-033X
https://orcid.org/0000-0001-7793-7561
https://orcid.org/0000-0003-1403-1628
https://doi.org/10.3390/foods13111773
https://www.mdpi.com/journal/foods
https://www.mdpi.com/article/10.3390/foods13111773?type=check_update&version=1


Foods 2024, 13, 1773 2 of 13

Pediococcus, Streptococcus, Aerococcus, Vagococcus, Lacticaseibacillus (Lactobacillus), Dolosigran-
ulum, Alloiococcus, Carnobacterium, Leuconostoc, Enterococcus, Oenococcus, Tetragenococcus,
and Weissella [1,5]. LAB are generally recognized as safe (GRAS) and have been given Qual-
ified Presumption of Safety (QPS) status by the European Food Safety Authority (EFSA) [7].
A previous study showed many of the beneficial effects of lactic acid bacteria. They can im-
prove skin conditions and prevent skin diseases [8]. Lactobacillus strains inhibited Neisseria
gonorrhoea and Candida albicans [9]. E. faecalis inhibit toxigenic C. difficile [10]. The LAB strain
(LBbb0141) contained an antimicrobial compound with a wide spectrum and was inhibitory
to Gram-positive and Gram-negative strains [11]. Moreover, the Lacticaseibacillus paracasei
strain PS23, isolated from the feces of healthy humans, has anti-inflammatory effects [12].

Lacticaseibacillus paracasei (previously named Lactobacillus paracasei) [13] has been
studied and isolated from many sources, especially fermented food and drink prod-
ucts. L. paracasei is composed of the closely related species L. casei and L. rhamnosus,
among others [14].

It is also used as a starter culture for dairy products in the food industry and as
probiotics [4,5]. Recently, we isolated L. paracasei strains from fermented palm sap collected
in southern Thailand. Although it is not the predominant species in fermented palm sap,
it may contribute to its health-promoting properties. These isolates met the criteria to
qualify as probiotic, including antibiotic susceptibility, resistance to the gastrointestinal
environment, and adherence to human intestinal cells. They exhibited antimicrobial activity
against various pathogens [5], which is an important characteristic of probiotics. Moreover,
the lyophilized cell-free supernatants (LCFSs) of these isolates significantly reduced biofilm
formation and eradicated established biofilms. LCFSs contain antioxidant compounds
(phenolic and flavonoid) and showed antioxidant and anti-inflammatory activities in RAW
264.7 cell lines [15]. L. paracasei T0901 was considered a highly acceptable component in
a probiotic–banana rehydrated beverage [16]. These results indicate that L. paracasei isolated
from fermented palm sap are promising probiotic and postbiotic candidates that can be
used in functional foods and pharmaceuticals. However, before these L. paracasei isolates
are considered safe for human applications and are attributed with probiotic properties,
a thorough investigation of the entire genome sequence is required. Moreover, Onwuakor
et al. [17] found that L. paracasei J23 had antibacterial activity against Salmonella typhimurium
by using bacteriocin. Many advantages of L. paracasei strains have been reported, including
antimicrobial and antibiofilm activity, immune system stimulation, stress modulation, anti-
inflammatory, anti-obesity, and antioxidative properties, and improvements in intestinal
bacterial microbiota [18,19].

Genome sequencing has revolutionized the ways in which the biology, physiol-
ogy, ecology, evolution, and applications of organisms are studied. Currently, the Na-
tional Center for Biotechnology Information (NCBI) database has around 95,511 genomes
of organisms classified under the order Lactobacillales. Out of these, 12,259 genomes
(1639 of which are complete) belong to the Lactobacillaceae family [14]. Previous studies
have used whole-genome sequencing (WGS) technologies and bioinformatics to inves-
tigate the safety and potential benefits of probiotics used in food fermentation, such as
fermented pork sausages [20,21], fermented milk [22,23], and fermented congee [24]. These
studies conducted an in silico safety assessment using the complete nucleotide sequence
of the bacterial genome to confirm safety and unveil traits derived from the predicted
genes. However, a significant gap persists in the literature concerning the genomic explo-
ration of probiotics. There is an evident need for a comprehensive genomic analysis of
L. paracasei strains.

