
Citation: Yu, S.; Zheng, H.; Wilson,

D.I.; Yu, W.; Young, B.R. Integrating

Image Analysis and Machine

Learning for Moisture Prediction and

Appearance Quality Evaluation: A

Case Study of Kiwifruit Drying

Pretreatment. Foods 2024, 13, 1789.

https://doi.org/10.3390/

foods13121789

Academic Editor: Charis R Theocharis

Received: 29 April 2024

Revised: 31 May 2024

Accepted: 5 June 2024

Published: 7 June 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

foods

Article

Integrating Image Analysis and Machine Learning for Moisture
Prediction and Appearance Quality Evaluation: A Case Study of
Kiwifruit Drying Pretreatment
Shuai Yu 1 , Haoran Zheng 1 , David I. Wilson 2,* , Wei Yu 1 and Brent R. Young 1

1 Department of Chemical & Materials Engineering, University of Auckland, Auckland 1010, New Zealand;
syu981@aucklanduni.ac.nz (S.Y.)

2 Electrical and Electronic Engineering Department, Auckland University of Technology, Auckland 1010,
New Zealand

* Correspondence: david.wilson@aut.ac.nz

Abstract: The appearance of dried fruit clearly influences the consumer’s perception of the quality
of the product but is a subtle and nuanced characteristic that is difficult to quantitatively measure,
especially online. This paper describes a method that combines several simple strategies to assess
a suitable surrogate for the elusive quality using imaging, combined with multivariate statistics
and machine learning. With such a convenient tool, this study also shows how one can vary the
pretreatments and drying conditions to optimize the resultant product quality. Specifically, an
image batch processing method was developed to extract color (hue, saturation, and value) and
morphological (area, perimeter, and compactness) features. The accuracy of this method was verified
using data from a case study experiment on the pretreatment of hot-air-dried kiwifruit slices. Based
on the extracted image features, partial least squares and random forest models were developed to
satisfactorily predict the moisture ratio (MR) during drying process. The MR of kiwifruit slices during
drying could be accurately predicted from changes in appearance without using any weighing device.
This study also explored determining the optimal drying strategy based on appearance quality using
principal component analysis. Optimal drying was achieved at 60 ◦C with 4 mm thick slices under
ultrasonic pretreatment. For the 70 ◦C, 6 mm sample groups, citric acid showed decent performance.

Keywords: kiwifruit drying; pretreatment; image processing; HSV color space; principal component
analysis; partial least squares; random forest

1. Introduction

Over the past several years, the consumption of fruit has risen due to the increasing
awareness of their nutritional properties and appreciable content of essential vitamins,
minerals, and other nutrients beneficial to human health. As fresh fruit is highly perishable,
extending its shelf life has emerged as a significant challenge [1]. Drying, or dehydration, is
one of the oldest and most common processing technologies that, by reducing the moisture
content, extends the shelf life by inhibiting microbial proliferation and diminishing the rate
of deteriorative chemical reactions [2]. Furthermore, dried fruit has lower transportation
and storage costs due to reductions in weight and volume [3–5].

Currently, hot air drying is the most applied method for drying processes in the food
industry. Despite its lower drying efficiency compared to that of other new drying meth-
ods like freeze drying, the cost advantage is more important to producers. However, the
deleterious effects of hot air drying on the physical, structural, chemical, organoleptic, and
nutritional properties of foods can lead to a significant diminishment in consumer accept-
ability [2]. The shape, color, taste, odor, and nutritional composition of food products are
all important indicators that help drive sales and profits [6]. Notably, when the appearance
attributes of dried products deviate substantially from their fresh counterparts, they may
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fail to elicit the desired consumer appeal and purchasing intent. Consequently, preserv-
ing the external physical qualities is of paramount importance to render processed fruits
attractive and acceptable to consumers. In practical production settings, most producers
rely on subjective human visual evaluation or conventional measurement instruments to
assess the appearance quality of the products. Although techniques employing instruments
such as Lab* colorimeters or spectrophotometers provide accurate quantification of color,
they are limited in scope as they assess only a partial area of the sample, rendering them
impractical for the simultaneous evaluation of an entire batch of fruit [7]. The exigency of
the continuous monitoring of appearance quality attributes in food processing necessitates
the development and implementation of rapid, nondestructive testing methodologies.

Computer vision systems (CVSs) are considered efficient for quality control. Numer-
ous investigations have documented the prospective applicability of CVSs in monitoring
alterations in the visual characteristics of various dehydrated food products, including
apples [8], ginseng [9], blueberries [10], bananas [11], and peas [12]. However, previ-
ous studies have primarily focused on using the CIELAB color space to evaluate color
changes [13,14]. Few studies have attempted to use the HSV color space. Quevedo et al. [15]
reported that CIELAB and HSV color spaces perform well regarding food color monitoring
as they effectively represent the human eyes’ perception of color. Basak et al. [16] employed
color features obtained from three color spaces (RGB, HSV, and HSL) in conjunction with
a machine learning model to predict the total soluble solids and pH value of strawberry
fruits. Their findings indicated that the HSV-based support vector machine regression
(SVM-R) model exhibited the highest predictive accuracy. Pardede et al. [17] employed
four color spaces, namely, RGB, HSV, HSL, and Lab*, in conjunction with a support vector
machine (SVM) algorithm to assess fruit ripeness. Their results demonstrated that the
HSV color feature exhibited the highest accuracy in determining the stage of fruit ripeness.
Consequently, we investigated the potential of the HSV color space as a viable approach for
monitoring and characterizing the color alterations occurring during food drying processes.

