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Abstract: We aimed to determine the effects of oleic acid (OA) and palmitic acid (PA), alone or in
combination, on proliferation, differentiation, triacylglycerol (TAG) content, and gene expression
in porcine muscle satellite cells (PMSCs). Results revealed that OA-alone- and PA + OA-treated
PMSCs showed significantly increased viability than those in the control or PA-alone-treated groups.
No significant effects on apoptosis were observed in all three treatments, whereas necrosis was
significantly lower in OA-alone- and PA + OA-treated groups than in the control and PA-alone-
treated groups. Myotube formation significantly increased in OA-alone and PA + OA-treated PMSCs
than in the control and PA-alone-treated PMSCs. mRNA expression of the myogenesis-related genes
MyoD1 and MyoG and of the adipogenesis-related genes PPARα, C/EBPα, PLIN1, FABP4, and FAS
was significantly upregulated in OA-alone- and PA + OA-treated cells compared to control and PA-
alone-treated cells, consistent with immunoblotting results for MyoD1 and MyoG. Supplementation
of unsaturated fatty acid (OA) with/without saturated fatty acid (PA) significantly stimulated TAG
accumulation in treated cells compared to the control and PA-alone-treated PMSCs. These results
indicate that OA (alone and with PA) promotes proliferation by inhibiting necrosis and promoting
myotube formation and TAG accumulation, likely upregulating myogenesis- and adipogenesis-
related gene expression by modulating the effects of PA in PMSCs.

Keywords: proliferation; differentiation; myotube formation; triacylglycerol content; oleic acid;
long-chain fatty acids

1. Introduction

Intramuscular fat (IMF) is the most critical factor affecting the marbling and flavor
of pork [1]. Lipids including triglycerides (triacylglycerol, TAG) are the key lipids in the
skeletal muscle fat, and IMF contains phospholipids, which are responsible for pork flavor.
To improve pork quality, methods to increase adipogenic differentiation must be identified.
Fatty acids are essential nutrients that modulate adipogenic differentiation. Long-chain
fatty acids (LCFAs) are natural compounds contributing to cellular metabolism in animal
tissues [2]. A few influential factors, including saturation (saturated vs. unsaturated) and
concentration (high vs. low) of LCFAs, accelerate myogenesis and adipocyte differentiation.
Fatty acids may be specific agonists of the peroxisome proliferation-activated receptor
(PPAR); specifically, PPARγ is essential for the adipose tissue differentiation process, and
consequently, fatty acids play a significant role in modulating tissue differentiation by
regulating PPAR activity and some transcription factors [3].

Foods 2024, 13, 2200. https://doi.org/10.3390/foods13142200 https://www.mdpi.com/journal/foods

https://doi.org/10.3390/foods13142200
https://doi.org/10.3390/foods13142200
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/foods
https://www.mdpi.com
https://orcid.org/0000-0001-5353-2439
https://orcid.org/0000-0002-9282-1281
https://orcid.org/0000-0002-1298-2828
https://orcid.org/0000-0002-1659-4427
https://doi.org/10.3390/foods13142200
https://www.mdpi.com/journal/foods
https://www.mdpi.com/article/10.3390/foods13142200?type=check_update&version=1


Foods 2024, 13, 2200 2 of 16

Skeletal muscle consists of about 40% of the body mass [4] and develops through myo-
genesis. Differentiation during myogenesis is tightly regulated by myotube formation [5].
Satellite cells are positioned in between the basal lamina and sarcolemma muscle fibers
and have the potentiality of cell proliferation and differentiation [6]. After birth, skeletal
muscle satellite cells play a significant role in skeletal muscle growth and regeneration [7].
For living organisms, free fatty acids (FFAs) are crucial to afford energy to cells by ATP
synthesis through mitochondrial β-oxidation. Many investigations have reported that fatty
acids modulate muscle function [8]. The most common FFAs are palmitic acid (PA; 16:0)
and oleic acid (OA; 18:1).

