Efficiency of Alginic Acid, Sodium Carboxymethylcellulose, and Potassium Polyaspartate as Calcium Tartrate Stabilizers in Wines
Abstract
:1. Introduction
2. Materials and Methods
2.1. Wine Sample
2.2. Determination of Calcium and Potassium
2.3. Evaluation of Wine Calcium Tartrate Stability
2.4. Stabilization Experiments Using Sodium Carboxymethylcellulose, Potassium Polyaspartate, and Alginic Acid
2.5. Zeta Potential
2.6. Statistical Analysis
3. Results and Discussion
3.1. Effect of Wine Composition on Selected Parameters for Wine Calcium Tartaric Stability
3.2. Effect of Stabilizing Additives on Wine Calcium Tartrate Stability
3.3. Zeta Potential of Sodium Carboxymethylcellulose, Potassium Polyaspartate, and Alginic Acid
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Eschnauer, H.; Jakob, L.; Meierer, H.; Neeb, R. Use and limitations of ICP-OES in wine analysis. Mikrochim. Acta 1989, 99, 291–298. [Google Scholar] [CrossRef]
- Themelis, D.G.; Tzanavaras, P.D.; Anthemidis, A.N.; Stratis, J.A. Direct, selective flow injection spectrophotometric determination of calcium in wines using methylthymol blue and an on-line cascade dilution system. Anal. Chim. Acta 1999, 402, 259–266. [Google Scholar] [CrossRef]
- Catarino, S.; Soares, S.; Curvelo-Garcia, A.S.; Sousa, B.R. Implicações da Utilização de Bentonites sobre a fracção mineral de vinhos: Potássio, sódio, cálcio, alumínio e chumbo. Efeito do pH. Cienc. Tec. Vitivinic. 2004, 19, 29–45. [Google Scholar]
- Rankine, B.C. Making Good Wine—A Manual of Winemaking Practice for Australia e New Zeale; Sun Books: Melbourne, Australia, 1989. [Google Scholar]
- Ribéreau-Gayon, P.; Glories, Y.; Maujean, A.; Dubourdieu, D. Handbook of Enology. Volume 2. The Chemistry of Wine. Stabilization and Treatments, 2nd ed.; John Wiley & Sons Ltd Dunod: Paris, France, 2006. [Google Scholar]
- McKinnon, A.J.; Scollary, G.R.; Solomon, D.H.; Williams, P.J. The mechanism of precipitation of calcium L(+)-tartrate in a model wine solution. Colloids Surf. A Physicochem. Eng. Asp. 1994, 82, 225–235. [Google Scholar] [CrossRef]
- Abguéguen, O.; Boulton, R.B. The crystallization kinetics of calcium tartrate from model solutions e wines. Am. J. Enol. Vitic. 1993, 44, 65–75. [Google Scholar] [CrossRef]
- Postel, W. La solubilité et la cinetique de la cristallisation du tartrate de calcium dans le vin. Bull. OIV 1983, 629–630, 554–568. [Google Scholar]
- Berg, H.W.; Keefer, R.M. Analytical determination of tartrate stability in wine. I. Potassium bitartrate. Am. J. Enol. Vitic. 1958, 9, 180–183. [Google Scholar] [CrossRef]
- Berg, H.W.; Keefer, R.M. Analytical determination of tartrate stability in wine. II. Calcium tartrate. Am. J. Enol. Vitic. 1959, 10, 105–109. [Google Scholar] [CrossRef]