In addition to color characteristics, most previous studies also calculated shrinkage by
comparing area retractions [10]. The shrinkage phenomenon occurring in foods during the
drying process is irregular and anisotropic, rendering it challenging to accurately character-
ize the shrinkage behavior solely based on the changes in the projected area. The shape
factors of 2D images can be considered more accurate quality indicators for describing
irregular shrinkage. Only a few studies have focused on morphological changes during
drying. Ding et al. [18] investigated the effect of morphological differences on the stacking
density of milk powder. Nasri and Belhamri [19] considered shape factors’ influence on
potato-case solar drying in drying kinetics. In general, the development and implementa-
tion of an image batch processing method, integrated into food drying equipment, holds
significant potential for a wide range of industrial and research applications.

Kiwifruit (Actinidia deliciosa cv. Hayward) plays an essential role in New Zealand’s agri-
cultural products and is exported to over 60 countries worldwide each year [20]. It is rich in
nutritional elements, especially ascorbic acid, thus being attractive to consumers [13,21]. Im-
proving the quality of the appearance of dried fruit can be achieved not only by optimizing
the processing conditions but also by adding pretreatment steps. Some pretreatment meth-
ods for food before dehydration have been used, such as chemical methods (hyperosmotic,
alkali, sulfite, and acid), gas treatments (sulfur dioxide, carbon dioxide, and ozone), thermal
blanching (hot water, steam, super-heated steam, and ohmic and microwave heating), and
nonthermal processes (ultrasound, freezing, pulsed electric field, and high hydrostatic
pressure) [22–24]. However, sulfite pretreatment of food products is discouraged because
its residues pose health risks when consumed [25]. Consequently, chemical pretreatment
options, which have no documented health risks but are readily and widely available,
such as citric acid and sodium chloride treatment, have been suggested [22]. In the food
industry, hot water blanching is widely employed as a pretreatment [26]. Dandamrongrak
et al. [27] also explored the effect of four pretreatments (blanching, freezing, chilling, as well
as combined blanching and freezing) on the drying of bananas and found that the blanched
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sample was most preferred in terms of color. However, hot water blanching may have
other adverse effects, such as on texture and flavor. In addition, ultrasonic pretreatment is a
method being investigated as a likely alternative to conventional pretreatment. It has been
shown to improve drying speed by altering plant tissue microstructure and product quality
by reducing drying time [28,29]. With ultrasound, the internal structure of the food tissue is
greatly altered, facilitating the transfer of water from the inside to the outside [30,31]. Pan
et al. [32] confirmed that ascorbic acid and citric acid improved the color of banana crisps
in freeze drying. Limited investigations have been conducted on the impact of nonthermal
pretreatment methods on the drying process of kiwifruit. Nadian et al. [33] confirmed
that acid ascorbic could prevent the browning of kiwifruit during the initial drying stage.
Investigating the optimal pretreatment methodologies for drying kiwifruit presents an
intriguing research avenue worthy of further exploration.

This study was segmented into three parts. Most notably, we developed an image
batch processing method premised on the HSV color space, which facilitates the extraction
of both color and morphological features. The accuracy of feature extraction was validated
through a case study encompassing drying experiments on pretreated kiwifruit samples.
In addition, we constructed moisture ratio prediction models by employing continuous
image features extracted within a rolling time window (in half-hourly intervals) as input
variables, utilizing partial least squares (PLS) regression and random forest (RF) regression.
Ultimately, the optimal pretreatment method and drying conditions were determined by
employing an unsupervised learning approach, principal component analysis (PCA), with
the image features extracted at the end of the drying process serving as the input data.

The main contributions of this study are as follows:

(1) We developed of an automatic appearance feature extraction method based on the
HSV color space. This method exhibits substantial potential for integration into
processing equipment, thereby enabling the real-time monitoring of food appearance
during actual production processes in the future.

(2) We proposed an alternative approach with monitoring moisture loss by providing a
means to assess image characteristics through more convenient analytical techniques.

(3) Based on the image feature data at the end of drying for each set of experimental sam-
ples, we used this measurement to quickly optimize the drying process by establishing
good operating conditions.

2. Materials and Methods
2.1. Image Feature Extraction Batch Processing Steps

In this study, the images were processed using an algorithm written in the Python
environment (version 3.8). To extract and quantify pertinent features from images for
integration into machine learning models, we devised a feature extraction batch process-
ing method. Figure 1 illustrates the complete workflow of our proposed image feature
extraction steps.

