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Abstract: Against the backdrop of continuous socio-economic development, there is a growing
concern among people about food quality and safety. Individuals are increasingly realizing the critical
importance of healthy eating for bodily health; hence the continuous rise in demand for detecting food
pollution. Simultaneously, the rapid expansion of global food trade has made people’s pursuit of high-
quality food more urgent. However, traditional methods of food analysis have certain limitations,
mainly manifested in the high degree of reliance on personal subjective judgment for assessing food
quality. In this context, the emergence of artificial intelligence and biosensors has provided new
possibilities for the evaluation of food quality. This paper proposes a comprehensive approach that
involves aggregating data relevant to food quality indices and developing corresponding evaluation
models to highlight the effectiveness and comprehensiveness of artificial intelligence and biosensors
in food quality evaluation. The potential prospects and challenges of this method in the field of food
safety are comprehensively discussed, aiming to provide valuable references for future research and
practice.
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1. Introduction

In the contemporary food industry, globalization and technological advancement are
driving the increasing demand for food safety and quality among consumers [1]. This
trend becomes particularly significant under rapid economic and social development, with
a growing concern for individual health issues. Food safety, as an indispensable element in
safeguarding human health, has garnered widespread attention, encompassing the physical
properties, nutritional value, and preventive measures of food [2]. Meanwhile, the rapid
growth in food trade has made high-quality food a key factor in market competition [3].
However, food is a complex entity composed of multiple components, making comprehen-
sive quality and safety assessment crucial [4]. Currently, the applicability and completeness
of food safety assessment have not been fully established, lacking corresponding risk as-
sessment systems and technological frameworks [5]. Moreover, the assessment methods
are cumbersome, time-consuming, and costly, with subjective biases and insufficient sci-
entific bases, making large-scale food quality monitoring and assessment impractical [6].
Therefore, to ensure food quality and safety, continuous monitoring of product quality
characteristics during transportation and storage is paramount. One method for food safety
prevention is to utilize conventional technologies to detect food quality during transporta-
tion, such as chromatography [7], ultraviolet detection [8], or fluorescence techniques [9],
combined with separation techniques [10]. However, these analytical methods have limita-
tions. Since these analyses are performed post-production, they may lead to contaminated
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food already entering the market. Moreover, they are labor-intensive, intricate, and costly,
demanding a substantial number of samples and proficient operators.

In this context, biosensors, as rapid, sensitive, and highly specific analytical devices,
offer new possibilities for addressing food safety issues. Biological sensors in the food indus-
try can be analogized to infrared photodetectors [11], audiovisual photodetectors [12], syn-
ergistic graphene photodetectors [13], potential fluctuation engineering-enhanced graphene
photodetectors [14], and ultra-high-gain short-wave infrared detectors [15] used in the
fields of communication and detection. These photodetectors enhance information acquisi-
tion and processing in communication and detection. Similarly, biological sensors in the
food industry, through real-time monitoring and precise analysis, enhance food safety and
quality control. Biosensors utilize biological receptors (such as enzymes, antibodies, etc.)
combined with sensors to generate measurable signals through specific physicochemical
transformations, thereby determining the molecular content in samples [16]. The selection
of biosensors and sensors depends on the characteristics of the sample and the type of
measurable characteristic considered. Biological receptors represent the key components
of biosensors, responding only to specific analytes and not to other biological receptors
present in the analytical sample. Compared to traditional chemical detection methods,
biosensors offer advantages such as rapid response, ease of operation, and low cost, thus
being widely applied in various stages of food production, processing, and sale. Through
biosensors, real-time monitoring of food quality and safety is achievable, enabling prompt
detection of issues and actions to ensure food safety and health.

