Unraveling the In Vitro Anti-Advanced Glycation End-Product (Anti-AGE) Potential of Fermented Red Cabbage and Beetroot: Insights into Composition and Activities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Preparation of Samples
2.3. Anti-Glycation Activity Measurement
2.4. Measurement of Total Phenolic (TP) and Total Flavonoid (TF) Contents of Red Cabbage and Red Beetroot and Their Products
2.5. Determination of Contents of Phenolic Acids and Flavonoids by Liquid Chromatography in Red Cabbage and Red Beetroot and Their Products
2.6. Determination of Anthocyanin Content in Fresh and Fermented Red Cabbage
2.7. Extraction and Chromatographic Analysis of Betalains in Fresh and Fermented Red Beetroot
2.8. Statistical Analysis
3. Results and Discussion
3.1. Qualitative and Quantitative Identification of Anthocyanins in Products of Red Cabbage
3.2. Profile and Content of Betalains in Red Beetroot
3.3. Total Phenolic and Flavonoid Contents (TPC and TFC)
3.4. Qualitative and Quantitative Identification of Non-Anthocyanin Phenolic Compounds (Phenolic Acids and Flavonoids) in Products of Red Cabbage and Red Beetroot
3.5. Anti-AGE Ability of Red Cabbage, Beetroot, and Their Products
3.6. Correlation Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yalcin, H.; Çapar, T.D. Bioactive Compounds of Fruits and Vegetables. In Minimally Processed Refrigerated Fruits and Vegetables, 2nd ed.; Food Engineering Series; Yildiz, F., Wiley, R., Eds.; Springer: Boston, MA, USA, 2017; pp. 723–745. [Google Scholar] [CrossRef]
- Voća, S.; Šic Žlabur, J.; Dobričević, N.; Benko, B.; Pliestić, S.; Filipović, M.; Galić, A. Bioactive compounds, pigment content and antioxidant capacity of selected cabbage cultivars. J. Cent. Eur. Agric. 2018, 19, 593–606. [Google Scholar] [CrossRef]
- Wiczkowski, W.; Szawara-Nowak, D.; Topolska, J. Changes in the content and composition of anthocyanins in red cabbage and its antioxidant capacity during fermentation, storage and stewing. Food Chem. 2015, 167, 115–123. [Google Scholar] [CrossRef]
- Hadipour, E.; Taleghani, A.; Tayarani-Najaran, N.; Tayarani-Najaran, Z. Biological effects of red beetroot and betalains: A review. Phytother. Res. 2020, 34, 1847–1867. [Google Scholar] [CrossRef] [PubMed]
- Kazeem, M.I.; Bankole, H.A.; Fatai, A.A.; Adenowo, A.F.; Davies, T.C. Antidiabetic Functional Foods with Antiglycation Properties. In Bioactive Molecules in Food, 2nd ed.; Reference Series in Phytochemistry; Mérillon, J.M., Ramawat, K., Eds.; Springer: Boston, MA, USA, 2019; pp. 1283–1310. [Google Scholar] [CrossRef]
- Starowicz, M.; Zieliński, H. Inhibition of advanced glycation end-product formation by high antioxidant-leveled spices commonly used in European cuisine. Antioxidants 2019, 8, 100. [Google Scholar] [CrossRef] [PubMed]
- Sourris, K.C.; Watson, A.; Jandeleit-Dahm, K. Inhibitors of Advanced Glycation End Product (AGE) Formation and Accumulation. Handb. Exp. Pharmacol. 2021, 264, 395–423. [Google Scholar] [CrossRef] [PubMed]