In the dried kiwifruit pretreatment experiment, our aim was to obtain continuous
image feature data during the drying process, including color and morphology. We chose
the HSV color space to quantify the color change in kiwifruit. Subsequently, based on the
significant color difference between the kiwifruit slices and the background, we segmented
the prospect and background by setting a threshold range for the HSV color space. Subse-
quently, we used the ‘Mask’ function in the OpenCV library to create a mask, setting the
pixel values within the specified color range to white and the rest to black. Edge detection
was performed based on ‘cv2.Canny’ function.
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RGB image converted to HSV; (c) HSV-based background removal; (d) mask image of samples; (e) 
edge detection results; (f) contour extraction results; (g) sorted each slice according to their respec-
tive spatial interrelationships; (h) quantification of colorimetric and morphological attributes. 
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Figure 1. The steps of feature extraction from kiwifruit slice samples: (a) the original RGB image;
(b) RGB image converted to HSV; (c) HSV-based background removal; (d) mask image of samples;
(e) edge detection results; (f) contour extraction results; (g) sorted each slice according to their
respective spatial interrelationships; (h) quantification of colorimetric and morphological attributes.

To quantify the evolution of their appearance characteristics throughout the drying
process, it was imperative to establish a systematic correspondence between the same slices
across different time points. This necessitated the assignment of unique identifiers (IDs) to
each slice, thereby enabling the tracking of individual slices across a sequence of images.
The underlying rationale for this approach was predicated on the observation that the
relative positions of the kiwifruit slices remain largely invariant during the drying process.
Consequently, we proposed the following methodological steps to facilitate the accurate
matching and tracking of individual slices:

Step 1: Ascertain the coordinate values of the centroidal points for all bounded contour
regions present within the image.

Step 2: Partition the bounded contour regions into three distinct subgroups based on
their respective y-coordinate values.

Step 3: Sort each subgroup in ascending order according to the respective x-coordinate
values of the constituent bounded contour regions.

Step 4: Assign unique identifiers (IDs) to each bounded contour regions.
Upon assigning the IDs, all images acquired during a given desiccation experiment

were treated as a temporally ordered sequential dataset. The culminating step entailed the
extraction of features for each individual kiwifruit section.

2.1.1. Color Feature Extraction

A conical space model can be used to describe HSV color space. Hue (H) refers to
the color or is equivalent to the wavelength of the transmission or reflection of the object.
Traditionally, the value for hue is represented around a circle with a value spanning 0 to
360 degrees. Saturation (S) represents how close the color is to the spectral color and is
approximately equivalent to spectral purity. The value range is 0–100%. The larger the
value, the more saturated the color. Value (V) refers to the brightness of the color, usually
in the range of 0–100% (black to white) [34]. In Python’s OpenCV library, H ranges from 0
to 180, and S and V range from 0 to 255. The thresholds for HSV were H (35–75), S (50–255),
V (50–255), which were determined by iterative testing to ensure that kiwifruit contours
could be accurately extracted throughout the drying process.
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For RGB to HSV, the first step is scaling the RGB values to between 0 and 1. Then, the
RGB image is converted to HSV with the following equation:

H =



0, i f Max = Min(
G−B

Max−Min

)
× 60 + 0, i f Max = R(

B−R
Max−Min

)
× 60 + 120, i f Max = G(

R−G
Max−Min

)
× 60 + 240, i f Max = B

(1)

S =

{
0, i f Max = 0(

Max−Min
Max

)
, others

(2)

V = Max (R, G, B) (3)

where Max = max (R, G, B); Min = min (R, G, B).

2.1.2. Morphology Feature Extraction

In this study, three shape factors (area, perimeter and compactness) were considered.
Compactness is used to describe the shape characteristics during drying. When the fruit
is perfectly round, its compactness reaches a maximum value of 1. As the shape of the
fruit becomes more noncircular, the compactness tends to 0. The formulae for the three
morphological features are as follows:

Area =
Pixel o f Areat
Pixel o f Areat0

(4)

where Areat and Areat0 are the current fruit area fruit and fruit area before drying by
counting the number of pixels;

Perimeter =
Pixel o f Perimetert
Pixel o f Perimetert0

(5)

where Preimetert and Preimetert0 are the current fruit perimeter fruit area before drying by
counting the number of pixels.

Compactness =
4π × Areat

Perimetert
2 (6)

2.2. Drying Experiment of Case Study
2.2.1. Sample Preparation

In the present study, kiwifruits (Actinidia deliciosa cv. Hayward) were purchased from
a local supermarket in Auckland, New Zealand. When purchasing, samples were chosen
that were similar in color and size, moderately hard, and had no obvious external defects.
All the samples were stored in a refrigerator at 4.0 ◦C ± 0.5 ◦C to delay oxidation and
deterioration caused by changes in characteristics. Before the drying experimentation,
the samples were transferred from the refrigerator and kept for 3 h at room temperature.
After that, fresh kiwifruits were washed to remove foreign matter and cut into the target
thickness using a stainless-steel precision slicer, which could ensure a consistent thickness
of the kiwifruit slices. To determine the initial moisture content of the kiwifruit slices,
approximately 50 g of kiwi sample was placed in an oven and dried at 105 ◦C until a
constant weight was achieved. This procedure was repeated three times, and the average
value of the measurements was calculated. The initial moisture content of the sample in
this study was 81% ± 0.07% on a wet basis.
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2.2.2. Experiment Design

