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Abstract: Raman spectroscopy for rapid identification of foodborne pathogens based on phenotype
has attracted increasing attention, and the reliability of the Raman fingerprint database through
genotypic determination is crucial. In the research, the classification model of four foodborne
pathogens was established based on t-distributed stochastic neighbor embedding (t-SNE) and support
vector machine (SVM); the recognition accuracy was 97.04%. The target bacteria named by the model
were ejected through Raman-activated cell ejection (RACE), and then single-cell genomic DNA was
amplified for species analysis. The accuracy of correct matches between the predicted phenotype
and the actual genotype of the target cells was at least 83.3%. Furthermore, all anticipant sequencing
results brought into correspondence with the species were predicted through the model. In sum, the
Raman fingerprint database based on Raman spectroscopy combined with machine learning was
reliable and promising in the field of rapid detection of foodborne pathogens.

Keywords: foodborne pathogen; phenotype; Raman-activated cell ejection; sequencing; genotype

1. Introduction

Foodborne diseases caused by the consumption of food and water infected with
pathogens are one of the biggest challenges faced by human health [1,2]. Conventional
microbial detection strategies involve the gold standard (biochemical analysis), nucleic
acid-based assays (polymerase chain reaction, PCR) and immunological methods (enzyme-
linked immunosorbent assay, ELISA), etc. These methods are time-consuming and labo-
rious because they require a lengthy bacterial enrichment process [3,4]. Therefore, the
development of more sensitive methods to rapidly diagnose pathogens at an early stage of
contaminated food is essential to ensure food safety.

Raman spectroscopy with high spatial resolution and non-invasive capabilities can
realize the detection of food-borne pathogens at a single-cell level without pre-enrichment
of bacteria in food samples. Raman spectroscopy enables rapid acquisition of comprehen-
sive information on nearly all chemical elements within a single cell in second [5]. The
integration of these data is known as single-cell Raman spectra (SCRS), and is used to reveal
the phenotypic characteristics and physiological metabolic differences among diverse mi-
croorganisms [6]. Furthermore, the combination of SCRS and appropriate machine learning
methods can effectively overcome the spectral limitations caused by weak signals, low
signal-to-noise ratios (SNR), complex information, and highly similar data [7]. Therefore,
Raman spectroscopy has been successfully applied to the research of individual bacteria in
the environment [8,9], clinic [10,11], food [12] and intestinal tract [13]. Much of the recent
research demonstrated that the Raman fingerprint database can distinguish foodborne
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pathogens of different species, serotypes, growth cycles and nutritional statuses [14,15].
It is worth noting that the recognition program was based solely on artificial intelligence
(AI) predictions and has not been further validated through biological strategies. To evalu-
ate the effectiveness of the established database for recognizing foodborne pathogens in
multiple pooled samples, the following procedures should be performed: (i) Phenotype
analysis, and the classification models should be explored based on SCRS of different
strains. (ii) Investigations into how to gain an interested single bacterium. (iii) After ampli-
fication of genomic DNA and sequencing of the target bacteria, judgement of whether the
phenotype and genotype match.

The most crucial point in the above processes is the acquisition of marked single cells
from complex microbial communities. Raman-activated cell ejection (RACE) based on
the principle of laser-induced forward transfer (LIFT) can separate target bacteria from
glass slides with aluminum layers by means of a pulsed laser, to overcome one of the
most momentous parts of biological strategy. The procedure of LIFT was normally very
fast on account of small objects being transferred through a pulsed laser. Furthermore,
the heat generated by the pulse laser of appropriate power was extremely limited; it was
almost harmless to cells [16]. So far, RACE has been applied to investigate the genome
and metabolic mechanism of microorganisms from oral cavity [17], soil [18], ocean [19],
intestinal tract [20] and so on. Therefore, RACE has tremendous untapped potential in the
field of rapid identification for foodborne pathogens.