- Peng, X.; Ma, J.; Chen, F.; Wang, M. Naturally occurring inhibitors against the formation of advanced glycation end-products. Food Funct. 2011, 2, 289–301. [Google Scholar] [CrossRef] [PubMed]
- Kuda, T.; Eda, M.; Kataoka, M.; Nemoto, M.; Kawahara, M.; Oshio, S.; Takahashi, H.; Kimura, B. Anti-glycation properties of the aqueous extract solutions of dried algae products and effect of lactic acid fermentation on the properties. Food Chem. 2016, 192, 1109–1115. [Google Scholar] [CrossRef] [PubMed]
- Mizgier, P.; Kucharska, A.Z.; Sokół-Łętowska, A.; Kolniak-Ostek, J.; Kidoń, M.; Fecka, I. Characterization of phenolic compounds and antioxidant and anti-inflammatory properties of red cabbage and purple carrot extracts. J. Funct. Foods 2016, 21, 133–146. [Google Scholar] [CrossRef]
- Sawicki, T.; Bączek, N.; Wiczkowski, W. Betalain profile, content and antioxidant capacity of red beetroot dependent on the genotype and root part. J. Funct. Foods 2016, 27, 249–261. [Google Scholar] [CrossRef]
- Płatosz, N.; Sawicki, T.; Wiczkowski, W. Profile of Phenolic Acids and Flavonoids of Red Beet and Its Fermentation Products. Does Long-Term Consumption of Fermented Beetroot Juice Affect Phenolics Profile in Human Blood Plasma and Urine? Pol. J. Food Nutr. Sci. 2020, 70, 55–65. [Google Scholar] [CrossRef]
- Przygodzka, M.; Zielińska, D.; Ciesarová, Z.; Kukurová, K.; Zieliński, H. Comparison of methods for evaluation of the antioxidant capacity and phenolic compounds in common spices. LWT Food Sci. Technol. 2014, 58, 321–326. [Google Scholar] [CrossRef]
- Zhao, C.-L.; Yu, Y.-Q.; Chen, Z.-J.; Wen, Z.-J.; Wei, F.-G.; Zheng, Q.; Wang, C.-D.; Xiao, X.-L. Stability-increasing effects of anthocyanin glycosyl acylation. Food Chem. 2016, 214, 119–128. [Google Scholar] [CrossRef] [PubMed]
- Sadilova, E.; Carle, R.; Stintzing, F.C. Thermal degradation of anthocyanins and its impact on color and in vitro antioxidant capacity. Mol. Nutr. Food Res. 2007, 51, 1461–1471. [Google Scholar] [CrossRef] [PubMed]
- McDougall, G.J.; Fyffe, S.; Dobson, P.; Stewart, D. Anthocyanins from red cabbage-stability to simulated gastrointestinal digestion. Phytochemistry 2007, 68, 1285–1294. [Google Scholar] [CrossRef] [PubMed]
- Enaru, B.; Drețcanu, G.; Pop, T.D.; Stǎnilǎ, A.; Diaconeasa, Z. Anthocyanins: Factors Affecting Their Stability and Degradation. Antioxidants 2021, 10, 1967. [Google Scholar] [CrossRef] [PubMed]
- Slatnar, A.; Stampar, F.; Veberic, R.; Jakopic, J. HPLC-MS Identification of Betalain Profile of Different Beetroot (Beta vulgaris L. ssp. vulgaris) Parts and Cultivars. J. Food Sci. 2015, 80, C1952–C1958. [Google Scholar] [CrossRef] [PubMed]
- Paciullin, M.; Medina-Meza, I.G.; Chiavaro, E.; Barbosa-Canowas, V. Impact of thermal and high pressure processing on quality parameters of beetroot (Beta vulgaris L.). LWT-Food Sci. Technol. 2016, 68, 98–104. [Google Scholar] [CrossRef]
