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Abstract: Increased food production and consumption patterns have resulted in higher urban food
phosphorus footprints, leading to a series of resource and environmental problems worldwide. We
quantified the food phosphorus footprint of the African city of Kisumu using substance flow analysis.
Our aim was to develop Kisumu’s sustainable phosphorus management framework so that the city
would reduce phosphorus losses into the food system. Our results show that in the year 2023, the
import and export of food phosphorus in the Kisumu food system was 2730.26 ± 2.7% t P yr−1

and 3297.05 ± 2.4% t P yr−1, respectively. There was −566.79 ± −18% t P yr−1 food phosphorus
deficit in the Kisumu food system. Crop planting subsystem runoff/leaching/erosion loss, household
consumption subsystem waste loss, and pit latrine subsystem blackwater loss are the major pathways
of phosphorus losses into the environment and the main contributors to the food phosphorus
footprint in the city. The 2030 scenario analysis shows that implementing a comprehensive scenario
scheme throughout the entire lifecycle process from phosphorus input to waste disposal is the best
choice for reducing phosphorus losses and suppressing the growth of food phosphorus footprint
in the future. Our study shows that the food phosphorus footprint in the Kisumu food system
was 0.67 kg P cap−1yr−1 in 2023, which is still at a low level but may enter a continuous upward
trend with the improvement of socio-economic development of the city. In our framework, we
have proposed a few essential measures that include urine separation, installation of septic tank,
adjustment of dietary structure, flexible layout of sanitary disposal facilities, and separation of organic
waste streams to reduce food phosphorus footprints in Kisumu. Given the similarity of cities along
the shores of Lake Victoria, our calculation methods and management strategies can be applied to
other cities in the region.

Keywords: phosphorus footprint; food system; substance flow analysis; phosphorus management;
east African city

1. Introduction

Application of phosphorous fertilizers in agricultural fields around the world has
greatly contributed to crop production and global food security [1]. Being a limited and
rarely available non-renewable resource, the nutrient phosphorous has become a poten-
tially important element in food production and consumption processes worldwide. Rapid
urbanization during the 21st century has significantly increased food phosphorus consump-
tion and emissions worldwide, consequently altering the often naturally intact phosphorus
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cycle in urban areas [2,3]. Scholars argue that the modified phosphorous cycle in urban ar-
eas is likely to result in two major overarching problems among residents. Firstly, this may
lead to a reduction in the supply as a resource, and secondly, it may induce eutrophication
due to excessive use in human food production and consumption [4].

A recent United Nations Environment Program (UNEP) resolution highlights im-
proved management and cooperation in nutrients including phosphorus in urban areas
worldwide [5], so that urban ecosystems and waterways are kept ecologically healthy and
sustainable [6]. Today, how growing human activities interfere with the natural phospho-
rus cycle and its adverse impacts on urban environments and waterways, and how the
degraded urban ecosystems could be restored and sustainably managed have become
fundamentally significant to address urgently. Several studies in the past attempted to
address food phosphorous footprint management in urban systems by using a range of
methods. For instance, the substance flow analysis (SFA) approach, used initially to assess
process, structure, and environmental emission pathways of food in the phosphorus cycle
in Wuwei County (China), failed to deliver a perfect outcome due to variations in individ-
ual datasets [7], and quantitative approaches being used [8,9]. Hence, estimation of the
food phosphorus footprint or the per capita phosphorus mass (kg P cap−1yr−1) emitted
into the environment from the life cycle of food consumption by residents may vary widely
depending on the methods being used for individual studies [10–12].