The experiment employed a full factorial design, with two different desiccation tem-
peratures (60 ◦C, 70 ◦C) and two distinct kiwifruit slice thicknesses (4 mm, 6 mm) as the
treatment factors. Additionally, three pretreatment methods were implemented: immersion
in a citric acid solution (CA), immersion in a sodium chloride solution (SCS), and ultrasonic
pretreatment (ULT), along with a nonpretreated control group (Control). The specific
experimental conditions are delineated in Table 1. To ensure the reliability and validity of
the obtained results, each treatment combination was replicated in triplicate.

Table 1. Full factorial experimental design for kiwifruit.

Group Name Drying Temperature (◦C) Slice Thickness (mm) Pretreatment

60C4Control 60 4

None
70C4Control 70 4
60C6Control 60 6
70C6Control 70 6

60C4CA 60 4
Citric acid
solution

70C4CA 70 4
60C6CA 60 6
70C6CA 70 6

60C4SCS 60 4
Sodium chloride

solution
70C4SCS 70 4
60C6SCS 60 6
70C6SCS 70 6

60C4ULT 60 4

Ultrasound
70C4ULT 70 4
60C6ULT 60 6
70C6ULT 70 6

2.2.3. Pretreatment Processes

(i) Citric Acid (CA)

For citric acid solution pretreatment, a 10 g/L solution of citric acid and water was
used [31]. After weighing with a digital balance (Model: BL6001, Giorgio Bormac s.r.l,
Carpi, Italy) and photographing, the sliced fruit samples were immersed in the solution for
10 min to ensure complete coverage. The fruit samples and solution had a weight ratio of
1 g/20 mL. The pretreated samples were taken out of the solution and blotted dry with a
paper towel. After pretreatment, the samples were weighed and photographed again.

(ii) Sodium Chloride Solution (SCS)

The hypertonic solution pretreatment method used sodium chloride and water mixed
with a ratio of 5 g/L to form the solution. The sliced fruit samples were soaked in the
prepared solution at 0.1 g/mL for 30 min in a container to ensure complete coverage. The
pretreated samples were then removed from the container and dried on a surface with a
paper towel.

(iii) Ultrasound (ULT)

According to a previous study [35], the ultrasonic pretreatment method involved using
an ultrasonic bath (Model: XUBA3, Grant instruments Ltd., Royston, United Kingdom)
with a volume of 2.5 L and a fixed frequency of 44 KHz. The sliced fruit samples were
immersed and treated with ultrasound in the machine for 30 min to ensure complete
coverage. The surface was dried using a paper towel before sending to a tray dryer.

2.2.4. Drying Process and Image Acquisition

The tray dryer used in this study was a UOP8 MKII (Armfield Ltd., Ringwood, UK).
The drying air temperature could be easily controlled through a PID controller built into the
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dryer by a software (version UOP8 MKII Armsoft v.306), which varied the electrical supply
to the heating element. The dryer was switched on and preheated for 30 min to reach the
target temperature before drying, and the air velocity was set at 1.5 m/s. At the initiation of
the drying process, the relative humidity of the hot air employed was approximately 22%.

As drying is an energy-consuming process, the time taken to reach the target moisture
content is also a vital indicator of the suitability of the drying conditions. This experiment
used five hours (300 min) as a reference time to monitor whether the samples had dried to
a safe moisture level (moisture ratio = 0.05 ± 0.01) [33].

The image acquisition system consisted of a digital camera (Model: D300S, Nikon,
Tokyo, Japan), lightbox with a 5500K planar LED array light source, and a personal com-
puter (PC). The camera was securely mounted in a fixed position directly above the lightbox.
During image capture, the sample specimens were precisely positioned beneath the cam-
era’s lens for optimal imaging. A total of nine kiwifruit slices were placed on each tray in
a 3 × 3 pattern, as shown in Figure 2. The camera was controlled by a PC connected to
it, utilizing Camera Control Pro 2 software (version 2.37.1) for camera management and
image acquisition. To ensure optimal image exposure, the camera settings were adjusted
to an aperture value of f/5.6, an exposure time of 1/125 s, and an ISO sensitivity of 200.
The acquired image had a resolution of 4288 × 2848 pixels. Kiwifruit sample weights
were recorded half-hourly for the calculation of moisture ratio, and photographs were
taken simultaneously for further image analysis. After recording, the samples were quickly
returned to the drying chamber to continue drying. The data acquisition process for the
entire drying experiment is depicted in Figure 2.
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2.2.5. Calculation of Moisture Ratio

The moisture content (Mt) (g water g−1 dry matter) of kiwifruit slices was calculated
as

Mt =
Wt − Wd

Wd
(7)

where Wt and Wd in grams (g) are the current weight and the dried weight of sample,
respectively. The moisture ratio (MR) was calculated as

MR =
Mt − Me

M0 − Me
(8)
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where Mt and M0 are the equilibrium moisture content and the initial moisture content,
respectively. However, Me can be neglected for products having a high initial moisture
content. Therefore, Equation (8) was simplified as follows:

MR ∼ Mt

M0
(9)

2.3. Image-Feature-Based Moisture Ratio Prediction
2.3.1. The Case Study Dataset for Regression

Integrating the color and morphological characteristics with the parameters derived
from the drying experiments facilitated the prediction of the moisture ratio of the fruit
slices, as delineated in Table 2.