PA (saturated fatty acid) is present naturally in vegetable oils [9]. It possesses a range
of pharmacological activities, including antiviral, anti-inflammatory, analgesic, and some
regulatory activities of lipid metabolism [10–14]. It promotes apoptosis by inducing cell
cycle arrest in some human cells [15–17]. In addition, PA inhibits hepatoma cell proliferation
by altering glucose metabolism [18]. Earlier studies established that low concentrations of
PA induce the proliferation of Jurkat cells and lymphocytes, whereas high concentrations
are cytotoxic [19–21]. Previous studies confirmed that OA exerts a proliferative effect on
cultured muscle cells [22,23]. A few researchers have reported that PA is almost toxic to
cells, whereas OA is cytoprotective or non-toxic to many types of cells [24–27]. PA may
adversely affect skeletal muscle differentiation [3]. Moreover, FFAs may cause insulin
resistance and the atrophy and myopathy of skeletal muscle [28]. The exact mechanisms
behind the PA and OA effects on PMSCs have not yet been clearly elucidated. Several
studies are available of PA and OA effects on the proliferation, necrosis, myogenesis,
and adipogenic differentiation of satellite porcine cells. In this study, PMSCs were used
to test the hypothesis that OA modulates the detrimental effects of PA on myogenesis,
adipogenesis, and related mRNA expression. Therefore, we explored the protective effects
of OA against PA on the proliferation, apoptosis, myogenic differentiation, and adipogenic
differentiation of PMSCs.

2. Materials and Methods
2.1. Ethics Statement

The study protocol was certified by the Animal Ethics Committee of Jeonbuk National
University (approval number: JBNU2020-0147). All experiments were conducted following
the guidelines and regulations of Jeonbuk National University.

2.2. Preparation of PA and OA Samples

Two LCFAs, i.e., PA (C16:0) (Sigma Aldrich, Saint Louis, MO, USA, Catalog: P0500)
and OA (C18:1) (Sigma Aldrich, Saint Louis, MO, USA, Catalog: P01383), were used in
this experiment. Samples were prepared following the methods of Frago et al. [29]. Briefly,
stock solutions of 200 mM concentrations were prepared in 100% ethanol (EtOH). Working
solutions of 1 mM were made by incubating the fatty acids in media containing 10%
endotoxin and fatty acid-free bovine serum albumin (BSA) at 37 ◦C for 30–60 min. This
working solution was added to the cells to obtain the final fatty acid concentrations. All
stock solutions were stored at −20 ◦C until further use.

2.3. PMSC Culture and Treatments

In this experiment, we used PMSCs isolated from skeletal muscle of 1-day-old male
piglets following the procedure of [30]. Briefly, muscles were collected from femur skeletal
muscle and washed with Dulbecco’s phosphate-buffered saline (Gibco, Carlsbad, CA, USA)
supplemented with 1% penicillin–streptomycin (PS; Gibco). Subsequently, the chopped
muscles were mixed with digestion solution (1 U/mL of dispase II (Roche, Indianapolis,
IN, USA), 2 mg/mL of collagenase D (Roche), 0.25% trypsin-EDTA (Gibco), 10% PS in
Dulbecco’s modified Eagle’s medium/nutrient mixture F-12 (DMEM/F12; Gibco, Carlsbad,
CA, USA)) at 37 ◦C for 1 h. After digestion, the samples were filtered through a 100 µm
and 40 µm cell strainer. The suspension was then centrifuged, the supernatant was re-
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moved, and cells were resuspended with 15% fetal bovine serum (FBS; Gibco) and 1%
PS glutamine (PSG; Gibco) in DMEM/F12. After isolation, the PMSCs were cultured in
DMEM/F12 (Gibco, Carlsbad, CA, USA) supplemented with 15% FBS (Gibco) and 1%
penicillin–streptomycin–glutamine (Gibco, USA) in a humidified atmosphere of 5% CO2.
As the cells reached 90% confluency, they were subcultured to increase the number of
cells. After 24 h, the medium in the three treatment groups was replaced with solutions
containing 20, 20, and 20 + 20 µM/mL concentrations of PA, OA, and PA + OA, respectively,
and the cells therein were incubated for another 24 h. The cells in the control group were
grown without fatty acid, and the medium was changed every 24 h.

2.4. Cell Viability Assay

Cell viability was measured using a cell-counting kit (CCK-8; CK04-11; Dojindo,
Mashiki, Japan) after 24 h and 48 h of incubation. Briefly, cells (1 × 104) were seeded
in 96-well cell culture plates. Cells were then exposed to PA or OA (at 0, 10, 20, 50, 100,
and 250 µM each) in a growth medium for different periods and then treated with CCK-
8 solution following the manufacturer’s instruction. After 4 h of incubation at 37 ◦C,
absorbance was measured using a microplate reader (Thermo Fisher Scientific, San Jose,
CA, USA) at 450 nm. Cell viability was calculated using the following formula: cell
viability = (ODtreated − ODblank)/(ODcontrol − ODblank) wells × 100, where OD represents
optical density.