- Clark, J.; Fugelsang, K.; Gump, B. Factors Affecting Induced Calcium Tartrate Precipitation from Wine. Am. J. Enol. Vitic. 1988, 39, 155–161. [Google Scholar] [CrossRef]
- Cabrita, M.J.; Garcia, R.; Catarino, S. Recent Developments in Wine Tartaric Stabilization Chapter 2; Nova Publishers: New York, NY, USA, 2016; ISBN 978-1-63484-883-1. [Google Scholar]
- Robillard, B.; Baboual, S.; Duteurtre, B. Stabilisation de vins d’assemblage champenois vis-ávis du tartrate de calcium et du bitartrate de potassium. Rev. Française Oenol. 1994, 145, 19–25. [Google Scholar]
- McKinnon, A.J.; Scollary, G.R.; Solomon, D.H.; Williams, P.J. The influence of wine components on the spontaneous precipitation of calcium L(+)-Tartrate in a model wine solution. Am. J. Enol. Vitic. 1995, 46, 509–517. [Google Scholar] [CrossRef]
- Cole, J.; Boulton, R. A study of calcium precipitation in solutions of malic and tartaric acid. Vitis 1989, 28, 177–190. [Google Scholar]
- Payan, C.; Gancel, A.-L.; Jourdes, M.; Christmann, M.; Teissedre, P.-L. Wine acidification methods: A review. OENO One 2023, 57, 113–126. [Google Scholar] [CrossRef]
- De Soto, R.T.; Yamada, H. Relationship of Solubility Products to Long Range Tartrate Stability. Am. J. Enol. Vitic. 1963, 14, 43–51. [Google Scholar] [CrossRef]
- Zoecklein, B.W.; Fugelsang, K.C.; Gump, B.H.; Nury, F.S. Wine Analysis and Production; Chapman & Hall: New York, NY, USA, 1995; 621p, ISBN 978-1-4757-6969. [Google Scholar] [CrossRef]
- Müller, T.; Würdig, G.; Scholten, G.; Friedrich, G. Bestimmung der Calciumtartrat—Sättigungstemperature vom Weinen durch Leitfähigkeitsmessunf. Mitt. Klosterneubg. 1990, 40, 158–168. [Google Scholar]
- Cardwell, T.J.; Cattrall, R.W.; Mrzljak, R.L.; Sweeney, T.; Robins, L.M.; Scollary, G.R. Determination of ionized and total calcium in white wine using a calcium ion-selective electrode. Electroanalysis 1991, 3, 573. [Google Scholar] [CrossRef]
- Görtges, S.; Stocké, R. Minikontactverfahren zur Beurteilung der Calciumtartratsstabilität. Die Weinwirtsch. Tech. 1987, 123, 19–21. [Google Scholar]
- Blouin, J. Les techniques de stabilization tartrique des vins par le froid. Conn. Vigne Et Vin 1982, 16, 63–77. [Google Scholar]
- Goncalves, F.; Fernandes, C.; Cameira dos Santos, P.; de Pinho, M.N. Wine tartaric stabilization by electrodialysis and its assessment by the saturation temperature. J. Food Eng. 2003, 59, 229–235. [Google Scholar] [CrossRef]
- OIV. International Code of Oenological Practices; International Organization of Vine and Wine: Paris, France, 2023. [Google Scholar]