Table 2. The dataset structure.

Variable Name Range of Values

X1 Hue 0 to 180
X2 Saturation 0 to 255
X3 Value 0 to 255
X4 Area 0 to 1
X5 Perimeter 0 to 1
X6 Compactness 0 to 1
Y Moisture Ratio 0 to 1

2.3.2. Partial Least Squares (PLS) Regression

Partial least squares (PLS) is often used as the primary regression technique for multi-
variate data to express the relationship between independent and dependent variables [36].
PLS regression also has been used in the food industry. For example, Sahin and Demir [37]
applied PLS to the determination of the antioxidant capacities of fruit juices. Sun et al. [38]
developed a flavor prediction model for garlic using PLS.

In this study, PLS regression models were developed to predict the moisture ratio of
kiwifruit samples during the drying process by using color and morphological features.
K-fold cross-validation is a model validation technique that assesses the generalizability of
a machine learning model to an independent dataset [39]. In the context of this study, the
dataset was divided into k = 5 folds, and model performance was assessed using established
evaluation metrics, with each fold alternately serving as the test set.

The model evaluation metrics for regression tasks include the multiple correlation
coefficient (R2), the cross-validated R-squared (Q2), and the Mean Squared Error (MSE),
which can be calculated by Equations (10)–(12), respectively:

R2 = 1 − SSres

SStot
(10)

where SSres is the residual sum of squares; SStot is the total sum of squares. The closer R2 is
to 1, the better the model fits the data.

Q2 = 1 − PRESS
SStot

(11)

where PRESS means predictive residual sum of squares;

MSE =
1
n

n

∑
i=1

(
yi −

ˆ
yi

)2
(12)

where yi is the actual value,
ˆ
yi is the predicted value, and n is the number of samples.
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2.3.3. Random Forest (RF) Regression

Random forest is an ensemble technique capable of performing both regression and
classification tasks using multiple decision trees and a method called bootstrap aggregat-
ing [40]. The fundamental idea is to combine multiple decision trees to determine the
final output rather than relying on a single decision tree. Random forests generate a large
number of classification trees. New objects are classified by inputting vectors into each
tree in the forest. Each tree assigns a classification, a process known as “voting”, and the
classification with the highest number of votes is selected.

In this study, random forest regression was used to make moisture ratio predictions for
each kiwifruit slice during the drying process. We exploited the facilities of the scikit-learn
library in the Python environment to train a random forest model comprising 20 decision
trees. The model evaluation metrics for regression tasks includes mean absolute error
(MAE), root mean squared error (RMSE), and multiple correlation coefficient (R2). The
equation for R2 is the same as above, and the other two are calculated as follows:

RMSE =

√√√√ 1
n

n

∑
i=1

(
yi −

ˆ
yi

)2
(13)

where yi is the actual value,
ˆ
yi is the predicted value, and n is the number of samples.

MAE =
1
n

n

∑
i=1

∣∣∣∣yi −
ˆ
yi

∣∣∣∣ (14)

Feature importance refers to the relative significance of each input variable in de-
termining the prediction of a machine learning model. This concept is crucial for model
interpretation, as it helps identify the most critical variable.

The dataset and cross-validation methods used for training the random forest algo-
rithm are consistent with those in Section 2.3.2.

2.4. Optimal Drying Strategy Determination by Principal Component Analysis

Principal component analysis (PCA) can compress high-dimensional index data into
a low-dimensional space while retaining most of the critical information [41]. For drying
processing, the new low-dimensional principal component space allowed for better obser-
vation of the differences and clustering among samples, which could guide the selection of
optimal drying conditions.

In this study, the results obtained by using true values in the PCA were inaccurate due
to the initial variations in the color and shape factors of the fruit slice samples. To minimize
the impact of initial variation, all data were analyzed using the relative change before and
after drying. The appearance features of the fresh fruits were determined as a reference
group. After standardizing the color and morphological features data, PCA was employed
to obtain the similarities in dried fruits under different drying conditions and pretreatment
methods to determine the optimal drying strategy.