2.5. Giemsa Staining

Cells (3 × 105) were seeded in a 6-well plate. After treatment with fatty acids, the
medium was completely discarded, and the cells were fixed in methanol and air-dried for
5 min. Staining dye (Sigma, Burlington, MA, USA) was mixed with distilled water (1:20)
and used for cell staining for 30 min. Subsequently, the cells were washed in tap water
to remove excess stain and then dried. Finally, images were captured using an inverted
microscope (CKX53, Olympus, Tokyo, Japan).

2.6. Flow Cytometry

For the flow cytometric analysis, PMSCs were cultured as controls and in PA-alone,
OA-alone, and PA + OA treatments (at concentrations of 0, 20, 20, and 20 + 20 µM/mL,
respectively) for 24 h and collected with 0.25% trypsin–ethylenediaminetetraacetate (EDTA).
The preparation procedures for analyzing apoptosis and cell cycles followed a previous
study [31]. All samples were analyzed by fluorescence-activated cell sorting (FACS) on a
BD FACSCalibur flow cytometer using BD Cell Quest Pro 5.1 Software (Becton, Dickinson
and Company, San Diego, CA, USA).

2.7. Apoptosis Assay Using Acridine Orange/Ethidium Bromide Staining Methods

Cells (3 × 105) were seeded in a 6-well plate and cultured for 24 h; the medium in the
three treatment groups was replaced with solutions containing 20, 20, and 20 + 20 µM/mL
concentrations of PA, OA, and PA + OA, respectively, and the cells therein were incubated
for 24 h. After removing the medium, the cells were fixed with a methanol–acetic acid mix
(3:1) for 1 h at room temperature (RT; 24 ◦C). Subsequently, the cells were washed with ice-
cold PBS after removing the methanol–acetic acid mix. The cell nuclei were counterstained
with acridine orange/ethidium bromide (AO/EtBr) (100 µg/mL AO, 100 µg/mL EB) for
10 min and then analyzed under a fluorescence microscope with the ZEISS ZEN 3.7 imaging
software (Carl Zeiss, Oberkochen, Germany).

2.8. DAPI Staining

PMSCs (2 × 105 cells per well) were seeded in confocal dishes. After 24 h, the
medium in the three treatment groups was replaced with solutions containing 20, 20, and
20 + 20 µM/mL concentrations of PA, OA, and PA + OA, respectively. The cells were fixed
with 4% paraformaldehyde and then rinsed with PBS, after which they were permeabilized
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and blocked with a blocking solution (PBS containing 0.3% Triton X-100 and 3% BSA) for
1 h at RT (24 ◦C). Subsequently, the cells were washed thrice with 0.3% Triton X-100 in
PBS and then incubated for 5 min at RT (24 ◦C) with 4′-6 diamidino-2-phenylindole (DAPI,
1:1000) to visualize the nuclei. Finally, images were captured using an LSM 880 confocal
laser scanning microscope and analyzed with the ZEISS ZEN imaging software (Carl Zeiss,
Oberkochen, Germany).

2.9. Wound-Healing Assay

The wound-healing activities of PMSCs were investigated following the methods
described by Wang et al. [32]. Briefly, 80% confluent PMSCs were placed in 6-well plates
with growth media for a 24 h incubation period, followed by treatment with different
concentrations of PA, OA, or PA + OA for 24 h incubation period (n = 5 per group). The
confluent cell layers were then scratched with a 10 µL pipette tip, washed with PBS, and
treated with growth medium for another 24 h incubation period. Images were captured be-
fore and after the fatty acid treatment, and the percentage of migratory area was quantified
using Adobe Photoshop PS7 software.

2.10. Oil Red O Staining

Oil red O staining was used to observe lipid accumulation in PMSCs. Approximately
3 × 105 cells were seeded in each well of a 6-well plate in a growth medium, allowed
to grow to 80–90% confluence, and then changed to adipogenic differentiation medium
(DMEM (LG), 10% FBS, 1% PSG, IBMX (0.5 mM), dexamethasone (1 mM), indomethacine
(100 µM), insulin (10 µg/mL)) to adipogenic differentiation. After the recommended
incubation time, the cells in the three treatment groups were treated with 20, 20, and
20 + 20 µM/mL concentrations of PA, OA, and PA + OA, respectively, gently washed with
PBS, and fixed at RT (24 ◦C) with 10% formalin. Subsequently, the cells were washed with
distilled water after removing formalin and then incubated for 5 min at RT (24 ◦C) with
60% isopropanol. The isopropanol was discarded, and the cells were stained with Oil red O
solution (0.5% Oil red O in isopropanol). Subsequently, the cells were washed with water
after discarding the staining solution. The cells were then incubated with hematoxylin
for 1 min, washed with water, and observed under a microscope (Olympus, Japan). Lipid
content was measured by the direct extraction of Oil red O from the stained cells using
isopropanol, and the absorbance at 492 nm was determined using a microplate reader
(Multiskan, GO Microplate Spectrophotometer; Thermo Scientific, Waltham, MA, USA).