- Wucherpfennig, K.; Otto, K.; Ploecker, P. Calciumstabilisireung mit neutralem Kalium-DL-Tartrat. Die Weinwissenschaft-Tech. 1986, 12, 494–499. [Google Scholar]
- Jackson, R.S. Wine Science. Principles and Applications, 3rd ed.; Academic Press: Cambridge, MA, USA, 2008. [Google Scholar] [CrossRef]
- Gonçalves, F. Optimização da Clarificação e Estabilização Tartárica de Vinhos por Processos de Membranas. Influência das Macromoléculas e da Composição Iónica. Tese de Doutoramento, Instituto Superior Técnico, Lisbon, Portugal, 2002. [Google Scholar]
- Philipp, C.; Strauss, M.; Schlögl, N.; Eder, R. Kaliumpolyaspartat im Vergleich zur Stabilisierung mit Metaweinsäure und Carboxymethylcellulose in österreichischen Weiß- und Rotweinen. Mitt. Klosterneubg 2022, 72, 258–270. [Google Scholar]
- OIV. Recueil des Méthodes Internationales D’analyse des Vins et des Moûts; International Organization of Vine and Wine: Paris, France, 2023. [Google Scholar]
- Triulzi, G.; Quinterno, G.; Scotti, B. A instabilidade do tartarato de cálcio—Um desafio enológico, cada vez mais presente no dia a dia da adega. Rev. Da Assoc. Port. De Enol. E Vitic. 2021, 69, 61–69. [Google Scholar]
- McConaughy, S.D.; Stroud, P.A.; Boudreaux, B.; Hester, R.D.; McCormick, C.L. Structural characterization and solution properties of a galacturonate polysaccharide derived from Aloe vera capable of in situ gelation. Biomacromolecules 2008, 9, 472–480. [Google Scholar] [CrossRef] [PubMed]
- Wongsagonsup, R.; Shobsngob, S.; Oonkhanond, B.; Varavinit, S. Zeta potential (ζ) and pasting properties of phosphorylated or crosslinked rice starches. Stärke 2005, 57, 32–37. [Google Scholar] [CrossRef]
- Evgeniou, T.; Pontil, M.; Elisseeff, A. Leave one out error, stability, and generalization of voting combinations of classifiers. Mach. Learn. 2004, 55, 71–97. [Google Scholar] [CrossRef]
- De Soto, R.; Warkentin, H. Influence of pH and Total Acidity on Calcium Tolerance of Sherry Wine. Am. J. Enol. Vitic. 1956, 7, 91–97. [Google Scholar] [CrossRef]
- Pilone, B.F.; Berg, H.W. Some factors affecting tartrate stability in wine. Am. J. Enol. Vitic. 1965, 16, 195–211. [Google Scholar] [CrossRef]
- Pellerin, P.; Doco, T.; Scollary, G.R. The in fluence of wine polymers on the spontaneous precipitation of calcium tartrate in a model wine solution. Int. J. Food Sci. 2013, 48, 2676–2682. [Google Scholar] [CrossRef]
- Nathans, L.L.; Oswald, F.L.; Nimon, K. Multiple linear regression: A guidebook of variable importance. Pract. Assess. Res. Eval. 2012, 17, n9. [Google Scholar] [CrossRef]