3. Results and Discussion
3.1. Visualization and Accuracy of Feature Extraction Batch Processing Method

Accurate image segmentation and edge detection are crucial for reliable image feature
extraction, as inaccuracies can lead to inconsistent and erroneous morphological data.
As illustrated in Figure 3a,b, our method accurately identified the correct contours at all
stages of kiwifruit drying in most instances. The method accurately extracted the contours
between the fruit flesh and the background. The edges are clear and coherent, effectively
delineating the shape features of the kiwifruit slices.
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However, there were exceptions where the image processing encountered problems
with contour extraction accuracy, resulting in unsuccessful data ID matching and some
instances exhibiting areas outside the expected boundary range. As depicted in Figure 3c,
the lower edge of the kiwifruit slice was not segmented correctly, and a portion of the
background was incorrectly incorporated as part of the slice. The main reason for this issue
was that the color of the bottom part of the kiwifruit slice was very similar to the color of
the tray, lacking a significant color difference.

To address the problem that appears in Figure 3c, improvements can be considered
from the following aspects. Firstly, using a tray with a greater color difference or increasing
the distance between the kiwifruit slice and the tray can be explored. In the future, we
can also consider introducing more intelligent segmentation algorithms, such as methods
that combine region growing, texture analysis, or deep-learning-based segmentation algo-
rithms. By comprehensively utilizing various information such as color, texture, and spatial
relationships, these algorithms can improve the segmentation performance in low-contrast
regions.

After the image processing phase, a total of 2700 groups of features were identified.
Following the exclusion of these abnormal data, a subset of 2459 groups of valid features
was retained for the training of the machine learning model.

The accuracy of the proposed method exceeds 90%, indicating its robust performance.
While this method has the potential for application in various food processing contexts, the
HSV threshold would need to be adjusted to accommodate specific conditions. However,
this conclusion warrants further verification through comprehensive testing. In future
applications, the method could be integrated into existing drying equipment to facilitate
online dynamic drying appearance prediction and quality control.

3.2. Prediction of the Moisture Ratio during the Drying Process
3.2.1. Partial Least Squares Model

A partial least squares (PLS) model was developed to predict the change in moisture
ratio (MR) of kiwifruit samples throughout the drying process, utilizing appearance features
and drying conditions as variables.

Figure 4a delineates the variation in R2 and Q2 values concomitant with the increase in
the number of PLS components. The R2 value is indicative of a model’s fitting accuracy on
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the training dataset, whereas the Q2 value elucidates a model’s capacity for generalization,
as inferred from cross-validation procedures. Notably, as the count of PLS components
escalates to five, the Q2 value culminates at a peak of 0.85, concurrently with the R2 value
reaching 0.87. Complementarily, Figure 4b presents a comparative analysis of the predicted
versus actual MR for all the dried kiwifruit samples. The model exhibits a mean squared
error (MSE) of 0.017. These findings substantiate the efficacy of the PLS model in accurately
predicting the moisture ratio of kiwifruit during the drying process.
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3.2.2. Random Forest Model

In this study, the monitoring of weight alterations and the image capture of kiwifruit
samples were undertaken on a half-hourly basis. A random forest regression model was
developed, aiming to predict the moisture ratio utilizing HSV color and morphological
features. The model’s accuracy is depicted in Figure 5a; the disparity between the model’s
predictions and the actual values is remarkably minimal.

Foods 2024, 13, x FOR PEER REVIEW 12 of 19 
 

 

This suggests that the image features for predicting the moisture ratio during the 
drying process in kiwifruit slices are highly effective. 

  

(a) (b) 

Figure 5. (a) Predicted MR versus actual MR during drying for fold one; (b) feature importance of 
random forest regression 

Table 3. Model evaluation by random forest regression. 

Fold R2 MAE RMSE 
1 0.9939  0.0185  0.0288  
2 0.9920  0.0214  0.0317  
3 0.9930  0.0205  0.0303  
4 0.9920  0.0204  0.0307  
5 0.9907  0.0242  0.0345  

Mean 0.9923  0.0211  0.0312  
Standard deviation 0.0011  0.0018  0.0019  

To summarize, both the PLS and RF models presented above were relatively accurate 
in predicting the moisture ratio of kiwifruit samples during drying. Meanwhile, the pre-
diction results of the models demonstrate the applicability of using color and morpholog-
ical features to predict the moisture ratio of kiwifruit slices in real time. In the food indus-
try, the confirmation of the drying endpoint is mainly performed manually based on ex-
perience. The use of these two types of models in this study may help with constructing 
soft sensors in the future. There is the potential to predict whether drying is complete by 
monitoring appearance changes during the drying process. 

3.3. Effect of Different Pretreatments on Appearance (Color and Morphology) Changes 
The moisture ratio (MR) of all samples was calculated using Equation (9), and it was 

found that all 60 °C, 6 mm samples did not reach the target MR after 300 min of drying. 
As mentioned above, a drying time of 300 min was used as a reference to represent the 
maximum acceptable drying time, with an MR equal to 0.05 representing the end of dry-
ing in this study. Therefore, the appearance change in the samples (60 °C, 6 mm) is not 
discussed as the drying was not completed. Section 3.3.1 discusses the similarity of the 
appearance of the 4 mm slice thickness samples at different drying temperatures (60 °C 
and 70 °C) to the fresh kiwifruit slices. Section 3.3.2 discusses the similarity of the 

Figure 5. (a) Predicted MR versus actual MR during drying for fold one; (b) feature importance of
random forest regression.