2.11. Analysis of Myotube Formation

PMSCs (2 × 105 cells per well) were seeded in 6-well plates in a growth medium and
allowed to grow up to 80–90% confluence and then changed to a myogenic differentiation
medium (DMEM, with high glucose and 5% horse serum) to induce muscle differentiation.
After 1 and 5 days, the multinucleated myotubes detected in a field (1 µm2 × 100) were
counted by a phase-contrast microscope (PM 20; Olympus, Japan).

2.12. Measurement of Triacylglycerol Content

Cells cultured in 6-well plates were washed twice with ice-cold PBS, scraped off
with 25 mM Tris–HCl (pH 7.5) containing 1.0 mM EDTA, and then homogenized with a
microhomogenizer (Ieda Trading Corporation, Tokyo, Japan). Protein concentrations were
measured using a detergent-compatible (DC) protein assay kit (Bio-Rad, Hercules, CA,
USA). The triacylglycerol (TAG) content in the cell lysate was extracted using a chloroform–
methanol mix (2:1 v/v) and quantified enzymatically using a triglyceride colorimetric assay
kit (Cayman, Ann Arbor, MI, USA). The TAG content was normalized to the protein content
in each well. All experiments were performed in triplicate and repeated at least thrice.
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2.13. RNA Extraction and qRT-PCR

After treatment, total cellular RNA was extracted using TRIzol Reagent (Invitro-
gen, New York, NY, USA) following the manufacturer’s instructions. Total mRNA was
quantified using a NanoDrop spectrophotometer (Thermo Fisher Scientific, San Jose, CA,
USA). cDNA was synthesized using a cDNA synthesis kit (Bioneer, Daejeon, Republic
of Korea). The reaction mix was prepared by adding the relevant primer pair, 1.0 µL of
cDNA, and AMPIGENE® qPCR green Mix (Enzo, San Diego, CA, USA) and made up
to a total volume of 20 µL following the manufacturer’s protocol. Primer sequences of
Pax7, MyoD, MyoG, PPARγ, CCAAT/enhancer-binding protein-α (C/EBPα), perilipin-1
(PLIN1), fatty acid binding protein-4 (FABP4), fatty acid synthase (FAS), lipoprotein li-
pase (LPL), and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) genes are listed in
Table S1 [31,33–35]. qPCR was performed in triplicate using a CFX96TM Real-Time PCR
Detection System (Bio-Rad, USA). All data were normalized to GAPDH as a reference gene
and calculated using the 2−∆∆CT method [36].

2.14. Protein Extraction and Western Blot Analysis

Total protein was extracted from PMSCs using radioimmunoprecipitation assay buffer
(Biosesang, Sungnum, Republic of Korea) containing a protease inhibitor (Thermo Fisher
Scientific) after incubation on ice for 40 min. After centrifugation at 21,000 × g for 30 min,
the supernatant was collected, and the protein concentration of the cell lysates was mea-
sured using the DC protein assay kit (Bio-Rad, USA). Proteins were subjected to sodium
dodecyl sulfate–polyacrylamide gel electrophoresis using a 12% acrylamide gel and trans-
ferred onto polyvinylidene fluoride membranes. Membranes were blocked for 1.5 h at RT
(24 ◦C) using 5% skimmed milk in Tris buffer solution (TBS) containing 0.5% Tween 20
(TBST), after which the membranes were rinsed with TBST and incubated overnight at
4 ◦C with the following primary antibodies: caspase 3 (1:1000; Novus Bio, Centennial, CO,
USA), Bcl-2-associated X (1:1000; Santa Cruz Biotechnology, Dallas, TX, USA), Pax7 (1:1000;
DSHB, Iowa City, IA, USA), MyoD (1:1000; Proteintech, Rosemont, IL, USA), MyoG (1:1000;
Abcam, Cambridge, UK), GAPDH (1:5000; Invitrogen, Carlsbad, CA, USA). Membranes
were rinsed with TBST and incubated for 1.5 h at (24 ◦C) with secondary antibodies. The
corresponding horseradish peroxidase-conjugated secondary antibodies were used, namely
goat anti-mouse IgG (1:2000; Thermo Fisher Scientific, San Jose, CA, USA) and anti-rabbit
IgG (1:2000; Thermo Fisher Scientific, San Jose, CA, USA). After washing with TBST, im-
munoblots were visualized using an enhanced chemiluminescence kit (Thermo Fisher
Scientific, San Jose, CA, USA), and images were captured using the iBright CL 100 Imaging
system (Thermo Fisher Scientific, San Jose, CA, USA). All proteins were normalized with
GAPDH.