There are mainly two types of methods being used for calculating food phosphorus
footprint. The phosphorus calculator (P-Calculator) method estimates food consumption
phosphorus footprint and food production phosphorus footprint, where primarily, the
consumption of each food is multiplied by its corresponding phosphorus content to obtain
the food consumption phosphorus footprint [13]. The phosphorus footprint of food con-
sumption is then multiplied by the virtual phosphorus factor (the phosphorus coefficient
lost to the environment during food production and before food is consumed) to obtain
the phosphorus footprint of food production [14]. Then, the food phosphorus footprint is
eventually obtained [11]. For instance, combining food consumption data released by the
Food and Agriculture Organization (FAO) and virtual phosphorus factors studied by Oita
et al. [11] and Elrys et al. [13], Wirasenjaya et al. [15] estimated the contribution of different
foods to food phosphorus footprint in Indonesia, where they found the footprint to be in an
increasing trend from 2.13 kg P cap−1yr−1 in 2013 to 2.35 kg P cap−1yr−1 in 2030. However,
the P-Calculator method alone cannot display the complete picture of the phosphorus cycle
in the urban system, as the method does not address the key phosphorous reduction mea-
sures [16]. Unlike the P-calculator, the second SFA method evaluates the characteristics of
urban phosphorus cycling with per capita phosphorus mass released into the environment
at each stage of food production and consumption, followed by estimation of the food
phosphorus footprint [17]. Given the improved performance, the SFA method has been
applied in different countries, including Finland, Belgium, and USA. For instance, Grön-
man et al. [18] and Joensuu et al. [19] calculated food phosphorus footprint by assessing the
phosphorus cycle in the production and consumption process of oats (0.006 kg P yr−1) and
beef (0.049 kg P yr−1) in Finland, while Papangelou et al. [16] quantified the phosphorus
cycle by assessing the phosphorus cycling process in food production and consumption and
waste management in Brussels (7.7 kg P cap−1yr−1), Belgium (5.2 kg P cap−1yr−1), and the
US (6.1 kg P cap−1yr−1). Although most of these studies systematically provided important
measures to improve quantification of food phosphorous footprint and phosphorous recov-
ery and utilization efficiency in richer countries, there has been a fundamental problem
for the estimation of food phosphorous footprint in developing countries, such as Kenya
(Africa), due to poor access to research data and limited research funding. In addition, the
background values of nutrients and composition in the food, and a comparative global level
of food phosphorus footprint in urban settings are still not fully established with clarity in
Africa. Apart from a few studies, which have considered the impact of changes in urban
population, consumption structure, and waste management and treatment technology on
the food phosphorus footprint in Africa, most studies are based on phosphorous flow [20],
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and often rely on literature search data with limited certainty [21]. Hence, it is important
to minimize uncertainty through reliable quantification of food phosphorous footprint in
African cities.

Population growth and urbanization are the two major reasons causing African cities
to face enormous resource and environmental challenges in the 21st century [22]. With the
arrival of the second wave of urbanization by 2030, most of the world’s population growth
in the coming decades is expected to occur in the coastal and Great Lakes lakeside areas
of low- and middle-income countries in Africa [23,24]. Many residential areas in African
countries are densely populated and rapidly expanding with spiraling poverty, inequality,
informality, and spatial fragmentation of resources [25], indicating serious environmental
consequences [26]. For example, the traditional food culture practices in African cities
have been abandoned, with increased adoption of the multi-national food culture [27],
resulting in the continuous increase in the food phosphorus demand followed by the food
phosphorus footprint [28]. While the food phosphorous demand and footprint are on the
rise, the corresponding waste management practices and capacity in African cities are
becoming very weak, leading to a large amount of phosphorus being accumulated and
lost in the system, consequently hampering the sustainability of national and regional
ecological environments [20].

Kisumu, an east African city in Kenya, located in the edge of Lake Victoria, has re-
cently experienced rapid urban growth and a range of environmental problems [23,29]
with very high release of nutrients into the Winam Gulf, causing severe eutrophication and
proliferation of an aquatic weed, the water hyacinth, in lake shores [30]. These nutrients
are generated from a variety of anthropogenic sources, including agricultural production,
residential consumption, and solid and liquid waste disposals [31,32]. Although agricul-
tural runoff/leaching/erosion, animal manure loss, and urban waste loss are thought to be
the main sources of phosphorus nutrients entering Lake Victoria, the specific point sources
and the amounts of phosphorus nutrients produced by various activities have not yet been
investigated for Kisumu [33,34].

A framework on the dynamics of nutrients including the food phosphorous footprint
in the African city and integrating this with the city’s human development index (HDI) is
becoming an increasingly useful indicator of the city’s development. For instance, fitting
of nutrition footprint and HDI composed of life expectancy, education level, and people’s
overall quality of life presents an environmental Kuznets curve, where the condition of
improved social and economic level of the city, the nutrition footprint curve, shows an
inverted U-shaped trend [35,36]. However, until recently, the development stage of regional
nutrition footprint, as well as the food phosphorus footprint development level of Kisumu
and its position in the global context based on HDI have been largely unexplored. Therefore,
the research questions of this study are as follows. (1) How can we construct a Kisumu
food system phosphorus flow analysis model based on the SFA method, and determine the
key points of phosphorus loss or accumulation in the system? (2) What is the composition
of residents’ food phosphorus footprint and its changes in differential future scenarios?
(3) What are the differences between the stage of food phosphorus footprint level and other
research results, and how can we reduce food phosphorus footprint?