In this study, a Raman fingerprint database of diversiform foodborne pathogens was
created. Predictions were made based on the database for stochastically selected single cells
in the mixed bacterial sample. These marked cells were subsequently sorted one by one
through RACE. The target bacteria for amplification of genomic DNA were designated prior
to sequencing. Finally, the results of upstream prediction were compared with downstream
sequencing to validate the accuracy of the discernment model, thus indicating that the
database established is to be endowed with biological significance.

2. Material and Methods
2.1. Bacterial Culture and Sample Preparation

Four foodborne pathogens were obtained from the American Type Culture Collection
(ATCC, Manassas, VA, USA). Escherichia coli O157:H7 (E. coli ATCC 43895), Vibrio para-
haemolyticus (V. parahaemolyticus, ATCC 33847), Listeria monocytogenes (L. monocytogenes,
ATCC 19115) and Staphylococcus aureus (S. aureus, ATCC 29213), stored in −80 ◦C and 25%
glycerin were cultivated in a stationary growth phase at 37 ◦C in nutrient broth. Next, 1 mL
of bacterial culture was centrifuged in a refrigerated centrifuge at 6000 rpm for 3 min; the
bacterial sediment was washed with sterile deionized water at least three times to remove
residual media and impurities after discarding the supernatant. The 2 µL of each specimen
suspension at the appropriate concentration was pipetted onto the sorting chip and allowed
to dry in a sterile operating table for the arrangement of capturing SCRS. For each sample,
three separate lots were afforded.

2.2. Single-Cell Raman Spectra Acquisition

The chip involving the bacterial samples was located at the XYZ platform of the Raman
spectroscopy system equipped with a 100× objective (P300, HOOKE Instruments Ltd.,
Changchun, China). The integration of a 532 nm neodymium-yttrium aluminum garnet
(Nd:YAG) laser and 1200 groove/mm diffraction grating for receiving SCRS after silicon
wafer standardization, and the air-cooled charge coupled detector (CCD) of −75 ◦C caused
low signal-to-noise spectra to restore the original information of the sample. The laser
power and irradiation time for each spectrum were 3 mW and 1 s, respectively, and only
one cumulative acquisition was executed. All spectra ranges were distributed between
400 cm−1 and 2000 cm−1. For each strain, approximately 200 single cells were randomly
selected for SCRS registration to construct subsequent classification models.
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2.3. Data Preprocessing and Analysis

The standardized preprocessing of raw spectral data was the first critical routine
for establishing an anticipant model, which cannot only calibrate physical interferences
caused by sample thickness, experimental batches, random instrument noise and laser
optical paths, but also weaken the influence of the signal generated by irrelevant chemical
components. All original spectra obtained were subjected to a uniform preprocessing
procedure, which comprises the elimination of abnormal high-intensity spectra, the sub-
traction of background signal, removal of cosmic rays, polynomial baseline correction,
smoothing and normalization [21]. Then, in order to facilitate the analysis, management
and generalization of the pretreatment data, dimensionality-reduction algorithms that can
transform high-dimensional into low-dimensional data were the second critical routine
for an ideal categorizer. As a nonlinear dimensionality-reduction approach, t-distributed
stochastic neighbor embedding (t-SNE) can filtrate and extract the most representative
characteristics from high-dimensional data with thousands of features, and is capable of
guaranteeing the rationality of fitting results [22]. Three supervised arithmetics based on
the scikit-learn algorithm package (Python, version 3.7.2) were utilized, involving support
vector machine (SVM), K nearest neighbor (KNN) and linear discriminant analysis (LDA).
The optimal classifier was yielded through 10-fold cross-validation, confusion matrix and
receiver operating characteristic curve (ROC curve).