2.15. Statistical Analysis

The effects of the treatments were analyzed by one-way analysis of variance using
GraphPad Prism (Version 5). Tukey’s test was used for multiple comparisons. The statistical
significance level was set at p < 0.05.

3. Results
3.1. Effects of PA and OA on Cell Proliferation

Treatment of PMSCs with PA, OA, and PA + OA changed the cell viability after 24 and
48 h of incubation compared with the control group. After 24 h, increased and decreased
cell proliferation were observed in PA-alone and OA-alone groups subjected to the dosages
of 10–20 µM and 50–250 µM, respectively, compared with the control group (Figure 1A).
After 48 h of incubation, there was no significant effect of 20 µM, whereas higher dosages
decreased cell proliferation gradually (Figure 1B). Moreover, after 24 h of treatment, cell
proliferation increased significantly (p < 0.05) in OA-alone- and PA + OA-treated groups
subjected to 20 µM and 20 + 20 µM dosages, respectively, compared with that in the un-
treated control and PA-alone group subjected to the equivalent dosage of 20 µM (Figure 1C).
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These results indicate that treatment with a low concentration (20 µM) of PA and OA alone
and 20 µM PA + 20 µM OA could markedly promote the proliferation of PMSCs rather
than a high concentration. The promotion of cell proliferation was observed at low con-
centrations, but cytotoxicity was confirmed at high concentrations (particularly with PA).
No significant morphological changes were observed in the control, PA, OA, or PA + OA
groups (Figure 1D). Based on these results, we selected 20 µM as the optimal concentration
of both PA and OA for the subsequent analyses.
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Figure 1. Effects of oleic acid (OA) and palmitic acid (PA) on cell viability at different physiological
concentrations. (A,B) Porcine satellite cell viability: cells were incubated in separate experiments with
10 µM, 20 µM, 50 µM, 100 µM, and 250 µM OA and PA for 24 h and 48 h, respectively. (C) Porcine
satellite cell viability: cells were incubated in separate experiments with 20 µM PA, 20 µM OA,
20 µM PA + 20 µM OA, 50 µM PA + 20 µM OA, and 100 µM PA + 20 µM OA for 24 h incubation.
(D) Morphology visualized by Giemsa staining; scale bar = 100 and 20 µm for 4× and 20× of
microscopic enhancement, respectively. Values are means ± SE, n = 5. * Indicates significance
between treatment groups vs. control (p < 0.05), # Indicates significance between OA/PA + OA
groups vs. PA group (p < 0.05), and ns indicates no significant difference. The control group consisted
of porcine satellite cells that were untreated (no PA or OA).

3.2. Effects of PA and OA on the Cell Cycle

Cells treated with PA, OA, and PA + OA were analyzed to determine their cell cycle sta-
tus (Figure 2A). In the control group, the percentage of cells in the G0/G1 phase was 76.43%,
whereas it was 76.70, 70.17, and 72.23% in the PA-alone-, OA-alone-, and PA + OA-treated
groups, respectively. In the OA-alone- and PA + OA-treated groups, the cell percentage
significantly decreased in the G0/G1 phase and increased in the S phase (Figure 2B). No
significant differences were observed in the G2/M phase (p > 0.05) (Figure 2D). These
results indicate that OA (alone and in combination with PA) promotes cell proliferation by
accelerating the transition from the G0/G1 phase to the S phase and are consistent with the
results of the cell viability (Figure 2C).
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Figure 2. Effects of OA and PA on the cell cycle. (A) Cell cycle results with 20 µM PA, 20 µM OA,
and 20 µM PA + 20 µM OA for a 24 h incubation period. (B–D) Changes in different cell cycle phases
of PMSCs following PA and OA treatment. Values are means ± SE, n = 3. * Indicates significance
between treatment groups vs. control (p < 0.05), # Indicates significance between OA/PA + OA
groups vs. PA group (p < 0.05), and ns indicates no significant difference. The control group consisted
of porcine satellite cells that were untreated (no PA or OA).