- Sutor-Świeży, K.; Antonik, M.; Proszek, J.; Nemzer, B.; Pietrzkowski, Z.; Popenda, Ł.; Świergosz, T.; Wybraniec, S. Dehydrogenation of Betacyanins in Heated Betalain-Rich Extracts of Red Beet (Beta vulgaris L.). Int. J. Mol. Sci. 2022, 23, 1245. [Google Scholar] [CrossRef]
- Gokhale, S.V.; Lele, S.S. Betalain content and antioxidant activity of Beta vulgaris: Effect of hot air convective drying and storage. J. Food Process. Preserv. 2014, 38, 585–590. [Google Scholar] [CrossRef]
- Sadowska-Bartosz, I.; Bartosz, G. Biological Properties and Applications of Betalains. Molecules 2021, 26, 2520. [Google Scholar] [CrossRef]
- Nemzer, B.; Pietrzkowski, Z.; Spórna, A.; Stalica, P.; Thresher, W.; Michałowski, T.; Wybraniec, S. Betalainic and nutritional profiles of pigment-enriched red beet root (Beta vulgaris L.) dried extracts. Food Chem. 2011, 127, 42–53. [Google Scholar] [CrossRef]
- Oancea, S.; Mila, L.; Ketney, O. Content of Phenolics, in vitro Antioxidant Activity and Cytoprotective Effects against Induced Haemolysis of Red Cabbage Extracts. Rom. Biotechnol. Lett. 2018, 24, 1–9. [Google Scholar] [CrossRef]
- Tabart, J.; Pincemail, J.; Kevers, C.; Defraige, J.-O.; Dommes, J. Processing effects on antioxidant, glucosinolate, and sulforaphane contents in broccoli and red cabbage. Eur. Food Res. Technol. 2018, 244, 2085–2094. [Google Scholar] [CrossRef]
- Şengül, M.; Yildiz, H.; Kavaz, A. The Effect of Cooking on Total Polyphenolic Content and Antioxidant Activity of Selected Vegetables. Int. J. Food Prop. 2014, 17, 481–490. [Google Scholar] [CrossRef]
- Peterson, G.L. Review of the Folin phenol protein quantitation method of Lowry, Rosebrough, Farr, and Randall. Anal. Biochem. 1979, 100, 201–220. [Google Scholar] [CrossRef] [PubMed]
- Drozdowska, M.; Leszczyńska, T.; Koronowicz, A.; Piasna-Słupecka, E.; Dziadek, K. Comparative study of young shoots and the mature red headed cabbage as antioxidant food resources with antiproliferative effect on prostate cancer cells. RSC Adv. 2020, 10, 43021. [Google Scholar] [CrossRef]
- Hunaefi, D.; Gruda, N.; Riedel, H.; Akumo, D.N.; Saw, N.M.M.T.; Smetanska, I. Improvement of Antioxidant Activities in Red Cabbage Sprouts by Lactic Acid Bacterial Fermentation. Food Biotechnol. 2013, 27, 279–302. [Google Scholar] [CrossRef]
- Bhanja Dey, T.; Chakraborty, S.; Jain, K.K.; Sharma, A.; Kuhad, R.C. Antioxidant phenolics and their microbial production by submerged and solid state fermentation process: A review. Trends Food Sci. Technol. 2016, 53, 60–74. [Google Scholar] [CrossRef]
- Liang, Y.; Li, Y.; Zhang, L.; Liu, X. Phytochemicals and antioxidant activity in four varieties of head cabbages commonly consumed in China. Food Prod. Process. Nutr. 2019, 1, 3. [Google Scholar] [CrossRef]
- Mattila, P.; Hellström, J. Phenolic acids in potatoes, vegetables, and some of their products. J. Food Compos. Anal. 2007, 20, 152–160. [Google Scholar] [CrossRef]