- Scheiblhofer, H.; Linder, M.; Puhwein, M.; Winkler, M. Wein(stein)stabilisierung Mittels Kaliumpolyaspartat (KPA) unter Besonderer Berücksichtigung der Metallgehalte im Wein; HBLA und Bundesamt Klosterneuburg Wein- und Obstbau: Klosterneuburg, Austria, 2022. [Google Scholar]
- Wucherpfennig, K.; Dietrich, H.; Götz, W.; Rötz, S. Einfluβ von Kolloiden auf die Weinsteinkristallisation unter besonderer Berücksichtigung der Weinsteinstabilisierung durch Carboxymethylcellulose. Die Weinwirtsch. Tech. 1984, 120, 13–23. [Google Scholar]
- Wucherpfennig, K.; Otto, K.; Kern, U. Praktische Anwendung von Carboxymethylcellulose. Die Weinwirtsch. Tech. 1988, 5, 13–19. [Google Scholar]
- Guise, R.; Filipe-Ribeiro, L.; Nascimento, D.; Bessa, O.; Nunes, F.M.; Cosme, F. Comparison between different types of carboxylmethylcellulose and other oenological additives used for white wine tartaric stabilization. Food Chem. 2014, 156, 250–257. [Google Scholar] [CrossRef] [PubMed]
- Ding, H.; Hou, R.; Li, Y.; Zhang, B.; Zhao, B.; Liu, K. Effect of different carboxymethyl cellulose structure parameters on tartrates stability of red wine: Viscosity and degree of substitution. Food Addit. Contam. Part A Chem. Anal. Control 2020, 37, 1099–1109. [Google Scholar] [CrossRef] [PubMed]
- Davis, T.A.; Llanes, F.; Volesky, B.; Mucci, A. Metal selectivity of Sargassum spp. and their alginates in relation to their alpha-l-guluronic acid content and conformation. Environ. Sci. Technol. 2003, 37, 261–267. [Google Scholar] [CrossRef] [PubMed]
- Xie, L.; Gan, B. Application and study situation of sodium carboxymethyl cellulose in food industry. Acad. Period Farm Prod. Process. 2007, 1, 51–67. [Google Scholar]
- Li, W.; Huang, S.; Xu, D.; Zhao, Y.; Zhang, Y.; Zhang, L. Molecular dynamics simulations of the characteristics of sodium carboxymethyl cellulose with different degrees of substitution in a salt solution. Cellulose 2017, 24, 3619–3633. [Google Scholar] [CrossRef]
- Mcnamara, D.M.; Rosenblum, W.D.; Janosko, K.M.; Trost, M.K.; Villaneuva, F.S.; Demetris, A.J.; Murali, S.; Feldman, A.M. Intravenous immune globulin in the therapy of myocarditis and acute cardiomyopathy. Circulation 1997, 95, 2476–2478. [Google Scholar] [CrossRef]
- Crachereau, J.C.; Gabas, N.; Blouin, J.; Hebrard, S.; Maujean, A. Tartric stabilisation of wines by carboxymethylcellulose (CMC). Bull. OIV 2001, 151, 841–842. [Google Scholar]
- Dessipri, E. Potassium polyaspartate. In Proceedings of the 87th JECFA—Chemical and Technical Assessment (CTA), Rome, Italy, 4–13 June 2019; FAO: Rome, Italy, 2021. [Google Scholar]
- Painter, T.J. Algal Polysaccharides. In The Polysaccharides; Aspinall, G.O., Ed.; Academic Press: Cambridge, MA, USA, 1983; pp. 195–285. [Google Scholar] [CrossRef]