3.3. Effects of PA and OA on Apoptosis and Necrosis

The results of the apoptosis and necrosis assays are shown in Figure 3. Our results re-
vealed that PA-alone-, OA-alone-, and PA + OA-treated groups did not show any significant
differences in the extent of early and late apoptosis in PMSCs (Figure 3C,D). Necrosis was
down-regulated by OA-alone- and PA + OA-treatment compared to control and PA-alone-
treatment (p < 0.05) (Figure 3B). We also checked the cytoprotective effect of PA and OA
on apoptosis-related proteins, like Caspase 3 and BAX (Figure 3E). The expression level of
the apoptosis-inducing protein Caspase 3 was not significantly different among the groups
(Figure 3E). However, expression levels of BAX significantly increased (p < 0.05) in the OA-
alone- and PA + OA-treated groups compared to the control group (Figure 3E). Fluorescence
microscopy was used to observe morphological changes after AO/EtBr and DAPI staining
to evaluate cell viability and apoptosis (Figure 3F). Live cells showed green fluorescence,
and those undergoing early apoptosis, late apoptosis, and necrosis showed yellowish-green
and orange fluorescence, respectively. Live cells in OA-alone- and PA + OA-treated groups
showed green fluorescence with normal nuclei. In contrast, the PA-alone-treated group
subjected to a dosage of 20 µM presented more necrotic cells than the other groups. In
DAPI staining, there were no significant morphological changes in the untreated control,
PA, OA, or PA + OA groups (Figure 3F). Hence, treatment with OA alone or the PA + OA
combination promoted cell growth and inhibited apoptosis.
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Figure 3. Analysis of cell necrosis, late apoptosis, and early apoptosis by FACS. (A) Porcine satellite
cell apoptosis detection results with 20 µM PA, 20 µM OA, and 20 µM PA + 20 µM OA for a
24 h incubation period. (B) Proportion of necrotic cells. (C) Proportion of late apoptotic cells.
(D) Proportion of early apoptotic cells. (E) Apoptosis-related protein expression. (F) Morphological
observations using AO/EtBr staining and DAPI staining with confocal microscopy. Values are
means ± SE, n = 3. * Indicates significance between treatment groups vs. control (p < 0.05), # Indicates
significance between OA/PA + OA groups vs. PA group (p < 0.05), and ns indicates no significant
difference. The control group consisted of porcine satellite cells that were untreated (no PA or OA).

3.4. Effects of PA and OA on Migration of PMSCs

Wound-healing assay results revealed that OA + PA co-treatment significantly reduced
the migratory rate of PMSCs (Figure 4A,B). However, PA treatment did not affect the
migratory capabilities of PMSCs compared with that in the control and PA + OA-treated
groups.
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3.5. Effects of PA and OA on Myotube Formation

PMSCs grown in a growth medium (with 10% FBS) were switched to a differentiation
medium (with 5% horse serum) to induce differentiation and were treated with PA and OA
for 5 days to examine the effects of PA and OA on muscle differentiation. Myotubes with
two or more nuclei were observed in PA-alone- and OA-alone-treated groups (Figure 5B).
The number of myotubes in the OA-alone- and PA + OA-treated groups were significantly
higher (p < 0.05) than that in the control and PA-alone-treated groups (Figure 5B).
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Figure 5. Effects of PA and OA on myogenic differentiation of PMSCs. Cells were cultured in growth
media allow to 80–90% confluency and then switched to myogenic differentiation medium for a 120 h
incubation period. (A) Cells were observed under a microscope; scale bar = 100 µm. (B) Number
of myotubes. Values are means ± SE, n = 3. * Indicates significance between treatment groups vs.
control (p < 0.05), # Indicates significance between OA/PA + OA groups vs. PA group (p < 0.05), and
ns indicates no significant difference. The control group consisted of porcine satellite cells that were
untreated (no PA or OA).
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3.6. Effects of PA and OA on the mRNA and Protein Expression of Myogenic
Differentiation-Related Genes

To determine the effects of PA and OA on the expression of myogenesis-related genes,
we measured the mRNA levels of genes involved in the myogenic differentiation of PMSCs
with PA, OA, or PA + OA. The results represented in Figure 6 indicate the effects of PA
and OA (alone and in combination) on the expression of Pax7, MyoD, and MyoG genes
at mRNA and protein levels using qPCR and Western blot analysis, respectively. Both
OA and PA + OA treatment markedly affected the expression of myogenesis-related genes
and proteins. Incubation of PMSC with 20 µM OA and 20 µM PA + 20 µM OA in the
respective treatment groups resulted in a significant increase (p < 0.05) in the mRNA levels
of MyoD and MyoG genes compared with those in the untreated control PMSCs and in
PMSCs treated with 20 µM PA in the PA-alone treatment group (Figure 6A). In addition,
the expression of MyoD and MyoG proteins was significantly (p < 0.05) upregulated by
OA + PA co-treatment of PMSCs.
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Figure 6. (A) Gene expression levels of myogenesis transcription factors under PA, OA, and PA + OA
treatments. (B) Protein expression levels of myogenesis transcription factors under PA, OA, and
PA + OA treatments. Values are means ± SE, n = 3. * Indicates significance between treatment groups
vs. control (p < 0.05), # Indicates significance between OA/PA + OA groups vs. PA group (p < 0.05),
and ns indicates no significant difference. The control group consisted of porcine satellite cells that
were untreated (no PA or OA).