2.4. Identification and Ejection of Bacteria with Unknown Tags

Equal amounts of four washed foodborne pathogen suspensions were mixed in a
sterile EP tube and vortexed thoroughly. A 2 µL amount of multicomponent sample was
placed at the specific position of the sorting chip, and then air-dried in a laminar airflow
chamber. The aluminum-coated single-cell ejection chip resembled a two-dimensional
rectangular coordinate and was divided into four regions, each of which was marked with
a special shape to facilitate the localization of the target bacteria (Figure 1(i)). The Raman
spectrum of each randomly picked cell was then recorded, and the SCRS of these unknown
groups was recognized by well-established classifiers, while the coordinates of the above
familiarized cells were registered for further sorting [23].
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Figure 1. The scheme of validation for Raman fingerprint database of foodborne pathogens based
on RACE.

The chip was inverted and immobilized on a single-cell separation device equipped
with a 532 nm Nd:YAG laser, 10× objective and CCD imaging system (PRECI SCS, HOOKE
Instruments Ltd., Beijing, China). Based on the marked coordinates, the laser pulse capable
of passing through the transparent glass substrate of the chip was focused on the coating to
vaporize the layer (Figure 1(ii)); 10 cells identified as the same label were completely sorted
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into a collector already filled with cell lysis buffer (Qiagen, Hilden, Germany). Five groups
were repeated for each strain.

2.5. Amplification of Genomic DNA and Sequencing

Using a REPLI-g Single Cell Kit (Qiagen, Germany), the femtogram-level DNA in
the collector was high-quality amplified to a microgram level for sequencing through
multiple displacement amplification (MDA) [23]. Briefly following the procedure of the
kit (Figure 1(iii)), all collectors arranged in sterile petri dishes were repeatedly frozen and
thawed at −80 ◦C to accomplish as much lysis as possible of the target bacteria. Adaptable
collectors were docked to PCR tubes and centrifuged to harvest target bacteria containing
lysates. The PCR tubes were heated in a thermal cycler at 65 ◦C for 10 min. A 3 µL amount
of stop solution and 40 µL of crucial operating solution (including reaction buffer and DNA
polymerase) were added to the tubes. The commixture was constantly incubated at 30 ◦C
for 8 h before inactivating DNA polymerase at 65 ◦C for 3 min. Amplification products of
genomic DNA were stored at −20 ◦C for further downstream sequencing.

The quality of amplification products was appraised by PCR and visualized agarose
gels. Two pairs of universal primers involved 27F (5′-AGAGTTTGATCCTGGCTCAG-
3′)/1429R (5′-TACGGCTACCTTGTTACGACTT-3′) and 341F (5′-ACTCCTACGGGAGGC
AGCAG-3′)/806R (5′-GGACTAVHVGGGTWTCTAAT-3′) for the bacterial 16S rRNA gene
amplification. Amplification products with specific visible bands in agarose gels were
subjected to Sanger sequencing (Sangon Biotech Co., Ltd., Shanghai, China) and Illumina
sequencing, respectively. DNA sequences obtained from the former were matched through
Blast of NCBI, while the latter was based on the Illumina MiSeq PE300 platform (Major-
bio Bio-Pharm Technology Co., Ltd., Shanghai, China) for microbial diversity analysis
(Figure 1(iv)) [24]. The sequence was stored in FASTQ format. De-hybridized double-
ended sequences were preprocessed using FLASH software (Version 1.2.11). The aligned
reads were clustered into operational taxonomic units (OTUs) by Usearch (Version 11)
with a sequence similarity threshold of ≥97%. Based on the Silva 16S rRNA database,
taxonomic information of the OTUs was undertaken by the Quantitative Insights Into
Microbial Ecology (QIIME) software (version 1.9.1). According to the results of taxonomic
analysis, the species composition of different samples at different taxonomic levels was
obtained to reveal the genotype of unknown target bacteria.

The products without specific visible bands were subjected to metagenomics sequenc-
ing [25]. Briefly, genomic DNA samples were sheared into 400–500 bp fragments using
a Covaris M220 (Gene Company Limited, Hong Kong, China). Illumina sequencing li-
braries were prepared using NEXTFLEX™ Rapid DNA-Seq (Bioo Scientific, Austin, TX,
USA). Paired-end DNA sequencing was performed on the Illumina Novaseq6000 (Illu-
mina, San Diego, CA, USA) platform at the Majorbio (Majorbio Bio-Pharm Technology Co.,
Ltd., China).