However, due to the diversity and complexity of food safety issues, a single biosensor
may not cover all potential food safety hazards, necessitating comprehensive assessment
with other technologies and means [17]. In recent years, innovative technologies such
as artificial intelligence have been introduced into the field of food safety, proposing
various advanced food quality inspection strategies, including AI methods [18–20], red and
purple spectroscopy, and biosensors [21–25]. Among them, the combination of artificial
intelligence and biosensors has given rise to a new detection mode, which utilizes complex
AI algorithms to transform information obtained by sensors, such as physical, chemical,
biological, environmental, or identity-related parameters, into decision processes with
enhanced accuracy and intelligence. Currently, AI biosensors have been widely applied in
continuous glucose monitoring [26] and rapid pathogen detection [27], and they have made
significant progress in the development of wearable electronic devices [28]. The continuous
development and application of these technologies provide new avenues and possibilities
for comprehensive monitoring and analysis of food quality and nutrition.

This paper aims to explore the latest advances in artificial intelligence and biosensors
in acquiring external indicators and internal characteristics of food products. By com-
prehensively reviewing key research on convolutional neural networks and biosensors
in the field of food quality perception and classification, this paper aims to highlight the
synergistic role of artificial intelligence and biosensors in the perception and classification
processes of food quality and to describe how biosensors and deep learning are combined
to comprehensively assess food quality.

2. The Role of Biosensors in Food Safety Assessment

The role of biosensors in food safety assessment cannot be overlooked. The moni-
toring and analysis of contaminants in food are crucial steps to ensure food safety and
public health. Jordi et al. [29] suggested that biosensors are analytical devices that can
serve as an alternative to traditional methods for detecting pathogenic bacteria in food
(Figure 1a). These sensors consist of biological components, such as antibodies, aptamers,
or single-stranded DNA (ssDNA) receptors, that interact with target analytes (e.g., the
pathogens depicted in the figure). The sensing layer, coupled with suitable transducers
like carbon nanotubes, graphene, or nanoparticles, generates measurable signals from
these biorecognition events. Various signal detection methods, including impedimetric,
amperometric, and voltammetric techniques, allow biosensors to produce responses pro-
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portional to the concentration of the target analytes. This technology can be used for the
pre-treatment and detection of pathogens in various foods. In label-free biosensors, the
sensor directly generates a signal from the biorecognition event between the target analyte
and the receptor. Conversely, label-based biosensors require a secondary molecule or
aggregate (label) to generate a measurable signal, as the biorecognition event alone does
not produce one. Figure 1 illustrates a typical label-based biosensor, where one receptor
(e.g., an antibody or aptamer) is immobilized on the biosensor to capture the target analyte.
Subsequently, another receptor (e.g., labeled ssDNA) binds to the captured analyte, and an
appropriate molecular label produces the signal. These sensors convert biological reactions
into assessable and convertible signals [30] and, with the support of modern technology,
translate biological signals into electrical signals. Biosensors comprise molecular recog-
nition and transduction components, converting biological signals into electrical signals
through modern technology. Their structure includes a biological membrane and physical
or chemical transducers used for the selective determination of analytes, thereby detecting
viruses in food, water, environment, and agriculture [31]. By coating synthetic nanoma-
terials on biosensors, sensing electrodes can be modified to enhance sensing parameters,
and signals can be conveyed to individuals through optical, piezoelectric, electrochemical,
etc., means [32]. These signals are ultimately converted into electrical signals indicating the
presence of biochemical targets, accessible via cloud-based data access. The outcomes of
biosensors can be presented in graphical, tabular, or mathematical research formats [33].

The pioneering glucose oxidase (GOx) biosensor debuted in 1962, laying the foun-
dation for biosensor technology [34]. Despite subsequent advancements since the 1960s,
GOx sensors remain prevalent, representing the most favored type. These sensors offer
advantages such as light weight, ease of use, portability, high detection limits, small analyte
volumes required, and applicability in complex biological fluids. However, challenges they
face include issues where surface topological structures fail to exhibit sufficient sensitivity
and unique associations with target biologics, as well as challenges posed by pH values and
ionic strength of biological analytes, leading to varied reactions [35]. These challenges can
be addressed by integrating artificial intelligence (AI) technology with biosensors. Next-
generation biosensor arrays incorporate AI algorithms, enabling them to exhibit higher
specialization, selectivity, responsiveness, and consistency. These sensor arrays integrate
solid-state and surface mechanical knowledge with integrated circuits, bioengineering, and
data processing. With AI assistance, they can more accurately identify biological analytes,
enhancing sensor performance and reliability [36]. Therefore, attention should now be
directed towards the latest advancements in this field and outlining directions for the future
development of AI-based biosensors.