3.7. Effects of PA and OA on TAG Accumulation in PMSCs

As shown in Figure 7B, the supplementation of OA, both alone and with PA, signifi-
cantly stimulated TAG accumulation in treated PMSCs (p < 0.05) compared with that in the
control and PA-alone-treated PMSCs.
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Figure 7. Effects of PA and OA on adipogenic differentiation of PMSCs. Cells were cultured in
growth media to 80–90% confluency and then switched to adipogenic differentiation medium for
a 120 h incubation period. (A) Oil red O staining indicating lipid droplets; scale bar = 100 µm.
(B) Cytosolic TAG measured by enzymatic method during adipogenesis. Values are means ± SE,
n = 5. * Indicates significance between treatment groups vs. control (p < 0.05), # Indicates significance
between OA/PA + OA groups vs. PA group (p < 0.05), and ns indicates no significant difference. The
control group consisted of porcine satellite cells that were untreated (no PA or OA).

3.8. Effects of PA and OA on the mRNA Expression of Adipogenic Differentiation-Related Genes

The mRNA expression of PPARγ, C/EBPα, PLIN1, FABP4, and FAS genes was upreg-
ulated in OA-alone- and OA + PA-treated PMSCs compared with that in the control and
PA-treated PMSCs (Figure 8).
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Figure 8. Gene expression levels of adipogenesis transcription factors under PA, OA, and PA + OA
treatments. Values are means ± SE, n = 5. * Indicates significance between treatment groups vs.
control (p < 0.05), # Indicates significance between OA/PA + OA groups vs. PA group (p < 0.05), and
ns indicates no significant difference. The control group consisted of porcine satellite cells that were
untreated (no PA or OA).
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4. Discussion

In this study, we attempted to elucidate the effects of PA and OA on the proliferation,
differentiation, and TAG accumulation in PMSCs. Fatty acids, particularly LCFAs, are
sources of energy [37]. The PA and OA effects on cell viability were determined, and the
results revealed that PMSC viability increased significantly after treatment with 20 µM of
PA and OA each when incubated alone or together. Hardy et al. [17] reported that OA
promoted cell proliferation via the phosphatidylinositol 3-kinase (PI3K) pathway. Further,
OA increases the viability of C2C12 cells [8]. However, earlier studies showed that high
concentrations of polyunsaturated fatty acids may inhibit cell proliferation in humans
and rats [38–40]. In contrast, monounsaturated fatty acids, especially OA, are non-toxic
and enhance cell proliferation in a few types of cell [24–27]. Double bonds are crucial for
fatty acids to boost skeletal muscle cell proliferation. Hence, our results revealed that OA-
containing double bonds might enhance the proliferation of PMSC. Lu et al. [41] showed
that OA induces proliferation in rat cells. Furthermore, Mattern and Hardin [42] reported
that OA treatment reduced the PA-induced apoptosis of vascular smooth muscle cells.
Zeng et al. [43] confirmed that OA supplementation strongly alleviated pyroptosis caused
by PA in HepG2 cells. Similarly, our study demonstrates that OA and PA co-treatment
inhibited PA-induced apoptosis in PMSCs. These results suggested that cell proliferation
may be enhanced by the supplementation of OA, both alone and with PA, in PMSCs.
The wound-healing assay showed that OA + PA co-treatment significantly reduced the
migratory rate of PMSCs, and PA treatment did not affect the migratory capabilities of
PMSCs. However, PA treatment at concentrations of 12.5–50 µM significantly reduced the
migratory area of porcine vascular endothelial cells [44].