- Moe, S.T.; Draget, K.I.; Skjak-Braek, G.; Smidsrod, O.A. Food Polysaccharide and Application; Dekker, M., Ed.; Taylor & Francis Group, LLC: New York, NY, USA, 1995; pp. 245–286. [Google Scholar]
- Kohn, R.; Furda, I.; Haug, A.; Smidsrod, O. Binding of Calcium and potassium ions to some polyuronides and monouronates. Acta Chem. Scand. 1968, 22, 3098–3102. [Google Scholar] [CrossRef]
- Didymus, J.M.; Oliver, P.; Mann, S.; DeVries, A.L.; Hauschka, P.V.; Westbroek, P. Influence of low-molecular-weight and macromolecular organic additives on the morphology of calcium carbonate. J. Chem. Soc. Faraday Trans. 1993, 89, 2891–2900. [Google Scholar] [CrossRef]
- Perry, T.D.; Duckworth, O.W.; McNamara, C.J.; Martin, S.T.; Mitchell, R. Effects of the biologically produced polymer alginic acid on macroscopic and microscopic calcite dissolution rates. Environ. Sci. Technol. 2004, 38, 3040–3046. [Google Scholar] [CrossRef] [PubMed]
- Welch, S.A.; Barker, W.W.; Banfield, J.F. Microbial extracellular polysaccharides and plagioclase dissolution. Geochim. Cosmochim. Acta 1999, 63, 1405–1419. [Google Scholar] [CrossRef]
ΔCa (mg/L) | Instability Level |
---|---|
<15 | Stable |
15 ≤ ΔCa ≤ 25 | Slightly unstable |
>25 | Very unstable |
Density (20 °C) (g/cm3) | Alcohol Strength (% v/v) | Total Acidity (g/L Tartaric Acid) | Volatile Acidity (g/L Acetic Acid) | pH | Malic Acid (g/L) | Reducing Sugars (g/L) | Free Sulfur Dioxide (mg/L) | |
---|---|---|---|---|---|---|---|---|
WHITE WINE | ||||||||
WW1 | 0.9915 | 11.8 | 6.5 | 0.28 | 3.43 | 2.9 | ND | 28 |
WW2 | 0.9916 | 10.5 | 5.9 | 0.51 | 3.32 | 0 | ND | 6 |
WW3 | 0.9915 | 10.5 | 5.8 | 0.64 | 3.37 | 0 | ND | 6 |
WW4 | 0.9905 | 11.7 | 6.9 | 0.21 | 3.18 | 2.7 | ND | 30 |
WW5 | 0.9903 | 11.7 | 7.1 | 0.21 | 3.15 | 2.8 | ND | 13 |
WW6 | 0.9885 | 12.5 | 5.9 | 0.36 | 3.28 | 1 | ND | 33 |
WW7 | 0.9961 | 10.2 | 5.6 | 0.35 | 3.43 | 0.8 | 8.6 | 21 |
ROSÉ WINE | ||||||||
RW1 | 0.9913 | 11.2 | 7.3 | 0.22 | 3.17 | 3 | ND | 6 |
RW2 | 0.9912 | 10.6 | 5.6 | 0.34 | 3.5 | 2.2 | 2 | 10 |
RW3 | 0.9916 | 10.4 | 5.4 | 0.36 | 3.32 | 0.9 | 1.4 | 23 |
RW4 | 0.9892 | 12.3 | 5.6 | 0.41 | 3.42 | 1.5 | 1.1 | 17 |
RW5 | 0.9946 | 10.7 | 5.4 | 0.35 | 3.46 | 1 | 8 | 15 |
RED WINE | ||||||||
REW1 | 0.9972 | 10.4 | 8.7 | 0.39 | 3.31 | 4 | ND | 6 |
REW2 | 0.9974 | 9.9 | 8.7 | 0.46 | 3.27 | 2.9 | ND | 1 |
REW3 | 0.9943 | 9.9 | 7.1 | 0.82 | 3.43 | 0 | ND | 5 |
REW4 | 0.9964 | 9.5 | 7.2 | 0.38 | 3.49 | 0 | ND | 6 |
REW5 | 0.9941 | 10.3 | 7.8 | 0.2 | 3.25 | 3.5 | ND | 14 |
REW6 | 0.991 | 13.6 | 6.4 | 0.98 | 3.64 | 0.3 | ND | 15 |
REW7 | 0.9948 | 11.2 | 5.6 | 0.41 | 3.4 | 0 | 0.8 | 11 |
Wine | CCai (mg/L) | CCaf (mg/L) | Significance | ΔCa (mg/L) | Stability |
---|---|---|---|---|---|