This study aimed to sequence the genome of L. paracasei strains isolated from fermented
palm sap, evaluate their safety profiles, and perform a comprehensive comparative genomic
analysis with other Lacticaseibacillus species. These efforts are aimed at offering valuable
insights into the possible applications of L. paracasei strains as potential candidates for
probiotics and postbiotics in functional foods and pharmaceuticals.
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2. Materials and methods
2.1. Bacterial Strains, Culture Conditions, and DNA Isolation

Seven L. paracasei strains (T0601, T0602, T0901, T0902, T1301, T1304, and T1901) were
previously isolated from fermented palm sap [5]. A single colony of each L. paracasei isolate
was cultivated in Man, Rogosa, and Sharpe (MRS) broth (HiMedia, Mumbai, India) at 37 ◦C
for 24 h under anaerobic conditions.

Genomic DNA was purified and extracted using a DNeasy extraction kit (QIAGEN,
Hilden, Germany) following the manufacturer’s instructions. Briefly, the bacterial cell was
suspended in 180 µL of lysis buffer and incubated for 30 min at 37 ◦C. Then, 25 µL of
proteinase K was mixed in 200 µL of buffer AL and incubated at 56 ◦C for 30 min. Ethanol
(200 µL) was added to the DNA sample, which was then centrifuged for 1 min at 610× g,
washed with 500 µL of buffer AW2, and eluted with buffer AE. The purity of the DNA
was estimated using a spectrophotometer by measuring the absorbance at 260 and 280 nm
(A260/A280) and via agarose gel electrophoresis.

2.2. Genome Assembly and Annotation

DNA specimens were sent to the Beijing Genomics Institute for short-read WGS using
150 bp paired-end reads on the MGISEQ-2000 platform. Subsequently, the sequencing
reads were assembled and annotated using the comprehensive BacSeq v1.0 pipeline [25].
BacSeq integrates multiple bioinformatics pipelines, including SPAdes [26], Prokka [27],
QUAST [28], and BUSCO [29], to assemble, annotate, and assess the quality and com-
pleteness of genome assemblies. Mobile genetic elements, prophages, and antimicrobial
resistance genes (ARGs) were assessed using mobileOG-db [30], Phigaro [31], and Viru-
lenceFinder [32] and ResFinder web-based tools [33], respectively. For the ARG search, the
criteria were a threshold of 90% and a minimum length of 60%. CRISPR (clustered regularly
interspaced short palindromic repeats) arrays and the corresponding Cas proteins were
identified using CRISPRCasFinder [34]. Ribosomally synthesized and post-translationally
modified peptides and genes encoding bacteriocin-encoding genes were identified via
sequence similarity search using the BAGEL4 webserver [35].

2.3. Pangenome Analysis and Comparative Genomics

Seven genomes of L. paracasei were used for a comprehensive comparative analysis
and pan-genome evaluation. The Roary pipeline [36] was used to examine the pan-genome,
using a 95% BLASTp threshold and standard parameters to identify core, accessory, and
unique protein families. Subsequently, multiple gene alignments and phylogenetic trees
were generated using Geneious [37] and the neighbor-joining method. Bootstrap testing
was conducted with 500 repetitions to assess tree reliability. Additionally, a comparative
analysis of L. paracasei genomes was performed using Proksee [38] and BLASTn [39] to
determine coding sequence similarities, and OrthoANI [40] was used for average nucleotide
identity (ANI) analysis.

3. Results and Discussion
3.1. Genome Features and Stability of the L. paracasei Strains

Seven L. paracasei strains, namely T0601, T0602, T0901, T0902, T1301, T1304, and
T1901, isolated from fermented palm sap [5] were examined in this study. The genomic
characteristics of these strains are summarized in Table 1 and Figure 1. Their genomes had
a total length ranging from 3,070,747 to 3,131,129 bp, with T1301 having the largest size
(3,131,129 bp) and T0602 having the smallest (3,070,747 bp). The GC content across the
strains ranged from 46.11% to 46.17%.
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Table 1. Main genome features of Lacticaseibacillus paracasei strains.