- Chen, C. Sinapic Acid and Its Derivatives as Medicine in Oxidative Stress-Induced Diseases and Aging. Oxid. Med. Cell Longev. 2016, 2016, 3571614. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Pandey, A.K. Chemistry and Biological Activities of Flavonoids: An Overview. Sci. World J. 2013, 2013, 162750. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Z.; Zhang, Z.; Han, Y.; Wang, J.; Wang, Y.; Chen, X.; Shao, Y.; Cheng, Y.; Zhou, W.; Lu, X.; et al. A review on anti-cancer effect of green tea catechins. J. Funct. Foods 2020, 74, 104172. [Google Scholar] [CrossRef]
- Boyle, S.P.; Dobson, V.L.; Duthie, S.J.; Hinselwood, D.C.; Kyle, J.A.; Collins, A.R. Bioavailability and efficiency of rutin as an antioxidant: A human supplementation study. Eur. J. Clin. Nutr. 2000, 54, 774–782. [Google Scholar] [CrossRef] [PubMed]
- Davey, M.W.; Van-Montagu, M.; Inze, D.; Sanmartin, M.; Kanellis, A.; Smirnoff, N.; Benzie, I.J.J.; Strain, J.J.; Favell, D.; Fletcher, J. Plant l-ascorbic acid: Chemistry, function, metabolism, bioavailability and effects of processing. J. Sci. Food Agric. 2000, 80, 825–860. [Google Scholar] [CrossRef]
- Zhao, L.; Zhao, X.; Xu, Y.; Liu, X.; Zhang, J.; He, Z. Simultaneous determination of 49 amino acids, B vitamins, flavonoids, and phenolic acids in commonly consumed vegetables by ultra-performance liquid chromatography-tandem mass spectrometry. Food Chem. 2021, 344, 128712. [Google Scholar] [CrossRef] [PubMed]
- Hur, S.J.; Lee, S.Y.; Kim, Y.C.; Choi, I.; Kim, G.B. Effect of fermentation on the antioxidant activity in plant-based foods. Food Chem. 2014, 1, 346–356. [Google Scholar] [CrossRef] [PubMed]
- Tomás-Barberán, F.A.; Espín, J.C. Phenolic compounds and related enzymes as determinants of quality in fruits and vegetables. J. Sci. Food Agric. 2001, 81, 853–876. [Google Scholar] [CrossRef]
- Thilavech, T.; Marnpae, M.; Mäkynen, K.; Adisakwattana, S. Phytochemical Composition, Antiglycation, Antioxidant Activity and Methylglyoxal-Trapping Action of Brassica Vegetables. Plant Foods Hum. Nutr. 2021, 76, 340–346. [Google Scholar] [CrossRef]
- Yeh, W.-J.; Hsia, S.-M.; Lee, W.-H.; Wu, C.-H. Polyphenols with antiglycation activity and mechanisms of action: A review of recent findings. J. Food Drug Anal. 2017, 25, 84–92. [Google Scholar] [CrossRef]
- Hounsome, N.; Hounsome, B.; Tomos, D.; Edwards-Jones, G. Changes in antioxidant compounds in white cabbage during winter storage. Postharvest Biol. Technol. 2009, 52, 173–179. [Google Scholar] [CrossRef]
No | Abbreviation | Compounds | Red Cabbage | |
---|---|---|---|---|
Fresh | Fermented | |||
[µg/g DM] | ||||
1 | Cy3diG5G | cyanidin 3-diglucoside-5-glucoside | 1.84 ± 0.18 a | 1.91 ± 0.08 a |
2 | Cy3G5G | cyanidin 3-glucoside-5-glucoside | 0.29 ± 0.00 a | 0.19 ± 0.00 b |
3 | Cy3(sin)diG5G | cyanidin 3-(sinapoyl)-diglucoside-5-glucoside | 0.94 ± 0.01 a | 0.90 ± 0.05 a |