2. Materials and Methods
2.1. Study Site

Kisumu, the third largest city, serves as the main economic and transportation center
in western Kenya. Being in the equatorial (0◦20′ S~0◦50′ S and 33◦20′ E~35◦20′ E) region,
and about 1132~1819 m above sea level, the city features unique geography and covers
approximately 567 km2 water and 2085.4 km2 land area [37] (Figure 1). The major economic
activities of Kisumu are farming, trade, and fishing, and the population of the city is
1,248,474 persons in the eight sub-regions [38]. Furthermore, Kisumu had the 5th highest
average GDP/capita (USD 2029/capita) amongst Kenyan counties in the years 2015–2017
and is one of the most urbanized areas, where 50% of land is urbanized [29]. Today, Kisumu
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poses a severe challenge to the harmonious coexistence of people and natural ecosystems,
due to the change in urban development towards high-speed and extensive modes of
construction and transportation. For example, organic pollutants rich in phosphorus
leaking into Lake Victoria cause eutrophication-related problems, including eutrophication
and water hypoxia in the Winam Gulf of Lake Victoria [30].
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2.2. Substance Flow Analysis

The substance flow analysis (SFA) method is an analytical tool that understands and
characterizes the flow of specific substances (usually elements) within a specific system,
and the whole system obeys the mass balance principle. An analysis system is defined
by a set of elements including subsystems, flows, and stocks, as well as their interactions
in terms of spatial (administrative district) and temporal (natural year) boundaries. The
calculation methods can be classified into three kinds [7]: (a) calculating the flows or
stocks by multiplying fixed activity level data and substance concentration parameters, for
instance, F1; (b) quantifying flows or stocks based on other flows or stocks to obtain the
relative quantities, for instance, F14; (c) accounting for the flows or stocks by balancing all
flows or stocks of a subsystem, for instance, F11. Detailed information of the equations can
be found in the Supplementary Material (Table S2).

In this case, Kisumu, we quantified the phosphorus flow in the food system within
the political boundaries of Kisumu in 2023. Based on our field assessment of the Kisumu
food system, we finally identified six subsystems, nineteen flows, and five stocks (Figure 2).
It is worth noting that some flows/subsystems were either added or dropped in this study,
to suit the situation of the Kisumu food system. For example, although aquaculture and
industrial sectors have some influences on phosphorus flow [20], they are not considered
in the model in this study because the data are not available in an African city that could be
compared. Generally speaking, to adapt to the characteristics of research cases, adding or re-
ducing analysis system elements is currently a common practice [28]. The model calculation
data and equations are detailed in the Supplementary Material (Tables S1 and S2).
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Figure 2. Food system phosphorus flow model of Kisumu, where I represents Input and E represents
Export in the figure. The crop planting subsystem is the major consumer of phosphorus fertilizers
and is also an important way for human and animal excrement to return to the phosphorus cycling
network. The produced crop products are delivered to the household or outside Kisumu as food.
In the meantime, the animal breeding subsystem obtains feed from the planting subsystem and
outside Kisumu, and then produces animal products for household consumption; the waste disposal
stage refers to the stage where phosphorus containing waste is treated through subsystems such as
pit latrines, WWTPs, and landfills. Then, the phosphorus substance lifecycle in the Kisumu food
system ends.

2.3. Data Uncertainty and Error

In most existing SFA literature, the lack of sufficient, reliable, and region-specific
high-quality data is considered a major obstacle to research in this field, affecting the
accuracy and reliability of SFA results, and thus affecting the authority of research results in
supporting relevant policies. Therefore, in the process of data collection in this study, special
attention should be paid to issues related to data availability and quality, and the best data
should be selected using a data collection method that is consistent with the actual situation
and standardization of this study case. We adopted the uncertainty concept proposed by
Hedbrant and Sörme [39] and referred to Klinglmair et al. [40]; Laner et al. [21] categorized
data sources into 5 levels with different interval factor (Table 1). In this study, data in Level 1
were from the KNBS [38], e.g., city population, and are multiplied or divided by 1 (×÷1.02).
Data in Level 2 were from internationally renowned institutions/organizations/journals,
e.g., an average live weight of animals, and are multiplied or divided by 1.03 and so on, up
to data in level 5, which were from expert estimates/educated people’s guesses.
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Table 1. Classification of data uncertainties according to the data source and the level of specificity.