In addition to enzyme biosensors [37], other types of biosensors such as optical and
piezoelectric sensors have also been applied in the detection of toxins and chemicals in
food production. Neethirajan et al. [38] illustrated the complexity of food contamination,
highlighting common food contaminants and their interrelationships (Figure 1b). Different
types of contaminants intertwine, making food safety monitoring complex and diverse.
Safeguarding food safety requires comprehensive consideration and response to these
different types of contaminants, taking effective measures to reduce their impact on human
health and ensure the health and sustainability of the food supply chain [39]. Phumlani
Tetyana et al. [40] proposed that the principle of each biosensor is based on molecular
recognition, making its characterization crucial (Figure 1c). Effective characterization
of biosensors requires comprehensive consideration of factors such as endogenous com-
pounds and contaminants in food; therefore, the adoption of appropriate experimental
methods and technological means is necessary. Amidst the prevailing challenges in food
safety assessment, the integration of artificial intelligence (AI) with biosensors has assumed
paramount importance [41]. Key attributes, including sensitivity, selectivity, stability, detec-
tion limit, reproducibility, response time, and range or linearity [42], are not only pivotal for
the standalone performance of biosensors but also hold pivotal roles in their amalgamation
with AI. This integration allows for the precise identification and interpretation of signals
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from biosensors, enabling the swift detection and accurate analysis of harmful substances
in food [43]. AI algorithms heavily depend on the stable and consistent data furnished
by sensors, highlighting the indispensability of sensor stability for ensuring algorithmic
robustness and reliability. Low detection limits and high reproducibility enhance data
quality, allowing AI models to predict and analyze the presence and concentration of
harmful substances in food samples with greater accuracy [44]. The response time directly
influences the real-time operational efficacy of AI systems, a crucial aspect for timely detec-
tion of food safety issues. Lastly, by optimizing range or linearity, AI models can adeptly
adapt to data spanning varying concentration ranges, thereby augmenting the precision
and credibility of food safety assessments. The amalgamation of these attributes is poised
to propel technological innovation and advancement in the realm of food safety, furnishing
indispensable support for public health.
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 Figure 1. Application and evaluation of biological sensors in food. (a) Diagram illustrating biological
sensor with close contact between sensor and receptor [29]. (b) Predominant food contaminants in
food industries [38]. (c) Fundamentals of biosensors [40].

3. Multi-Modal Model Based on Artificial Intelligence and Biosensors

Integrating intelligent recognition methods that combine visual signals and bioelectric
signals represents a pioneering direction in the field of food quality perception and classifi-
cation [45]. This approach integrates computer vision with biosensor technology, aiming to
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overcome the inherent limitations of single-mode perception and human dependency in
traditional methods [46]. At its core lies the fusion model structure [47], which comprises a
feature extraction fusion stage and a perception scoring stage. As depicted in Figure 2a, in
the feature extraction fusion stage, food image data capturing samples of varying qualities
are generated and fed into a convolutional neural network (CNN) as input. Through
multiple stacked convolutional and pooling layers, the CNN progressively extracts com-
plex and abstract representations of input food images, forming one-dimensional feature
vectors containing attributes such as color, texture, and overall appearance. Simultane-
ously, relevant substance information is transformed into sequential representations by
biosensors. Then, feature vectors extracted from both image feature vectors and bioelectric
signal sequences are concatenated as input to train the Deep Neural Network (DNN) model.
Constructing the structured mathematical framework of the DNN model through extensive
datasets, neural network weights and biases embedded within are trained. In the forward
propagation algorithm, a series of linear operations are executed using multiple weight
coefficient matrices and bias vectors, while activation functions facilitate the transformation
from linear to nonlinear (Figure 2b). The selection of activation functions plays a crucial
role in network learning and expressing nonlinear relationships, with commonly used acti-
vation functions including ReLU and Sigmoid functions (Figure 2c). Forward propagation
transmits input data through hidden layers, ultimately generating the network’s output to
achieve classification, regression, and other tasks. Upon completing forward propagation,
the difference between predicted output and actual output is measured by a loss function,
and weights and biases are updated using gradient descent methods to optimize the model
parameters.