3. Results and Discussion
3.1. SCRS of Foodborne Pathogens

SCRS with the thousands of peaks and valleys was a visual representation that revealed
the molecular fingerprints of the chemical constituents from an intact cell. In order to escape
potential laser-induced damage to bacteria as much as possible, 200 SCRS of each strain
were, respectively, captured by dint of weaker laser power and shorter exposure time. The
conspicuous painted lines in Figure 2 manifested the average SCRS of the four strains,
and the major spectral signatures between multifarious species were extremely similar; it
was almost impossible to distinguish these spectra through observation. Furthermore, the
milder acquisition conditions observably reduced the SNR of SCRS (distributed between
3 and 6 in Figure S1), which generated more small thorns and noise, and enhanced the
difficulty of spectral discernment.
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However, as an aggregation of different molecular vibration information, each band
in SCRS has a corresponding molecular assignment decipherment, which can be applied
to find out the potential reasons for the deviations between different species through
statistical analysis. As we all know, the cell walls of Gram-positive bacteria (G+) contain
more peptidoglycan and teichoic acid than those of Gram-negative bacteria (G−). Previous
research has demonstrated that 540 cm−1 and 1421 cm−1 were assigned to the visible
peaks of peptidoglycan, and 1087 cm−1 was assigned to the typical band of teichoic acid
(Figure 2) [26]. As shown in Figure 3, the Raman response values of four foodborne
pathogens at 540 cm−1, 1087 cm−1 and 1421 cm−1 were statistically analyzed and t-test was
performed. Regardless of which of the three peaks was addressed, G+ exhibited stronger
intensities compared to G−. L. monocytogenes revealed obvious spectral signals contrasted
with both of the G−, while S. aureus exhibited significant intensities at 1087 cm−1 and
1421 cm−1 compared to E. coli, which was consistent with previous research findings [24].
Specific peak analysis may capacitate the authentication of G+ and G−, but for investigation
of finer distinctions, it is necessary to filter the mutual characteristics among different
strains and excavate subtle difference features for the discernment of foodborne pathogens
through AI algorithms [27].

3.2. Classification Models for Recognition of Foodborne Pathogens

It is critical to investigate the most suitable one for divination of foodborne pathogens
among a wide range of machine learning approaches. The t-SNE algorithm was devoted to
nonlinearly mapping the high-dimensional data of 800 spectra from the 4 strains into the
low-dimensional space, so that the global and internal structure information of critical data
in the low-dimensional space was as similar as possible to the data features in the high-
dimensional space. The tactic of 10-fold cross validation, which can evaluate the ability
of classification systems to predict new datasets, was applied to assess the categorization
performances of SVM, KNN and LDA. Larger numbers and darker purple exhibited higher
distinction accuracy on the diagonal in the confusion matrix (Figure 4). The highest identifi-
cation accuracy of SVM for 4 strains was 97.43%, which surpassed the recognition accuracy
of 86.23% for 23 strains in our previous research [12]. There was a slight misrecognition
between E. coli and L. monocytogenes in the confusion matrix of SVM, which was potentially
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attributed to their morphological similarities. The accuracies of LDA and KNN for the
identification of 4 strains were 86.95% and 60.28%, respectively. Both categorizers mis-
classified numerous E. coli as V. parahaemolyticus, which may be related to their analogous
composition derived from G−. KNN displayed diminished performance that erroneously
discerned plentiful V. parahaemolyticus and L. monocytogenes as other strains, which can
probably be ascribed to the lack of loss function for feature weight self-adjustment [28].
In addition, the values of micro-average, macro-average and sample dimension in the
ROC curves of SVM were approximate to 1, higher than those values in the ROC curves
of KNN and LDA (Figure S2). This evidenced that SVM was equipped with the optimal
performance for further prediction of unknown strains in multiple pooled samples.
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3.3. Examination of Single Cells’ Sorting Efficiency