Feature T0601 T0602 T0901 T0902 T1301 T1304 T1901

Total length 3,072,098 3,070,747 3,085,678 3,131,129 3,129,100 3,129,120 3,126,709

GC (%) 46.14 46.14 46.17 46.11 46.11 46.11 46.11

N50 158,110 146,425 194,163 166,913 166,913 152,444 166,913

L50 5 6 5 6 6 7 6

Number of
contigs 61 60 61 75 78 79 93

CDS 2921 2918 2969 3009 3009 3006 2999

rRNA 3 3 4 4 3 4 4

tRNA 56 56 56 56 56 56 56

tmRNA 1 1 1 1 1 1 1
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Figure 1. Blast Ring Image Generator (BRIG) diagram showing the concatenated sequences of
Lacticaseibacillus paracasei strains with the genome of strain T0601 as a reference. The two inner circles
represent the GC content (black) and GC skew (violet and green).

Genome annotation revealed various genetic elements. The number of coding se-
quences (CDS) varied from 2918 to 3021, with T0902 having the highest number (3021)
and T1304 having the lowest (2918). All strains consistently had 3–4 rRNA and 56 tRNA
genes. In addition, each strain contained a single copy of the tmRNA gene. Genome metrics
of LAB strains can serve as approximate indicators of their lifestyle. Previous reports
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showed that the genome size of lactobacilli can vary from 1.28 to 4 Mb, depending on their
specific environmental niche preferences [41,42]. Throughout the evolutionary process,
some species of LAB, such as Lactobacillus sensu lato, have undergone genome reduction,
particularly during the transition from free-living to nomadic and matrix-associated bacte-
ria. In contrast, free-living and nomadic strains that encounter diverse environments tend
to possess larger genomes, ranging from 3 to 4 Mb, to support their survival. Among these
strains, L. paracasei belongs to the L. casei group along with the nomadic species L. casei and
L. rhamnosus. These species exhibit genomes with a median length of approximately 2.9 Mb
and a GC content ranging from 46% to 47%. They primarily inhabit similar niches, such
as dairy products, but can also establish associations with host organisms [19,43]. In this
study, the genome sizes of the seven L. paracasei strains provided evidence to support their
classification as nomadic lactobacilli. The genome size and gene number of these strains
were similar to those of L. paracasei DTA93 isolated from healthy infant feces (3.02 Mb,
2990 genes), with very similar GC contents (46.2%) [44]. However, all seven L. paracasei
strains showed larger genome sizes and higher gene numbers than L. paracasei SD1 iso-
lated from the human oral cavity (2.99 Mb, 2984 genes) [23]. The observed differences in
genome size and gene number among strains may indicate their adaptation to distinct
environmental niches. None of the strains contained intact phages: T0601 had two, T0902
and T1901 had four, and T0602, T0901, T1301, and T1304 had three incomplete phages.
In addition, T0901, T1301, and T1304 harbored one questionable phage (Table 1). Almost
all L. paracasei strains carried four prophage regions, except T0601 and T0602, which carried
three prophage regions (Supplementary Table S1). Prophages are commonly found in
probiotic strains used in dairy fermentation, including Lactococcus, Bifidobacterium, and
Lactobacillus [45,46]. According to Ventura et al. [45], the genome of a single strain of
Lactiplantibacillus plantarum contains at least four prophage-like entities. Prophages are
frequently detected in Lactobacillus strains, typically ranging from 1 to 5 prophages per
genome [46]. This suggests that prophages are prevalent in the genomes of probiotic
bacteria and emphasizes their significance in the context of dairy fermentation and re-
lated applications. Multiple predicted intact prophage regions within the same strain also
showed variations in structural composition. For L. paracasei BL23, previous studies have
reported the presence of five intact prophages in strains [47]. L. paracasei strain EG9, isolated
from cheese, contains 15 prophages [48]. Our finding of three intact prophages within the
genome supports the existing body of evidence and is consistent with that of previous
studies, which have also reported the presence of intact prophages in Lactobacillus strains.
The identification of these intact prophages in our study strengthens their significance
in the genetic composition and diversity of the studied Lactobacillus strains. L. paracasei
strains have a well-established record of safe consumption, and extensive research has
demonstrated their excellent tolerability when administered in the form of supplements or
incorporated into fermented food products. Previous studies have consistently reported
positive outcomes regarding the safety and tolerability of L. paracasei strains, supporting
their suitability as dietary supplements and fermented foods [49].