4 | Cy3(sin)triG5G | cyanidin 3-(sinapoyl)-triglucoside-5-glucoside | 0.38 ± 0.05 a | 0.36 ± 0.04 a |
5 | Cy3(caf)(p-cum)diG5G | cyanidin 3-(caffeoyl)(p-coumaroyl)-diglucoside-5-glucoside | 0.42 ± 0.02 a | 0.29 ± 0.02 b |
6 | Cy3(fer)triG5G | cyanidin 3-(feruloyl)-triglucoside-5-glucoside | 0.28 ± 0.02 a | 0.20 ± 0.01 b |
7 | Cy3(sin)triG5G | cyanidin 3- (sinapoyl)-triglucoside-5-glucoside | 0.15 ± 0.00 a | 0.11 ± 0.00 b |
8 | Cy3(fer)(fer)triG5G | cyanidin 3-(feruloyl)(feruloyl)-triglucoside-5-glucoside | 0.45 ± 0.01 a | 0.27 ± 0.01 b |
9 | Cy3(fer)diG5G | cyanidin 3-(feruloyl)-diglucoside-5-glucoside | 0.48 ± 0.01 a | 0.34 ± 0.01 b |
10 | Cy3(fer)(sin)triG5G | cyanidin 3-(feruloyl)(sinapoyl)-triglucoside-5-glucoside | 0.17 ± 0.01 a | 0.14 ± 0.01 a |
11 | Cy3(p-cum)diG5G | cyanidin 3-(p-coumaroyl)-diglucoside-5-glucoside; | 0.70 ± 0.02 b | 0.85 ± 0.02 a |
12 | Cy3(caf)(p-cum)diG5G | cyanidin 3-(caffeoyl)(p-coumaroyl)-diglucoside-5-glucoside | 0.07 ± 0.00 | nd |
13 | Cy3(fer)diG5G | cyanidin 3-(feruloyl)-diglucoside-5-glucoside | 0.44 ± 0.02 b | 0.63 ± 0.01 a |
14 | Cy3(sin)diG5G | cyanidin 3-(sinapoyl)-diglucoside-5-glucoside | 0.87 ± 0.01 b | 0.91 ± 0.01 a |
15 | Cy3(fer)G5G | cyanidin 3-(feruloyl)-glucoside-5-glucoside | 0.12 ± 0.00 a | 0.10 ± 0.00 b |
16 | Cy3(sin)G5G | cyanidin 3-(sinapoyl)-glucoside-5-glucoside | 0.14 ± 0.01 a | 0.11 ± 0.01 a |
17 | Cy3(fer)(fer)diG5G | cyanidin 3-(feruloyl)(feruloyl)-diglucoside-5-glucoside | 1.10 ± 0.01 a | 0.91 ± 0.02 b |
18 | Cy3(fer)(sin)diG5G | cyanidin 3-(feruloyl)(sinapoyl)-diglucoside-5-glucoside | 1.13 ± 0.00 a | 0.98 ± 0.01 b |
19 | Cy3(sin)(sin)diG5 G | cyanidin 3-(sinapoyl)(sinapoyl)-diglucoside-5-glucoside | 2.84 ± 0.03 a | 2.61 ± 0.03 b |
Sum of anthocyanins | 12.81 ± 0.41 a | 11.81 ± 0.34 b |
No | Compound | Red Beetroot | |
---|---|---|---|
Fresh | Fermented | ||
[µg/g DM] | |||
1 | betanin | 2.54 ± 0.13 a | 0.02 ± 0.00 b |
2 | isobetanin | 0.77 ± 0.02 a | 0.00 ± 0.00 b |
3 | 17-decarboxy-betanin | 0.06 ± 0.00 a | 0.06 ± 0.00 a |
4 | 2,17-bidecarboxy-betanin | 0.66 ± 0.01 a | 0.34 ± 0.01 b |
5 | 2,15,17-tridecarboxy-betanin | 1.09 ± 0.03 a | 0.23 ± 0.01 b |
6 | vulgaxantin I | 0.17 ± 0.00 a | 0.04 ± 0.00 b |
7 | vulgaxantin II | 0.46 ± 0.01 a | 0.25 ± 0.01 b |
Total betalains content | 5.75 ± 0.20 a | 0.94 ± 0.03 b |
No | Compound | Red Cabbage | |||||
---|---|---|---|---|---|---|---|
Fresh | Fermented | ||||||
F | C | F + C | F | C | F + C | ||
Phenolic acids [µg/g DM] | |||||||
1 | caffeic acid | 1.45 ± 0.14 | 46.84 ± 2.38 | 48.29 ± 2.38 b | 1.12 ± 0.10 | 61.52 ± 1.37 | 62.63 ± 1.46 a |
2 | chlorogenic acid | 0.06 ± 0.01 | 0.03 ± 0.00 | 0.09 ± 0.00 a | 0.05 ± 0.00 | 0.01 ± 0.00 | 0.06 ± 0.00 b |
3 | p-coumaric acid | 6.61 ± 0.23 | 27.32 ± 2.30 | 33.93 ± 2.30 b | 0.91 ± 0.10 | 28.16 ± 1.14 | 29.07 ± 1.23 a |
4 | ferulic acid | 0.70 ± 0.00 | 4.19 ± 0.16 | 4.89 ± 0.16 b | 1.71 ± 0.10 | 4.29 ± 0.11 | 6.00 ± 0.21 b |