To ensure that each sorted single cell was accurately received by the receptor, the
ejection efficiency of the sorter, the receiving usefulness of the collector and the stability
of the instrument were executed in detail. E. coli, as the patterned strain, was distributed
on the chip, and 50 individually dispersed E. coli were sorted into the identical receiving
unit each time (Figure S3a). Firstly, the detachments of the interested E. coli at the ejection
chip locations were observed to appraise the sorting efficiency (Figure S3b). Subsequently,
the number of sorted E. coli contained in the receiver was enumerated under a microscope
to inquire into the receiving efficiency (Figure S3c,d). Finally, the constancy of the entire
procedure was validated by multiple dates.
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Based on plenty of repeated verifications, the success rates of ejection and reception
were 99.56 ± 0.88% and 90.88 ± 4.13%, respectively. Figure 5 manifested that single cells
captured from the chip had excellent reproducibility and competence, which probably
gave the credit to the appropriate sorting laser and effortless vaporization of the thin layer.
Notably, the lowest success rate for receiving was only 84%, indicating that there was still a
possibility of not collecting the target single cells. On the one hand, ocular calculation of
individual bacteria in the receiver perhaps omitted some unimpressive cells. On the other
hand, even though the distance between the collector and the sorting chip was extremely
tiny, it is possible that the target bacteria were indeed not launched into the receiver due to
the disturbance of the air flow. Therefore, despite having the upper hand in arresting the
target single cells, the absolute cleanliness and steadiness of the implement circumstances
were guaranteed as far as possible during the single-cell sorting operation to prevent the
negligence of bacteria of interest.

Foods 2024, 13, 1886 8 of 13 
 

 

 
Figure 5. Statistics on the success rates of ejection and reception for target bacteria based on RACE. 
Each ring is an individual test. 

3.4. Recognition of Target Bacteria through RACE 
The single cells with unknown species in the impure sample were investigated ac-

cording to the procedure shown in Figure 1. Four types of foodborne pathogens were 
blended at equal magnitudes and dispersed on a sorting chip (Figure S4), in which an 
individual bacterium was randomly checked to collect SCRS for species prediction. Based 
on the constructed recognition model, the pathogens assigned labels were sorted for am-
plification of genomic DNA, and then genome sequencing was performed to judge 
whether the pathogens identified through AI model were correct. The specific bright 
bands in the gel electrophoresis images of 16S rRNA PCR using 27F and 1492R primers 
are shown in Figure S5, which complied with the requirements of Sanger sequencing for 
strain identification. The desired bright bands appeared in only 12 out of 20 groups. For 
one thing, this may involve the incomplete DNA of the target bacteria due to the damage 
caused by the laser to single cells. For another thing, it may also be related to the amplifi-
cation bias during the MDA. Concerning the 12 bright bands including 4 from E. coli, 4 
from V. parahaemolyticus, 3 from L. monocytogenes and 1 from S. aureus, the PCR amplifica-
tion success rates of the genome from G− were much higher than those of G+. G− involving 
more peptidoglycans and teichoic acid in the cell wall was more resistant to laser exposure 
than G+, which may be associated with the resistance mechanism of G+ and G− to antibiot-
ics and fungicides [29,30]. Moreover, Sanger sequencing was used to acquire the se-
quences of 12 amplified products, which were searched through NCBI to obtain the prac-
tical labels of the strains for alignment with previous predicted species. Ten among the 12 
groups were matched correctly (Table 1), and the accuracy was 83.3% in the validation of 
upstream prediction and downstream sequencing, among which the comparison accura-
cies of E. coli, V. parahaemolyticus and S. aureus were 100%. Two of the three groups from 
L. monocytogenes mismatched, and the sequencing results revealed Micrococcus luteus and 
Cutibacterium acnes, respectively. This may be closely related to contamination from exter-
nal sources during the single-cell amplification, as these microorganisms are frequently 
present on the skin surface and in the air [31]. 