3.2. Comparative Genomics and Pangenome Analysis

The degree of genomic similarity of the seven strains with closely related species was
calculated using OAT software (Version 0.93.1) [50]. The OrthoANI value among the closely
related species (Figure 2) was 99.88% (T0602 and T0901, T0602 and T0902). L. paracasei
T0601 was compared with the related L. paracasei T0602, with a value of 100%.
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An analysis of seven L. paracasei genomes using Roary revealed that, of a total of
3471 genes, 2478 were identified as core genes, with no soft-core genes detected. In ad-
dition, 960 genes were categorized as shell genes and 33 were classified as cloud genes.
The minimal presence of cloud genes and the significant number of core genes suggest
a high degree of relatedness among the strains studied, as these strains were isolated
from fermented palm sap. The consistency in gene content suggests a strong evolutionary
connection among the strains, likely originating from their adjustment to the same eco-
logical niche [51,52]. Because they occupy the same environment, these strains may have
undergone a relatively recent divergence, preserving the similar functional traits essential
for their survival in this environment [53]. However, despite this similarity, phylogenetic
analysis based on core genes from the seven strains revealed that these bacteria possessed
distinct genes and were grouped into two distinct clades, as illustrated in Figure 3. Strain-
specific genes were present in their genomes, many of which encode hypothetical proteins
(Figure 4). Notably, only T0602 lacked any distinctive genes in its genome, whereas T0601,
T0901, T0902, T1301, T1304, and T1901 possessed 4, 7, 3, 3, 5, and 10 unique genes, respec-
tively. This finding aligns with the results of ANI analysis, which indicated that T0601 and
T0602 were closely related, with ANI values exceeding 99%. Similarly, the other five strains
that were grouped into separate clades had ANI values of approximately 99%. This finding
underscores the genetic variability within L. paracasei populations, despite their overall
genomic similarity, suggesting a potential adaptation to specific subenvironments within
fermented palm sap or ongoing evolutionary processes.
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3.3. Identification of Genes Related to Probiotic Features

WGS and comparative analyses of the seven L. paracasei isolates revealed the presence
of multiple genes associated with probiotic functions including gastrointestinal survival,
oxidative stress survival, acid, bile salt, temperature, and osmotic shock tolerance, cell
wall formation, biofilm formation, vitamin synthesis, and bacteriocin production (Table 2).
All six isolates harbored eight genes related to gastrointestinal survival [54]. These genes
encode proteins that are crucial for maintaining the structural integrity of the bacteria,
enabling them to withstand conditions similar to those observed in the gastrointestinal
tract. Eight genes, namely seven atp- (A–B, D–H) and nhaK_2-encoding acid tolerance
proteins, were identified (Table 2). These genes are largely responsible for the assembly
and operation of the F0-F1 ATPase proton pump, which maintains cytoplasmic pH by
exporting protons following ATP hydrolysis [55]. This system is essential for the survival
of bacteria in the acidic environment of the stomach [56]. In addition, the isolates possessed
murE and mleS for bile salt tolerance and cspB, cspLA, csp, hrcA, dnaJ, dnaK, clpC_1, and
clpB for temperature tolerance, which may contribute to their survival and functionality
under varying conditions within the host [57]. These six isolates contained a repertoire
of genes associated with traits beneficial for probiotic functions, such as genes linked to
gastrointestinal survival (pbpB, penA, pbpE, ponA, pbpF_1, pbpF_2, pbpX, and pbp, which
encode penicillin-binding proteins). These proteins play a vital role in the formation and
maintenance of the cell wall, thus providing structural integrity to the bacteria against the
harsh conditions of the gastrointestinal tract. This genetic makeup supports the phenotypic
survival rates of the isolates in highly acidic environments (pH 2 and 3) and in the presence
of digestive enzymes such as pepsin and pancreatin [5,55]. Furthermore, osmotic shock
tolerance genes, including grpE, gbuA, gbuC, and gbuB, may confer resilience against osmotic
stress during food processing or within the gut, where osmotic conditions vary. The six
isolates harbored an effective oxidative stress response system (Table 2) that supported
survival and damage repair under aerobic conditions during production. The correlation
between genetic determinants and phenotypic properties, such as hydrophobicity and
adhesion to human intestinal cells, may be mediated by genes related to cell wall formation
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and biofilm formation (luxS, ywqC, desR, and ccpA_2), potentially providing a competitive
edge for the colonization of the gut environment [58]. The strong ability of a probiotic strain
to attach to the gut enhances its persistence in the gut, prevents pathogens, and allows it to
interact with the host to protect epithelial cells or modulate the immune system.