5 | p-hydroxybenzoic acid | 1.35 ± 0.04 | 16.16 ± 0.53 | 17.50 ± 0.53 b | 13.14 ± 0.39 | 15.77 ± 0.46 | 28.91 ± 0.85 a |
6 | m-hydroxyphenylacetic acid | 0.03 ± 0.00 | 11.99 ± 0.40 | 12.02 ± 0.40 b | 0.41 ± 0.02 | 14.23 ± 0.45 | 14.64 ± 0.47 a |
7 | m-hydroxybenzoic acid | 1.23 ± 0.01 | 2.50 ± 0.18 | 3.73 ± 0.18 a | 1.35 ± 0.07 | 2.88 ± 0.20 | 4.22 ± 0.26 a |
8 | isoferulic acid | 3.05 ± 0.02 | 33.62 ± 2.54 | 36.68 ± 2.54 b | 3.18 ± 0.16 | 40.49 ± 2.06 | 43.67 ± 2.22 a |
9 | protocatechuic acid | nd | 1.99 ± 0.09 | 1.99 ± 0.09 b | nd | 3.32 ± 0.21 | 3.32 ± 0.21 a |
10 | sinapic acid | 27.63 ± 1.67 | 50.80 ± 3.84 | 78.43 ± 3.84 b | 45.89 ± 1.56 | 86.85 ± 3.40 | 132.75 ± 4.96 a |
11 | syringic acid | 15.02 ± 0.20 | 24.61 ± 0.46 | 39.63 ± 0.46 a | 19.89 ± 0.81 | 24.39 ± 2.03 | 44.27 ± 2.83 a |
12 | vanillic acid | 0.51 ± 0.06 | 23.97 ± 0.49 | 24.47 ± 0.49 a | 3.34 ± 0.05 | 13.07 ± 0.12 | 16.40 ± 0.16 b |
Sum of phenolic acids (SP) | 57.63 ± 2.37 | 244.01 ± 13.37 | 301.64 ± 13.37 b | 90.99 ± 3.34 | 294.97 ± 11.54 | 385.95 ± 14.88 a | |
Flavonoids [µg/g DM] | |||||||
13 | apigenin | 0.95 ± 0.09 | 0.00 ± 0.00 | 0.95 ± 0.00 a | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 b |
14 | epicatechin | nd | 19.81 ± 0.45 | 19.81 ± 0.45 a | nd | 5.39 ± 0.45 | 5.39 ± 0.45 b |
15 | kaempferol | 0.16 ± 0.01 | 0.54 ± 0.04 | 0.70 ± 0.04 b | 0.27 ± 0.01 | 0.52 ± 0.02 | 0.79 ± 0.03 a |
16 | orientin | nd | 2.36 ± 0.13 | 2.36 ± 0.13 a | nd | 2.71 ± 0.28 | 2.71 ± 0.28 a |
17 | quercetin | 0.04 ± 0.00 | 0.32 ± 0.01 | 0.36 ± 0.01 b | 0.30 ± 0.01 | 0.17 ± 0.02 | 0.47 ± 0.03 a |
18 | rutin | 0.05 ± 0.00 | nd | 0.05 ± 0.00 b | 0.82 ± 0.08 | nd | 0.82 ± 0.08 a |
19 | vitexin | nd | 0.05 ± 0.00 | 0.05 ± 0.00 a | 0.01 ± 0.00 | 0.04 ± 0.00 | 0.04 ± 0.00 a |
Sum of flavonoids (SF) | 1.20 ± 0.10 | 23.09 ± 0.64 | 24.27 ± 0.64 a | 1.40 ± 0.11 | 8.82 ± 0.76 | 10.22 ± 0.87 b | |
Sum of phenolic acids and flavonoids (SPF) | 58.83 ± 2.47 | 267.1 ± 14.01 | 325.91 ± 14.01 b | 92.39 ± 3.45 | 303.79 ± 12.30 | 396.17 ± 15.75 a | |
TPC [mg GA/g DM] | 36.49 ± 1.25 b | 40.14 ± 0.98 a | |||||
TFC [mg Q/g DM] | 0.72 ± 0.03 b | 0.82 ± 0.02 a |
No | Compound | Fresh | Fermented | ||||
---|---|---|---|---|---|---|---|
F | C | F + C | F | C | F + C | ||
Phenolic acids [µg/g DM] | |||||||
1 | caffeic acid | 0.20 ± 0.03 | 3.94 ± 0.02 | 4.14 ± 0.04 a | 0.98 ± 0.07 | 2.90 ± 0.15 | 3.88 ± 0.21 a |
2 | chlorogenic acid | nd | 0.02 ± 0.00 | 0.02 ± 0.00 a | nd | 0.01 ± 0.00 | 0.01 ± 0.00 b |
3 | p-coumaric acid | 0.21 ± 0.01 | 24.86 ± 0.15 | 25.07 ± 0.16 a | 5.84 ± 0.04 | 15.91 ± 0.60 | 21.75 ± 0.64 b |
4 | ferulic acid | 3.38 ± 0.11 | 4.42 ± 0.38 | 7.79 ± 0.48 a | 4.19 ± 0.24 | 2.71 ± 0.26 | 6.90 ± 0.50 a |
5 | m-hydroxybenzoic acid | 0.60 ± 0.00 | 1.00 ± 0.06 | 1.60 ± 0.07 a | 0.86 ± 0.02 | 0.49 ± 0.02 | 1.34 ± 0.04 b |