WW1 | 74.65 ± 0.78 | 56.25 ± 2.76 | * | 18.39 ± 3.49 | Slightly unstable |
WW2 | 70.40 ± 1.84 | 49.65 ± 1.77 | ** | 20.71 ± 0.06 | Slightly unstable |
WW3 | 56.90 ± 1.70 | 45.10 ± 0.00 | ** | 11.79 ± 1.67 | Stable |
WW4 | 61.95 ± 0.50 | 61.15 ± 2.62 | NS | 0.75 ± 2.05 | Stable |
WW5 | 58.05 ± 2.90 | 62.15 ± 0.78 | NS | −4.10 ± 2.12 | Stable |
WW6 | 56.15 ± 0.64 | 48.70 ± 0.85 | NS | 7.45 ± 1.48 | Stable |
WW7 | 51.35 ± 0.21 | 49.95 ± 0.64 | NS | 1.40 ± 0.42 | Stable |
RW1 | 66.20 ± 3.81 | 57.35 ± 0.78 | NS | 8.80 ± 4.52 | Stable |
RW2 | 74.10 ± 0.71 | 42.55 ± 0.35 | *** | 31.50 ± 1.13 | Very unstable |
RW3 | 51.80 ± 1.27 | 50.85 ± 5.73 | NS | 0.99 ± 4.52 | Stable |
RW4 | 68.60 ± 2.83 | 43.10 ± 1.56 | ** | 25.47 ± 1.26 | Very unstable |
RW5 | 51.50 ± 0.85 | 44.65 ± 0.21 | ** | 6.80 ± 0.99 | Stable |
REW1 | 84.50 ± 3.25 | 54.15 ± 0.21 | ** | 30.35 ± 3.47 | Very unstable |
REW2 | 114.60 ± 7.07 | 68.40 ± 4.53 | * | 46.17 ± 11.58 | Very unstable |
REW3 | 72.93 ± 0.11 | 54.57 ± 0.79 | *** | 18.36 ± 0.90 | Slightly unstable |
REW4 | 92.84 ± 1.58 | 62.39 ± 0.40 | ** | 30.44 ± 1.97 | Very unstable |
REW5 | 72.95 ± 0.07 | 55.80 ± 0.57 | *** | 17.10 ± 0.71 | Slightly unstable |
REW6 | 45.15 ± 1.34 | 37.65 ± 1.77 | * | 7.49 ± 3.09 | Stable |
REW7 | 51.70 ± 1.41 | 51.35 ± 0.64 | NS | 0.30 ± 0.85 | Stable |
CCai (mg/L) | CCaf (mg/L) | Significance | ΔCa (mg/L) | Stability | ||
---|---|---|---|---|---|---|
WW1 | T | 68.23 ± 2.53 | 47.63 ± 0.42 | ** | 20.60 ± 2.11 a | Slightly unstable |
KPA | 65.25 ± 0.84 | 41.07 ± 3.38 | * | 24.18 ± 4.22 a | Slightly unstable | |
CMC | 66.59 ± 1.90 | 40.32 ± 1.48 | ** | 26.27 ± 0.42 a | Very unstable | |
AA | 61.81 ± 1.06 | 54.20 ± 3.38 | NS | 7.61 ± 2.32 b | Stable | |
WW2 | T | 66.73 ± 4.18 | 49.79 ± 3.52 | * | 16.94 ± 7.69 a | Slightly unstable |
KPA | 70.92 ± 1.32 | 60.04 ± 0.88 | * | 10.88 ± 0.44 a | Stable | |
CMC | 71.23 ± 2.20 | 64.55 ± 1.98 | NS | 6.68 ± 0.22 ab | Stable | |
AA | 63.77 ± 3.96 | 71.08 ± 0.66 | NS | −7.30 ± 3.30 b | Stable | |
WW3 | T | 54.45 ± 0.44 | 43.88 ± 0.00 | *** | 10.57 ± 0.44 a | Stable |
KPA | 66.26 ± 3.52 | 67.81 ± 0.44 | NS | −1.55 ± 3.08 b | Stable | |
CMC | 68.12 ± 2.20 | 64.86 ± 0.66 | NS | 3.26 ± 2.86 abc | Stable | |
AA | 62.38 ± 0.66 | 62.06 ± 0.66 | NS | 0.31 ± 1.32 bc | Stable |
CCai (mg/L) | CCaf (mg/L) | Significance | ΔCa (mg/L) | Stability | ||
---|---|---|---|---|---|---|
RW3 | T | 50.10 ± 1.76 | 51.96 ± 0.44 | NS | −1.87 ± 1.32 a | Stable |
KPA | 50.88 ± 0.66 | 61.91 ± 4.39 | NS | −11.03 ± 3.74 ab | Stable | |
CMC | 48.70 ± 1.98 | 64.40 ± 3.08 | * | −15.69 ± 1.10 b | Stable | |
AA | 47.15 ± 3.30 | 61.44 ± 0.66 | * | −14.30 ± 2.64 b | Stable | |