Table 2. The multiple genes associated with the probiotic functions of seven Lacticaseibacillus paracasei
strains.

Function Gene

T
06

01

T
06

02

T
09

01

T
09

02

T
13

01

T
13

04

T
19

01

Gastrointestinal tract
survival

pbpB + + + + + + +
penA + + + + + + +
pbpE + + + + + + +
ponA + + + + + + +

pbpF_1 + + + + + + +
pbpF_2 + + + + + + +
pbpX + + + + + + +
pbp + + + + + + +

Acid tolerance

nhaK_2 + + + + + + +
atpA + + + + + + +
atpF + + + + + + +
atpG + + + + + + +
atpB + + + + + + +
atpD + + + + + + +
atpH + + + + + + +
atpE + + + + + + +

Bile salt tolerance murE + + + + + + +
mleS + + + + + + +

Temperature tolerance

cspB + + + + + + +
cspLA + + + + + + +

csp + + + + + + +
hrcA + + + + + + +
dnaJ + + + + + + +
dnaK + + + + + + +

clpC_1 + + + + + + +
clpB + + + + + + +

Osmotic shock tolerance

grpE + + + + + + +
gbuA + + + + + + +
gbuC + + + + + + +
gbuB + + + + + + +

opuCD + + + + + + +
opuCC + + + + + + +

Oxidative stress survival

hslO + + + + + + +
nox_2 + + + + + + +
nox_1 + + + + + + +

tpx + + + + + + +
npr + + + + + + +

Cell wall formation

murA1 + + + + + + +
epsH_2 + + + + + + +
ykoT_1 + + + + + + +

tagE + + + + + + +
dltC + + + + + + +
dltA + + + + + + +
dltD + + + + + + +
dltC + + + + + + +

Biofilm formation

ywqC + + + + + + +
luxS + + + + + + +
desR + + + + + + +

ccpA_2 + + + + + + +
brpA_2 + + + + + + +
brpA_4 + + + + + + +
brpA_3 + + + + + + +
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Table 2. Cont.

Function Gene

T
06

01

T
06

02

T
09

01

T
09

02

T
13

01

T
13

04

T
19

01

Vitamin synthesis

btuD_14 + + + + + + +
btuD_14 + + + + + + +
btuD_2 + + + + + + +
btuD_8 + + + + + + +
btuD_13 + + + + + + +
btuD_4 + + + + + + +
btuD_15 + + + + + + +
btuD_5 + + + + + + +
btuD_9 + + + + + + +
btuD_12 + + + + + + +
btuD_11 + + + + + + +
btuD_7 + + + + + + +
btuD_6 + + + + + + +
btuD_1 + + + + + + +
btuD_3 + + + + + + +

Bacteriocin

Thermophilin_A + + + + + − +
Sactipeptides + − + + + + +

LSEI_2386 + + + + + + +
Thermophilin

13 Chain A − − − − − + −

The identified genes for vitamin synthesis, which include various btuD variants [59]
and genes for bacteriocin production (Thermophilin_A, LSEI_2386, Sactipeptides, and Ther-
mophilin 13 Chain A), were consistent with the beneficial probiotic functions of the strains.
LSEI_2386 peptide is a class IId bacteriocin that exhibits antimicrobial activity against
several pathogens [60]. Thermophilin 13 is a broad-host-range antimicrobial substance [61].

4. Conclusions

This investigation of the genomes of L. paracasei strains isolated from fermented palm
sap revealed extensive genomic traits that demonstrate their potential as probiotics. We
identified unique genetic elements that contribute to robustness against gastrointestinal and
environmental stresses, which are essential for effective probiotic functions. Additionally,
comparative genomics highlighted evolutionary adaptations that may favor their use in
health-related applications. These genomic insights will pave the way for the further
exploration of these strains in clinical settings to confirm their efficacy and safety as next-
generation probiotics in functional foods and pharmaceutical formulations.

Supplementary Materials: The following supporting information can be downloaded at: https://
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