Level Interval Factor Information Source

1 ×÷1.02 Kenya or Kisumu Bureau of Statistics; field survey in Kisumu;
scientific literature/reports on Kenya/Kisumu

2 ×÷1.03 Scientific literature/reports on African countries/tropical regions
3 ×÷1.04 Scientific literature/reports on other parts of the world outside Africa/tropical regions
4 ×÷1.07 Information provided by head of enterprise
5 ×÷1.12 Estimates/values based on typical/average figures

Note: Adapted from [21,40].

For example, Kisumu has 1,248,474 persons, as reported by KNBS [38], and its uncer-
tainty is ×÷1.02. Similarly, 60% of animal manure was estimated to return to cultivated soil
by expert or educated guesses, and its uncertainty is ×÷1.12. In situations where datasets
are being added or multiplied, the uncertainty was calculated using equations outlined by
Antikainen et al. [41]. Data uncertainty increases when multiplying datasets and decreases
when adding datasets.

Multiplication:

Uncertainty f actor = 1 +
√
( fa − 1)2 + fb − 1)2 (1)

where fa and fb represent the assigned uncertainty interval for phosphorus flow 1 and
flow 2, respectively.

For example, the cereal yield was 855,083,000 ×÷ 1.02 kg in Kisumu in 2023, and there
are 2.22 ×÷ 1.03 g P kg−1product−1; the phosphorus in cereal was 1,898,284.26 kg.

Multiplication:

Uncertainty f actor = 1 +
√
(1.02 − 1)2 + (1.03 − 1)2 = 1.04 (2)

Then, the final value of phosphorus will be 1,898,284.26 ×÷ 1.04
Addition:

Uncertainty f actor = 1 +

√
[ma × ( fa − 1)]2 + [mb × ( fb − 1)]2

ma + mb
(3)

where ma and mb represent mass phosphorus 1 and 2, respectively.
For example, the phosphorus in cattle and goat manure is 2559 ×÷ 1.13 kg and

397 ×÷ 1.14 kg, respectively; then, we can calculate the uncertainty factor as follows:

Uncertainty f actor = 1 +

√
[2559 × (1.13 − 1)]2 + [397 × (1.14 − 1)]2

2559 + 397
= 1.11 (4)

Then, the final value of phosphorus will be 2956 ×÷ 1.11
Furthermore, STAN 2.5 software was used in this study to modify the asymmetrical

interval into a symmetric interval [21]; uncertain results can be seen in the Supplementary
Material (Tables S1 and S2).

2.4. Definition of Food Phosphorus Footprint

Considering that one of the purposes of this study is to explore the impact of phos-
phorus emissions from the Kisumu food system on water bodies, we intend to define the
food phosphorus footprint (FPF) in the Kisumu food system as the phosphorus loss into
water bodies by each subsystem, that is, the phosphorus lost from the subsystems of crop
planting (Sub1), animal breeding (Sub2), household consumption (Sub3), landfill (Sub4), pit
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latrines (Sub5), and WWTPs (Sub6) to the water bodies (Figure 2). The calculation principle
is as follows:

FPF = WSub1 + WSub2 + WSub3 + WSub4 + WSub5 + WSub6 (5)

where FPF represents the food phosphorus footprint of the Kisumu food system; WSub1 ∼ WSub6
represent the mass of phosphorus loss by each subsystem into the water bodies.

2.5. Scenarios and Indicators

Considering the data availability of Kisumu in the past year, 2023 is considered a
reference scenario (defined as Scenario 0), and 2030 is chosen as the scenario analysis year
due to its potential suitability for recent Kisumu planning and population forecasting. The
scenarios’ contents are described below and summarized in Table 2.

Table 2. Scenario analysis information of food phosphorus footprint in Kisumu.

Scenario Year Subsystem Focus Population a Other Changes b

0.Reference 2023 - - Current None
1. BAU scenario 2030 All subsystem population Increase None

2. Vegetarian scenario 2030 Household subsystem Human behaviour Increase Vegetarian P uptake

3. Kitchen waste scenario 2030 Household subsystem Collection Increase Improvement of kitchen waste
collection rate

4. Urine separation scenario 2030 Pit latrine subsystem Collection Increase Urine collected separately

5. Wastewater treatment scenario 2030 WWTP subsystem Treatment Increase 40% of P in sewage sludge
recovered for agricultural use

6. Waste incineration scenario 2030 Landfill subsystem Treatment Increase Recovery of P from solid waste
incineration ash

7. Combined scenario 2030 All subsystem Combined
1–6 scenario Increase Combined 1–6 scenario

Note: a The population data were obtained from KNBS [38]; b Assumptions based on the analysis in Section 2.5.