6 | p-hydroxybenzoic acid | 1.30 ± 0.03 | 15.57 ± 0.34 | 16.86 ± 0.37 a | 2.72 ± 0.05 | 2.72 ± 0.05 | 5.43 ± 0.09 b |
7 | m-hydroxyphenylacetic acid | 0.02 ± 0.00 | 0.19 ± 0.00 | 0.21 ± 0.01 b | 0.02 ± 0.00 | 0.38 ± 0.02 | 0.41 ± 0.02 a |
8 | isoferulic acid | 6.90 ± 0.23 | 35.10 ± 0.28 | 42.00 ± 0.51 a | 10.45 ± 0.66 | 15.56 ± 0.38 | 26.01 ± 1.04 b |
9 | protocatechuic acid | 0.02 ± 0.00 | 0.33 ± 0.01 | 0.35 ± 0.01 a | 0.01 ± 0.00 | 0.09 ± 0.00 | 0.09 ± 0.00 b |
10 | sinapic acid | 1.69 ± 0.06 | 8.59 ± 0.37 | 10.28 ± 0.43 a | 0.43 ± 0.00 | 1.81 ± 0.10 | 2.23 ± 0.10 b |
11 | syringic acid | 38.44 ± 2.22 | 59.33 ± 2.72 | 97.77 ± 4.94 a | 45.32 ± 1.94 | 26.13 ± 1.11 | 71.45 ± 3.05 b |
12 | vanillic acid | 0.20 ± 0.01 | 12.91 ± 0.57 | 13.11 ± 0.58 a | nd | 0.56 ± 0.03 | 0.56 ± 0.03 b |
Sum of phenolic acids (SP) | 52.96 ± 2.70 | 166.26 ± 4.90 | 219.20 ± 7.60 a | 70.82 ± 3.02 | 69.27 ± 2.72 | 140.06 ± 5.72 b | |
Flavonoids [µg/g DM] | |||||||
13 | epicatechin | nd | 25.82 ± 0.79 | 25.82 ± 0.79 a | nd | 6.62 ± 0.46 | 6.62 ± 0.46 b |
14 | kaempferol | 0.06 ± 0.00 | nd | 0.06 ± 0.00 a | 0.04 ± 0.00 | nd | 0.04 ± 0.00 b |
15 | orientin | nd | nd | nd | 1.68 ± 0.08 | nd | 1.68 ± 0.08 a |
16 | quercetin | 0.03 ± 0.00 | 0.04 ± 0.01 | 0.07 ± 0.01 a | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.01 ± 0.00 b |
17 | rutin | 0.05 ± 0.00 | nd | 0.05 ± 0.00 a | nd | nd | nd |
Sum of flavonoids (SF) | 0.14 ± 0.00 | 25.86 ± 0.80 | 26.00 ± 0.80 a | 1.72 ± 0.08 | 6.62 ± 0.46 | 8.35 ± 0.54 b | |
TPC [mg GA/g DM] | 33.73 ± 0.79 a | 26.36 ± 1.63 b | |||||
TFC [mg Q/g DM] | 2.11 ± 0.03 a | 1.45 ± 0.03 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Starowicz, M.; Płatosz, N.; Bączek, N.; Szawara-Nowak, D.; Šimková, K.; Wiczkowski, W. Unraveling the In Vitro Anti-Advanced Glycation End-Product (Anti-AGE) Potential of Fermented Red Cabbage and Beetroot: Insights into Composition and Activities. Foods 2024, 13, 1791. https://doi.org/10.3390/foods13121791
Starowicz M, Płatosz N, Bączek N, Szawara-Nowak D, Šimková K, Wiczkowski W. Unraveling the In Vitro Anti-Advanced Glycation End-Product (Anti-AGE) Potential of Fermented Red Cabbage and Beetroot: Insights into Composition and Activities. Foods. 2024; 13(12):1791. https://doi.org/10.3390/foods13121791
Chicago/Turabian StyleStarowicz, Małgorzata, Natalia Płatosz, Natalia Bączek, Dorota Szawara-Nowak, Kristýna Šimková, and Wiesław Wiczkowski. 2024. "Unraveling the In Vitro Anti-Advanced Glycation End-Product (Anti-AGE) Potential of Fermented Red Cabbage and Beetroot: Insights into Composition and Activities" Foods 13, no. 12: 1791. https://doi.org/10.3390/foods13121791
APA StyleStarowicz, M., Płatosz, N., Bączek, N., Szawara-Nowak, D., Šimková, K., & Wiczkowski, W. (2024). Unraveling the In Vitro Anti-Advanced Glycation End-Product (Anti-AGE) Potential of Fermented Red Cabbage and Beetroot: Insights into Composition and Activities. Foods, 13(12), 1791. https://doi.org/10.3390/foods13121791