Skeletal muscle formation, or myogenesis, is a complex process involving myoblast
proliferation, followed by morphological, biochemical, and molecular modifications, re-
sulting in the formation of multinucleated myotubes [45]. The formation of myotubes was
increased (p < 0.05) in the OA-alone- and PA + OA-treated groups compared with that
in the control and PA-treated groups. Zhang et al. [46] reported that pretreatment with
PA inhibited skeletal muscle differentiation and decreased myotube formation in C2C12
skeletal muscle cells. Studies on the expression of myogenesis-related genes in PMSCs
exposed to PA and PA + OA are limited. OA-alone- and PA + OA-treated PMSCs showed
a significantly upregulated expression of Pax7 and MyoD genes compared with that in
PA-alone-treated PMSCs. MyoD and MyoG are key factors in myogenesis. Upregulation
of Pax7 expression increases the expression of these two myogenic regulatory factors [47].
In skeletal muscles, MyoD is the only factor expressed [48]. It regulates muscle cell dif-
ferentiation by regulating the cell cycle and is required for myogenic initiation. MyoD
expression reflects the activation and differentiation of bovine satellite cells (BSCs) [49] and
plays a vital role in the differentiation of precursor cells into myogenic cells [50]. MyoG
expression was significantly upregulated in OA-alone- and PA + OA-treated groups than
in the untreated control and PA-alone- treated groups. The MyoG gene encodes a specific
transcription factor that induces the late stage of myogenesis and is essential for skeletal
muscle formation [51,52]. Li et al., [53] showed that OA accelerates MyoG expression in
BSCs, which participate in myoblast fusion to form myotubes [54]. The increased expres-
sion of MyoD and MyoG suggests that muscle fiber development is accelerated, and their
downregulated expression indicates that muscle development is inhibited.

OA (both alone and when co-supplemented with PA) significantly increased TAG
accumulation in the treated PMSCs compared with that in the control and PA-alone-treated
PMSCs. Earlier studies have demonstrated that OA is one of the most abundant fatty
acids among liver triglycerides and induces lipid droplet formation in HepG2 cells and
primary cultured human hepatocytes [55,56]. In primary cultured BSCs, unsaturated (OA)
fatty acids significantly stimulate TAG accumulation compared with that obtained using
saturated (PA) fatty acids [57]. Another study revealed that the induction of palmitoleic
acid differentiates BSCs by promoting TAG accumulation [58]. The PAT family protein
PLIN is a critical marker for analyzing cellular lipid accumulation and metabolism. PLIN1
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and PLIN2 are activated or inhibited by the co-activator of PPARγ. This study indicates
that OA-alone- and PA + OA-treated PMSCs exhibit a significant upregulation of PLIN1
expression related to lipid droplet formation after differentiation.

Adipogenic differentiation is a complex process involving de novo fatty acid synthe-
sis attributed to FAS and transcriptional control attributed to PPARγ and C/EBPα. The
mRNA expression of PPARγ, C/EBPα, PLIN1, FABP4, and FAS genes was upregulated
by OA supplementation (alone and in combination with PA), and both treatments must
have stimulated TAG accumulation. The PPAR signaling pathway is principally involved
in regulating cell proliferation, differentiation, and lipid metabolism [59]. Upregulated
expression of LPL and FABP4 expression promotes fatty acid uptake and esterification [53].
The upregulated FABP4 and PPARγ expression confirmed the adipogenic differentiation
ability [33]. OA stimulated the differentiation of porcine cells by upregulating PPARγ and
C/EBPα gene expression, whereas PA and other saturated fatty acids had no effects [60].
In another study, Sanosaka et al. [61] reported that PPARγ was induced by OA treatment
in porcine intramuscular adipocytes. These results are consistent with those reported in
this study and indicate that OA has the potential to regulate gene expressions and muscle
differentiation against PA activity. Other fatty acids, e.g., myristic acid, increased the
mRNA expression of PPARγ, LPL, and FAS genes [1] and palmitoleic acid upregulated the
expression of PPARγ and C/EBPα genes [58]. Finally, OA and co-treatment with PA played
a significant role in proliferation, apoptosis, myogenesis, and adipogenesis, suggesting that
proper amounts of PA and OA in the diets could impact meat quality. These results may be
helpful for further studies using models of myogenesis and adipogenesis, and for studies
on cultured meat.

5. Conclusions

In this study, we describe evidence that OA, both alone and in combination with
PA, promotes cell proliferation. Changes in the cell cycle from G0/G1 phase to S phase
demonstrate that PA and OA accelerate the proliferation of PMSCs. Oleic acid alone and
co-treatment with PA upregulated expressions of the myogenesis-related genes MyoD
and MyoG. In addition, the mRNA expression of PPARα, C/EBP4, PLIN1, FABP4, and
FAS genes was upregulated by OA (both alone and with PA), implicated in adipogenic
differentiation and TAG accumulation. Therefore, this study suggests that OA impacts
myogenesis and adipogenesis in PMSCs by modulating the effects of PA. However, more
studied are required to find out the precise contribution of OA and PA in myogenesis. In
addition, the regulatory factors and mechanisms determining myogenic and adipogenic
differentiation of PMSCs need further exploration.
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