  

Figure 5. Statistics on the success rates of ejection and reception for target bacteria based on RACE.
Each ring is an individual test.



Foods 2024, 13, 1886 8 of 13

3.4. Recognition of Target Bacteria through RACE

The single cells with unknown species in the impure sample were investigated ac-
cording to the procedure shown in Figure 1. Four types of foodborne pathogens were
blended at equal magnitudes and dispersed on a sorting chip (Figure S4), in which an
individual bacterium was randomly checked to collect SCRS for species prediction. Based
on the constructed recognition model, the pathogens assigned labels were sorted for ampli-
fication of genomic DNA, and then genome sequencing was performed to judge whether
the pathogens identified through AI model were correct. The specific bright bands in the
gel electrophoresis images of 16S rRNA PCR using 27F and 1492R primers are shown in
Figure S5, which complied with the requirements of Sanger sequencing for strain identi-
fication. The desired bright bands appeared in only 12 out of 20 groups. For one thing,
this may involve the incomplete DNA of the target bacteria due to the damage caused
by the laser to single cells. For another thing, it may also be related to the amplification
bias during the MDA. Concerning the 12 bright bands including 4 from E. coli, 4 from
V. parahaemolyticus, 3 from L. monocytogenes and 1 from S. aureus, the PCR amplification suc-
cess rates of the genome from G− were much higher than those of G+. G− involving more
peptidoglycans and teichoic acid in the cell wall was more resistant to laser exposure than
G+, which may be associated with the resistance mechanism of G+ and G− to antibiotics
and fungicides [29,30]. Moreover, Sanger sequencing was used to acquire the sequences of
12 amplified products, which were searched through NCBI to obtain the practical labels
of the strains for alignment with previous predicted species. Ten among the 12 groups
were matched correctly (Table 1), and the accuracy was 83.3% in the validation of upstream
prediction and downstream sequencing, among which the comparison accuracies of E. coli,
V. parahaemolyticus and S. aureus were 100%. Two of the three groups from L. monocytogenes
mismatched, and the sequencing results revealed Micrococcus luteus and Cutibacterium acnes,
respectively. This may be closely related to contamination from external sources during
the single-cell amplification, as these microorganisms are frequently present on the skin
surface and in the air [31].

Table 1. Comparison of upstream prediction and downstream sequencing of single cells sorted from
12 groups from four foodborne pathogens.

Samples Prediction Results of
Machine Learning

Blast Sequence after
Sanger Sequencing

Diversity Analysis by
Illumina Sequencing

2 E. coli E. coli Escherichia
3 E. coli E. coli Escherichia
4 E. coli E. coli Escherichia
5 E. coli E.coli Escherichia
6 V. parahaemolyticus V. parahaemolyticus Vibrio
7 V. parahaemolyticus V. parahaemolyticus Vibrio
8 V. parahaemolyticus V. parahaemolyticus Vibrio
10 V. parahaemolyticus V. parahaemolyticus Vibrio
12 L. monocytogenes Micrococcus luteus Micrococcus
13 L. monocytogenes Cutibacterium acnes Cutibacterium
14 L. monocytogenes L. monocytogenes Listeria
16 S. aureus S. aureus Staphylococcus