Further, a detailed analysis of the significance of each feature within the model was
executed, as delineated in Figure 5b. This analysis highlighted ‘Hue’ as the most influential



Foods 2024, 13, 1789 12 of 19

factor, with its importance score exceeding 0.6. Following closely was ‘Area’, with a signifi-
cance score around 0.3. Other attributes such as ‘Value’, ‘Perimeter’, and ‘Compactness’
also emerged as factors of substantial importance. These empirical results are in harmony
with our initial hypotheses. A strong correlation was observed between the color shift
and area reduction in kiwifruit slices during the drying process with the variations in the
moisture ratio.

The model evaluation metrics in Table 3 show that the model demonstrates exceptional
performance across all folds. The mean R2 of this model is very close to 1 (0.9923), indicating
that the model explains a substantial proportion of the variance in the data. Both the MAE
(0.0211) and RMSE (0.0312) are very small.

Table 3. Model evaluation by random forest regression.

Fold R2 MAE RMSE

1 0.9939 0.0185 0.0288
2 0.9920 0.0214 0.0317
3 0.9930 0.0205 0.0303
4 0.9920 0.0204 0.0307
5 0.9907 0.0242 0.0345

Mean 0.9923 0.0211 0.0312
Standard deviation 0.0011 0.0018 0.0019

This suggests that the image features for predicting the moisture ratio during the
drying process in kiwifruit slices are highly effective.

To summarize, both the PLS and RF models presented above were relatively accurate in
predicting the moisture ratio of kiwifruit samples during drying. Meanwhile, the prediction
results of the models demonstrate the applicability of using color and morphological
features to predict the moisture ratio of kiwifruit slices in real time. In the food industry, the
confirmation of the drying endpoint is mainly performed manually based on experience.
The use of these two types of models in this study may help with constructing soft sensors
in the future. There is the potential to predict whether drying is complete by monitoring
appearance changes during the drying process.

3.3. Effect of Different Pretreatments on Appearance (Color and Morphology) Changes

The moisture ratio (MR) of all samples was calculated using Equation (9), and it
was found that all 60 ◦C, 6 mm samples did not reach the target MR after 300 min of
drying. As mentioned above, a drying time of 300 min was used as a reference to represent
the maximum acceptable drying time, with an MR equal to 0.05 representing the end of
drying in this study. Therefore, the appearance change in the samples (60 ◦C, 6 mm) is not
discussed as the drying was not completed. Section 3.3.1 discusses the similarity of the
appearance of the 4 mm slice thickness samples at different drying temperatures (60 ◦C and
70 ◦C) to the fresh kiwifruit slices. Section 3.3.2 discusses the similarity of the appearance
of samples with different slice thicknesses (4 mm and 6 mm) compared to fresh kiwifruit
slices after drying at 70 ◦C. The PCA data were normalized. Thus, the coordinate system in
the PCA figure and the Euclidean distance are dimensionless.

3.3.1. Appearance Similarity Comparison by PCA for 4 mm Samples

The PCA scores and loadings plots for the 4 mm kiwifruits samples are shown in
Figure 6a,b, respectively. The variance explained by PC1, PC2, and PC3 was 48.77%, 23.76%,
and 17.21%, respectively, cumulatively accounting for 89.74% of the total variance. As
shown in Figure 6b, regarding the appearance parameters, PC1 was positively correlated
with hue, area, and value, while only negatively correlated with compactness. Figure 6a
depicts a pronounced divergence of all dried sample groups from the fresh fruit (labeled as
‘Fresh’), signifying substantial alterations in appearance, attributable to the drying process.
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Figure 6. (a) PCA score plot of the first three principal components was used to explore the degree of
variation in the appearance for different pretreatments for 4 mm samples; (b) PCA loading plot of the
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Table 4 presents the Euclidean distances between each sample point and the fresh
fruit reference point. Notably, the points labeled 60C4ULT and 60C4CA are positioned
proximate to those of the fresh fruit, suggesting that the application of citric acid and
ultrasonic pretreatments at a drying temperature of 60 ◦C and a slice thickness of 4 mm
potentially preserves green color effectively. In addition, the 70C4SCS and 70C4ULT groups
are located close to each other in Figure 6a and moderately deviate from the fresh fruit
point. This means they had similar changes in appearance at the end of drying.

Table 4. Euclidean distance to fresh fruit for 4 mm thick samples.

Number Name Distance to Fresh

1 60C4ULT 3.44
2 70C4CA 3.81
3 70C4SCS 4.46
4 70C4ULT 4.68
5 60C4CA 5.32
6 60C4SCS 5.51
7 60C4Control 5.54
8 70C4Control 5.66

The control samples, irrespective of being dried at 60 ◦C or 70 ◦C, are distinctly
departed from the fresh fruit in Figure 6a, indicating that regardless of the pretreatment
used, it is beneficial to inhibit color and morphological changes during the process of
drying kiwifruit.