On the other hand, the primary objective of computer vision is to automate visual
decision making by simulating human cognitive capabilities [48]. By learning from ex-
tensive datasets, algorithms in computer vision can make precise, efficient, and complex
judgments [49]. A mature method within this field uses CNNs, which implement convo-
lution through absorbing convolutional operations. The structure of CNNs, as depicted
in Figure 2d, comprises input, convolution, pooling, and fully connected layers, among
others, focusing on extracting information from input images. This information encom-
passes different aspects such as the texture and color of the images. Convolutional layers
extract these attributes through convolution operations. This process entails traversing
convolution filters over input images with defined strides, conducting cross-correlation
computations to generate valuable feature maps [50]. Pooling layers play a crucial role in
selecting the most significant features from convolutional layers. The overall configuration
of convolution and pooling layers is illustrated in Figure 2e.

In the process of food evaluation and grading, there is no necessity to quantitatively ac-
quire specific values of food attributes such as color and texture. Rather, reliance on neural
networks for internal analysis is crucial [51]. Convolutional and pooling layers are funda-
mental building blocks in CNNs for extracting features from input images. Convolutional
layers perform local feature extraction through convolution operations, capturing edges,
textures, shapes, and other local features. Pooling layers reduce the spatial dimensions
of feature maps through downsampling and aggregation operations, enhancing network
efficiency and generalization. Multiple convolution kernels typically expand single feature
maps into multiple smaller-sized feature maps, compensating for feature loss resulting
from size reduction during convolution and pooling processes, essentially trading quan-
tity for quality. Parallel learning and capturing of different types of features by multiple
convolution kernels, parameter sharing to reduce the number of parameters, and sparse
connections to reduce computational costs characterize the CNN. The translation invari-
ance and feature compression properties of pooling layers make the network insensitive to
positional changes, enhancing model robustness. By alternately using convolutional and
pooling layers, CNN gradually extracts more abstract and advanced features, providing
robust image analysis and recognition capabilities for subsequent food quality perception
and grading tasks [52]. Currently, CNNs have been employed to address various challenges
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in the food domain, including food recognition, calorie estimation, foreign object detection,
and maturity assessment [53]. However, leveraging computer vision techniques to solve
challenges in the food domain inevitably relies on visual image features, which may have
limitations in cases requiring maturity detection and quality assessment [54]. Relying
solely on surface analysis of food appearance for detection and classification may result
in incomplete evaluations. Therefore, there is an urgent need to explore a comprehen-
sive approach that integrates internal and external factors to assess food properties more
comprehensively.
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As illustrated in Figure 2f, biosensors automatically analyze intrinsic food components
through a series of systematic processes. Firstly, an automated sampling and preprocessing
system ensures precise acquisition of food samples while minimizing potential variations
due to human intervention. Subsequently, bioactive substances are selected based on the
characteristics of target components to induce specific reactions that generate measurable
signals. These signals are then detected and recorded using specialized sensor devices (such
as optical, electrochemical, or bioluminescent sensors). Finally, advanced data analysis
algorithms interpret and quantify these signals to determine the concentration of target
components in the food matrix. By integrating the capabilities of automated sampling,
carefully selected bioactive substances, signal detection, real-time monitoring, and remote
control, biosensors achieve efficient, accurate, and streamlined analysis of intrinsic food
components, reducing reliance on cumbersome manual procedures [55].