Since each collector contained 10 bacteria predicted to be of the same species, the few
proportions of non-target DNA may not be exhibited by Sanger sequencing due to the
existence of rare prediction errors, and the detailed species populations of the amplified
genome were resolved through diversity analysis of Illumina sequencing. Sample groups
showing specific bright bands in the gel electrophoresis images of 16S rRNA PCR using
341F and 806R primers were completely consistent with 16S rRNA PCR using the full-length
primers, indicating that the genomes of eight groups without bright bands were damaged
(Figure 6). The diversity analysis consequences were exactly the same as the Sanger
sequencing (Figure S6 and Table 1), and the phenotypes forecasted by the algorithm were
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identical to the genotypes through sequencing. These results displayed that the approach of
sequencing after RACE was feasible for the genetic dissection of target bacteria in complex
communities. Notably, the abundances of the two mismatched samples including 12 and
13 were uncorrelated with the original species, which might be attributed to exogenous
contamination during MDA. Cutibacterium acnes, Micrococcus luteus and Malassezia are
usually considered normal inhabitants of human skin. Studies have shown that these
organisms were present in the dermis of their skin from patients undergoing shoulder
surgery despite strict and standard disinfection measures, including epidermal alcohol
rubbing and intravenous antibiotic administration [32,33]. Although single-cell sorting
and MDA were completed in the sterile laminar flow chamber and thoroughly treated
with 75% alcohol and RNase removal spray, they was still affected by environmental
and human microbiota when the collector was removed due to the highly sensitive DNA
amplification pathway. MDA strategies are highly sensitive to contamination due to the
low DNA amounts of individual bacteria. Pre-sterilization of the reagent does not protect
against endogenous/exogenous contaminants, which become more amplified in larger
MDA reaction volumes due to reduced polymerase specificity. Performing MDA methods
with smaller reaction volumes may be an effective way to reduce amplification bias and
contamination [34].

Foods 2024, 13, 1886 10 of 13 
 

 

 
Figure 6. Comparison of upstream predicted phenotypes based on classification model and down-
stream genotypes based on genome sequencing. High-quality amplification products of genomic 
DNA represent the specific bright bands in the gel electrophoresis images of 16S rRNA PCR prod-
ucts from post-RACE cells using primers pair 341F and 806R. Lanes 1 to 5 were E. coli, lanes 6 to 10 
were V. parahaemolyticus, lanes 11 to 15 were L. monocytogenes, lanes 16 to 20 were S. aureus, lane N 
and lane M were negative control and marker, respectively. 

Although lasers play an important role in advanced biological imaging and Raman 
spectroscopy, their widespread application was restrained on account of destructive ef-
fects on living organisms [35]. Whether SCRS collection or sorting of single cells, the laser 
beam used will be focused on the target cells, which greatly increases the risk of damage 
to the research object. A sperm cell membrane could be damaged under the irradiation at 
30 mW laser power, but when the laser power is less than 15 mW, the chemical fingerprint 
information of a single live human sperm can be obtained [36]. With a laser power of 3 
mW and acquisition time of 10 s, a collector containing five E. coli could generate matching 
sequencing results [37]. Therefore, the phenomenon of PCR gel electrophoresis images 
lacking expected bright bands under milder conditions still existed in the research. The 
comprehensive microbial communities of these false negative samples, especially G+, were 
further explored through metagenome sequencing to find the inherent factors (Figure 7). 
Although sample 15 represented L. monocytogenes, the actual microflora certified by met-
agenomic sequencing was comprised of 88% Capnocytophaga, 8% Cutibacterium, 2% Macaca 
and 2% others. As one of the thousands of resident microbial communities in the oral cav-
ity, the relatively high proportions of Capnocytophaga in the sample manifested that the 
genome was observably contaminated [38]. S. aureus and the other three strains accounted 
for 76% and 0% of sample 17, respectively, proving that the classification model did not 
have misprediction. While there were no bright bands in the PCR gel electrophoresis im-
ages of the two pairs of primers in some groups, it is possible that the false-negative sam-
ples supported the predictions of the discernment model. Therefore, the alignment accu-
racy of upstream prediction and downstream sequencing was at least 83.3%, and the iden-
tification of foodborne pathogens by Raman spectroscopy based on machine learning was 
reliable. 

Figure 6. Comparison of upstream predicted phenotypes based on classification model and down-
stream genotypes based on genome sequencing. High-quality amplification products of genomic
DNA represent the specific bright bands in the gel electrophoresis images of 16S rRNA PCR products
from post-RACE cells using primers pair 341F and 806R. Lanes 1 to 5 were E. coli, lanes 6 to 10 were
V. parahaemolyticus, lanes 11 to 15 were L. monocytogenes, lanes 16 to 20 were S. aureus, lane N and lane
M were negative control and marker, respectively.