A comparison of ultrasonic, citric acid, and unpretreated samples with fresh fruit is
shown in Figure 7. The results of human eye perception are consistent with the data, show-
ing that ultrasonic-pretreated samples best retained the green and had less morphological
modification. In contrast, nonpretreated samples browned heavily after drying and showed
a large degree of shrinkage.
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Figure 7. (a) Fresh fruit before drying; (b) 60C4ULT after drying; (c) 70C4CA after drying;
(d) 70C4Control after drying.

In general, an analysis integrating the data from Figure 6 and Table 4 suggested that
for the 4 mm sliced kiwifruit samples, ultrasonic pretreatment was optimal at a drying
temperature of 60 ◦C. In contrast, citric acid pretreatment yielded favorable results at an
elevated temperature of 70 ◦C. Furthermore, all selected pretreatment methods in this study
mitigated appearance-quality deterioration to varying extents compared to the samples
without pretreatment.

3.3.2. Appearance Similarity Comparison by PCA for 70 ◦C Samples

Figure 8a,b show the PCA scores and loading plots for the 70 ◦C drying temperature
of kiwifruit samples, respectively. PC1, PC2, and PC3 accounted for 47.01%, 22.88%, and
16.40% of the variance, cumulatively constituting 86.29%. Figure 8b shows that PC1 was
positively correlated with all parameters except compactness, while PC2 had positive
correlations with all parameters except saturation.
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It was observed that samples with the same pretreatment differed in appearance at
the 70 ◦C drying temperature for different slice thicknesses. This discrepancy is likely at-
tributable to the extended drying duration necessary for the 6 mm samples. This protracted
drying period presumably intensified the degree of browning and shrinkage in the fruits,
thereby engendering appearance differences among the sliced samples. As drying pro-
gresses, the moisture content of the fruit gradually decreases, leading to an acceleration of
the Maillard reaction. As the Maillard reaction accelerates, interactions between sugars and
amino acids at higher temperatures lead to the formation of more brown compounds [4].
However, the score plot shows the position of the individual samples in the principal
component space, and, as can be seen in Figure 8a, most of the sample groups are relatively
clustered in position between each other, which means that there was not much difference
in the appearance features between the samples, except for the 70C4Control sample.

As in the previous section, the Euclidean distances of each sample from the fresh
fruit were computed, as delineated in Table 5. The 70C4Control group exhibited the most
pronounced appearance deviation from the fresh fruit, possibly due to the rapid drying of
thinner slices at high temperatures, which precipitated significant pigment deterioration
and shrinkage. The 70C4CA samples demonstrated the shortest Euclidean distance (3.84)
from the reference point (Fresh). Remarkably, the unpretreated 6 mm samples (70C6Control)
subjected to drying at 70 ◦C did not undergo severe appearance deterioration. This may
have been because thicker samples are more likely to produce a porous hard outer case at
higher temperatures, thereby retarding shape change [33].
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Table 5. Euclidean distance to fresh fruit for 70 ◦C samples.

Number Name Distance to Fresh

1 70C4CA 3.84
2 70C6Control 4.41
3 70C6ULT 4.47
4 70C4ULT 4.51
5 70C4SCS 4.52
6 70C6SCS 4.85
7 70C6CA 4.89
8 70C4Control 6.63

As shown in Figure 9, when the drying temperature was raised to 70 ◦C, the human
eye perceived that only the citric-acid-pretreated samples (b) retained a little green color
and did not undergo severe morphology changes.
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In summary, at a drying temperature of 70 ◦C, citric acid appeared to be the most
efficacious pretreatment for the 4 mm slices. However, for thicker slices, the various
pretreatments did not exhibit notably effective performance.

4. Conclusions

In this study, an image batch processing method was developed, facilitating the
extraction of color and morphological features with an accuracy exceeding 90% for kiwifruit
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slices. This result indicates the potential to integrate such method into smart drying
equipment and help optimize the drying process.

Furthermore, partial least squares (PLS) and random forest (RF) models were de-
veloped using color and morphological features to predict the moisture ratio. While
the RF model exhibited superior predictive capability, PLS models, due to their greater
explainability, might be more suitable for real-world industrial applications. The satisfac-
tory prediction outcomes suggest vision-based soft sensors have potential application in
monitoring moisture content in the food industry without relying on weighing equipment.

Principal component analysis (PCA) was employed to compare the color and mor-
phological differences among the samples. Specifically, for kiwifruit slices with a 4 mm
thickness that underwent ultrasonic pretreatment, minimal appearance changes were ob-
served at 60 ◦C. However, when the drying temperature increased to 70 ◦C, the slices
pretreated with citric acid closely resembled fresh fruit.

Overall, through the integration of image processing and machine learning techniques,
the proposed approach presents an efficient and accurate method for monitoring the fruit
drying process. However, this study is a case study of kiwifruit slice drying, and the general
applicability of the real-time image feature extraction method to different types of food
will be verified in future research. The application of these methodologies in dynamic fruit
drying systems is anticipated to enhance the productivity and effectiveness of fruit drying
operations.
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