Building upon the principles of biosensors and artificial intelligence technology, re-
searchers have developed various types of AI biosensors to detect specific substances. For
instance, biosensors utilizing glucose [56], vitamins [57], tyramine [58], bisphenol A [59],
and L-glutamate [60] have been developed to measure trace elements in food. Changes in
the content of trace elements in food may be caused by various factors, such as nutrient-
poor soil, adverse environmental conditions, or contamination during additive application
or processing. The integration of artificial intelligence and biosensors brings significant
advantages. Artificial intelligence can accelerate the process of data analysis, improving the
sensitivity and accuracy of biosensors. By utilizing machine learning algorithms, artificial
intelligence can identify complex patterns and trends, thereby enhancing the detection and
analysis of trace element content [61]. Junjie, et al. [62] explained that biological sensors
simulate the human olfactory system for rapid detection and identification of mixed odors.
Miguel Peris et al. [63] proposed the use of specialized chemical sensors to mimic human
odors, producing unique odor signatures when interacting with gas mixtures. These sig-
natures are then compared with standard odor profiles to identify the mixed components.
The biosensor system primarily consists of three parts (see Figure 3A(a)): (1) a sample
processing system, (2) a detection system, and (3) a data processing system. This device
has extensive applications in the quality assessment of agricultural products and food.
The core of this system is a sensor array, where the excitation of sensor elements produces
signals that generate unique responses to specific odor samples (odor fingerprints). This
type of biosensor, made from biological materials, converts biological signals into electrical
or optical signals. The biosensor, simulating the human taste system, comprises three
parts: (i) an autosampler (optional), (ii) a set of chemically selective sensors, and (iii) signal
processing algorithm software (see Figure 3A(b)). Biosensors emulate the human senses
of smell and taste; electronic noses and tongues mimic this process by detecting samples
through sensor arrays. Subsequently, a data processing system analyzes these data and
identifies the samples, enabling high-sensitivity and accurate qualitative and quantitative
determination of chemicals in complex samples. Magdalena Śliwińska et al. [64] introduced
a sensor-simulated taste system consisting of three key components: a sample distribution
chamber or optional automatic sample distributor, a sensor array with varying selectivities,
and software for data processing designed to mimic the functionality of the brain’s image
recognition systems. This innovative system enables the classification of chemical odors
in liquid samples, as illustrated in Figure 3B. Facure et al. [65] prepared four types of
nanocomposite thin-film sensor arrays by drop-casting solutions of rGO, PPy-rGO, PEDOT:
PSS-rGO, and PEDOT: PSS-rGO-AuNPs onto gold interdigitated electrodes (IDEs). The
sensing units were characterized by impedance spectroscopy and other methods, and the
data were processed by Principal Component Analysis (PCA) (Figure 3C). Through the
fine-tuning of design parameters of the sensors, especially for complex signals generated
by sensor arrays, such as material selection, sensor structure, and detection methods, more
reliable and continuous monitoring of trace elements can be achieved. This optimization
not only significantly extends the lifespan of sensors but also improves their stability, mak-
ing them more effectively applicable in practical food detection. Therefore, the combination
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of artificial intelligence and biosensors can provide a more comprehensive, accurate, and
efficient solution for food safety assessment, aiding consumers in assessing the adequacy
of their nutritional needs and assisting regulatory agencies in monitoring and managing
food safety.
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Figure 3. The application of artificial intelligence and biosensors in the food domain. (A) Schematic
diagram of biosensor simulation (a) The simulation of the human olfactory system (b) The human
gustatory system by biosensors [63] (reproduced from [63], with permission from Elsevier, 2016). (B) A
comparison of the working principles of the gustatory system and the olfactory system [64] (reprinted
(adapted) with permission from [64]. Copyright 2014 American Chemical Society). (C) A schematic
diagram of an intelligent biosensor system based on graphene hybrid nanocomposites, used for
detecting pesticide residues in agricultural products and statistical techniques for processing data
collected by biosensors (reproduced (adapted) from [65], with permission from Elsevier, 2022) [65].
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4. Discussion