RW4 | T | 66.26 ± 0.44 | 46.06 ± 0.00 | *** | 20.20 ± 0.44 a | Slightly unstable |
KPA | 66.42 ± 0.66 | 57.40 ± 1.10 | ** | 9.01 ± 1.76 b | Stable | |
CMC | 60.98 ± 0.44 | 52.90 ± 1.32 | * | 8.08 ± 0.88 b | Stable | |
AA | 60.36 ± 0.44 | 57.87 ± 0.44 | NS | 2.49 ± 0.88 c | Stable |
CCai (mg/L) | CCaf (mg/L) | Significance | ΔCa (mg/L) | Stability | ||
---|---|---|---|---|---|---|
REW2 | T | 104.80 ± 6.97 | 65.39 ± 4.43 | * | 39.40 ± 2.53 a | Very unstable |
KPA | 93.90 ± 1.27 | 68.23 ± 1.69 | ** | 25.67 ± 2.96 a | Very unstable | |
CMC | 93.60 ± 2.96 | 70.17 ± 1.06 | ** | 23.43 ± 4.01 a | Slightly unstable | |
AA | 98.08 ± 1.69 | 77.78 ± 5.91 | * | 20.30 ± 7.60 a | Slightly unstable | |
REW3 | T | 80.62 ± 0.21 | 54.95 ± 1.48 | ** | 25.67 ± 1.69 a | Very unstable |
KPA | 81.66 ± 1.27 | 55.10 ± 3.38 | ** | 26.57 ± 4.64 a | Very unstable | |
CMC | 81.81 ± 1.90 | 50.17 ± 1.06 | ** | 31.64 ± 2.96 a | Very unstable | |
AA | 78.23 ± 1.06 | 56.74 ± 0.21 | NS | 21.49 ± 0.84 a | Slightly unstable | |
REW4 | T | 57.04 ± 2.74 | 56.29 ± 1.69 | NS | 0.75 ± 1.06 a | Stable |
KPA | 60.02 ± 1.90 | 54.35 ± 1.06 | NS | 5.67 ± 2.96 a | Stable | |
CMC | 59.42 ± 1.06 | 60.02 ± 3.17 | NS | −0.60 ± 2.11 a | Stable | |
AA | 63.45 ± 0.42 | 58.53 ± 3.17 | NS | 4.93 ± 2.74 a | Stable | |
REW6 | T | 41.22 ± 0.21 | 37.48 ± 2.11 | NS | 3.73 ± 1.90 a | Stable |
KPA | 42.26 ± 2.11 | 36.89 ± 0.42 | * | 5.37 ± 2.53 a | Stable | |
CMC | 40.17 ± 0.42 | 35.69 ± 0.42 | * | 4.48 ± 0.00 a | Stable | |
AA | 38.68 ± 2.11 | 37.93 ± 0.21 | NS | 0.75 ± 2.32 a | Stable |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cosme, F.; Filipe-Ribeiro, L.; Coixão, A.; Bezerra, M.; Nunes, F.M. Efficiency of Alginic Acid, Sodium Carboxymethylcellulose, and Potassium Polyaspartate as Calcium Tartrate Stabilizers in Wines. Foods 2024, 13, 1880. https://doi.org/10.3390/foods13121880
Cosme F, Filipe-Ribeiro L, Coixão A, Bezerra M, Nunes FM. Efficiency of Alginic Acid, Sodium Carboxymethylcellulose, and Potassium Polyaspartate as Calcium Tartrate Stabilizers in Wines. Foods. 2024; 13(12):1880. https://doi.org/10.3390/foods13121880
Chicago/Turabian StyleCosme, Fernanda, Luís Filipe-Ribeiro, Ana Coixão, Mário Bezerra, and Fernando M. Nunes. 2024. "Efficiency of Alginic Acid, Sodium Carboxymethylcellulose, and Potassium Polyaspartate as Calcium Tartrate Stabilizers in Wines" Foods 13, no. 12: 1880. https://doi.org/10.3390/foods13121880
APA StyleCosme, F., Filipe-Ribeiro, L., Coixão, A., Bezerra, M., & Nunes, F. M. (2024). Efficiency of Alginic Acid, Sodium Carboxymethylcellulose, and Potassium Polyaspartate as Calcium Tartrate Stabilizers in Wines. Foods, 13(12), 1880. https://doi.org/10.3390/foods13121880