Although lasers play an important role in advanced biological imaging and Raman
spectroscopy, their widespread application was restrained on account of destructive effects
on living organisms [35]. Whether SCRS collection or sorting of single cells, the laser beam
used will be focused on the target cells, which greatly increases the risk of damage to
the research object. A sperm cell membrane could be damaged under the irradiation at
30 mW laser power, but when the laser power is less than 15 mW, the chemical fingerprint
information of a single live human sperm can be obtained [36]. With a laser power of 3 mW
and acquisition time of 10 s, a collector containing five E. coli could generate matching
sequencing results [37]. Therefore, the phenomenon of PCR gel electrophoresis images
lacking expected bright bands under milder conditions still existed in the research. The
comprehensive microbial communities of these false negative samples, especially G+, were
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further explored through metagenome sequencing to find the inherent factors (Figure 7).
Although sample 15 represented L. monocytogenes, the actual microflora certified by metage-
nomic sequencing was comprised of 88% Capnocytophaga, 8% Cutibacterium, 2% Macaca and
2% others. As one of the thousands of resident microbial communities in the oral cavity,
the relatively high proportions of Capnocytophaga in the sample manifested that the genome
was observably contaminated [38]. S. aureus and the other three strains accounted for
76% and 0% of sample 17, respectively, proving that the classification model did not have
misprediction. While there were no bright bands in the PCR gel electrophoresis images
of the two pairs of primers in some groups, it is possible that the false-negative samples
supported the predictions of the discernment model. Therefore, the alignment accuracy of
upstream prediction and downstream sequencing was at least 83.3%, and the identification
of foodborne pathogens by Raman spectroscopy based on machine learning was reliable.
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Raman spectroscopy has great potential for rapid detection of foodborne pathogens;
optimizing laser power and irradiation time may be an effective strategy for deciphering
single cells based on RACE. However, the weakening of the SCRS collection conditions
signified that the SNR of the obtained spectra was low, and the Raman features would
become less distinct, which was unfavorable for the establishment of classification models
and the discernment of target single cells in complex communities. In the future, the
structure of the sorting chip will be redesigned and more appropriate pathways will
be invented to decrease laser side-effects for individual cells [39–41]. Furthermore, the
optimized amplification scheme of genomic DNA from single bacteria can be used to
reduce the significant non-specificity and bias that often exist during amplification, and
improve the amplification efficiency and coverage of the genome [37].
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4. Conclusions

In summary, the single-cell phenotype and genotype were linked employing RACE,
and the constructed Raman fingerprint database of foodborne pathogens was verified
through single-cell genomic DNA amplification and sequencing. The classification model
of four foodborne pathogens was established based on the t-SNE-SVM algorithm. The
target bacteria named by the model were sorted through RACE. The predicted phenotypes
were consistent with the results of single-cell genome sequencing, which demonstrated that
the Raman fingerprint database was promising for the detection of foodborne pathogens
at the single-cell level. Moreover, rapid, non-destructive and highly sensitive Raman
spectroscopy has the potential to be applied to the rapid diagnosis of foodborne pathogens
in food contamination to ensure food safety.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/foods13121886/s1. Figure S1. Signal-to-noise ratio of single-cell Raman
spectra from four foodborne pathogens; Figure S2. The area under the curve of the ROC displaying the
reliability of the three machine learning models in distinguishing each strain; Figure S3. Examination
of ejection efficiency for target single cells based on Raman-activated cell ejection (RACE); Figure S4.
Morphology of different strains on sorting chip; Figure S5: The gel electrophoresis images of 16S
rRNA PCR products from post-RACE cells using primers pair 27F and 1492R; Figure S6. Bacterial
community of high-quality amplification products of genomic DNA at the genus levels.
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