The integration of biosensors and artificial intelligence (AI) offers several distinct
advantages for systematically assessing food quality, including automation, efficiency en-
hancement, and cost-effectiveness [66]. However, several obstacles need to be addressed
to make this approach feasible for food quality assessment. One key barrier involves
establishing reliable and fully operational sensing systems capable of effectively detect-
ing and analyzing various components present in different types of food. Additionally,
careful consideration is required when selecting appropriate biosensors that align with
the unique nutritional characteristics of different food categories [67]. Another significant
issue revolves around relying on extensive statistical data to construct accurate assessment
models, necessitating dedicated hardware resources. To address these challenges, advanced
technologies such as chip integration, cloud computing, 5G networks, and other innovative
solutions can be utilized effectively [68]. Combining biosensors with microchip integration
has enabled the miniaturization and portability of sensing devices, facilitating real-time
monitoring of on-site food quality [69]. Progress in cloud computing technology and
big data analytics allows sensor data to be seamlessly uploaded to the cloud for efficient
processing and storage. This enables rapid analysis of large-scale food samples, ensuring
the maintenance of superior quality and safety standards. The advanced capabilities of 5G
networks, including high-speed and low-latency attributes, establish robust and efficient
communication infrastructure, enhancing the reliability and timely dissemination of sensor
data for real-time monitoring purposes [70]. In addition to the aforementioned factors,
integrating other complementary solutions such as the Internet of Things (IoT), artificial
intelligence (AI), and big data analytics further strengthens the potential of biosensor-
driven food quality assessment systems. The connectivity provided by the IoT enhances
the functionality of sensors, enabling remote monitoring and real-time data collection.
Moreover, harnessing AI methods and tapping into the power of big data analytics aids in
the identification and analysis of potential issues as well as emerging trends within food
samples [71]. Overall, these technological advancements contribute to significantly enhanc-
ing the efficiency and intelligence of biosensor-driven food quality assessment systems,
ensuring the maintenance of excellent food quality and safety standards.

The fusion of biosensors and artificial intelligence methods in food quality assessment
offers multiple advantages. Firstly, this technology achieves high-precision detection by
utilizing biosensors for real-time monitoring of trace elements and harmful substances
in food, coupled with AI for data processing and analysis. Secondly, the combination
of biosensors and artificial intelligence enables rapid detection through real-time data
collection, efficient data processing, and analysis, thereby quickly generating assessment
results and promptly addressing risks and issues. Additionally, AI methods can predict and
provide alerts for potential food quality issues by analyzing extensive data and historical
information, thereby identifying abnormal patterns and potential risks. Moreover, the
integration of biosensors and artificial intelligence enables real-time monitoring and remote
access. Biosensors can collect and transmit data at any time, connected to the cloud via
the Internet of Things, while AI algorithms enable remote monitoring, timely handling
of anomalies, and providing remote support and solutions. In summary, the fusion of
biosensors and artificial intelligence methods brings significant advantages to food quality
assessment, including high-precision detection, rapid detection speed, predictive capa-
bilities, real-time monitoring, and remote access. These advantages play a crucial role in
ensuring food safety and safeguarding consumer health.

5. Conclusions

This paper comprehensively explores the synergistic integration of artificial intel-
ligence and biosensors in food quality assessment, emphasizing their advantages and
limitations. Through in-depth analysis, we highlight the importance of multi-modal fea-
ture fusion for an innovative food quality perception approach. This approach combines
unique features extracted by biosensors with advanced artificial intelligence techniques
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for subsequent processing. Based on the research analysis in this paper, we believe that
researchers in the field of food quality assessment can tailor their methods according to the
specific food categories they study. By fully leveraging multiple biosensors and effectively
integrating bioelectric signals with image features, researchers can significantly enhance
the comprehensiveness and accuracy of food quality perception and classification, thereby
improving the overall assessment process. This integrated approach not only helps address
the inherent limitations of single-modal perception and human dependence but also pro-
vides important reference and inspiration for future research in the field of food quality
assessment.
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