Scenario 1: BAU (business as usual) scenario, only considering changes in population
size; the population of Kisumu is expected to grow to 1,418,972 people by 2030 [42], with
other variables changing with population changes.

Scenario 2: Vegetarian scenario, based on the BAU scenario, assuming that the dietary
phosphorus intake of Kisumu residents follows the recommended phosphorus intake,
namely close to the level of vegetarians [43]: from the current 2.1 g P cap−1day−1 to
1.5 g P cap−1day−1 in 2030. This assumption is because food consumption is the main
source of phosphorus in the Kisumu food system.

Scenario 3: Kitchen waste scenario, based on the BAU scenario. We assumed that the
ratio of Kisumu food waste collected would increase from the current 20% to 65% in 2030 for
organic fertilizer production [44,45]. This scenario was inspired by Kalmykova et al. [46].

Scenario 4: Urine separation scenario, based on the BAU scenario. We assume that
urine diversion measures are implemented in the pit latrine subsystem and reused in
farmland. This situation was motivated by existing studies, which have shown that urine
has enormous potential for human manure recycling in densely urbanized areas [47].

Scenario 5: Wastewater treatment scenario, based on the BAU scenario. We assume that
the standard for phosphorus content in treated wastewater is 1 mg P L−1, This situation was
motivated by the Kisumu Environmental Health and Sanitation Bill proposed by CGK [48].

Scenario 6: Waste incineration ash scenario, based on the BAU scenario. We assume
that all phosphorus contained in food waste sent to landfills is recovered after incineration,
to examine the max effects. This scenario was inspired by Wu et al. [49].

Scenario 7: Combined scenario. Vegetarian scenario, kitchen waste scenario, urine sep-
aration scenario, wastewater treatment scenario, and waste incineration scenario
were combined.
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3. Results
3.1. Food Phosphorus Flows in Kisumu Food System

In the year 2023, the food system of Kisumu imported approximately
2730.26 ± 2.7% t P/year, of which 1697.84 ± 3.6% t P yr−1 was fertilizers, 428.19 ± 3% t P yr−1

was animal feed, and 604.24 ± 8.6% t P yr−1 was other imported food products (Figure 3). In
the same year, Kisumu exported approximately 3297.05 ± 2.4% t P yr−1 food, mainly crop and
animal products, of which 2065.28 ± 3% t P yr−1 was crop product, and 397.89 ± 9% t P yr−1

was animal product export. Furthermore, considerable phosphorus was lost outside the food
system, especially in crop soil runoff/leaching/erosion, domestic waste loss, blackwater dis-
charge, and treated sewage, which were about 211.83 ± 3.6% t P yr−1, 164.8 ± 10.2% t P yr−1,
444.07 ± 7.3% t P yr−1, and 11.24 ± 3.6% t P yr−1 to the water bodies, respectively. Further-
more, the crop planting subsystem and animal breeding subsystem transported
134.17 ± 12.7% t P yr−1 and 3.83 ± 11% t P yr−1 to each other, achieving phosphorus
recycling and reuse between these subsystem mutually. Moreover, these two subsystems
made substantial inputs, 202.88 ± 3% t P/year and 158.09 ± 2% t P/year, to the household
consumption subsystem, respectively. After food consumption from residents, approx-
imately 329.6 ± 7.8% t P yr−1, 20.44 ± 4.5% t P yr−1, and 62.32 ± 8.6% t P yr−1 enters
the waste disposal process, and approximately 108.77 ± 9.9% t P yr−1 enters the crop
planting subsystem to meet the nutrient needs of plant growth in Kisumu. It is worth
noting that an extra 803.73 ± 11.2% t P yr−1 was taken from the soil reserves every year,
translating into 7.55 kg P ha−1yr−1 mined from the agricultural land, which is consis-
tent with the conclusion drawn by Mnthambala et al. [28]. The stock of the pit latrine
subsystem and landfill subsystem was highly considerable, as the phosphorous flows of
164.8 ± 17% t P yr−1 and 62.31 ± 9% t P yr−1 were well reflected, becoming important phos-
phorus sources for the recycling of phosphorus. In contrast, the stock of the animal breeding
subsystem and WWTP subsystem was only 0.64 ± 11% t P yr−1 and 9.2 ± 7% t P yr−1,
with relatively weak phosphorous flow in the system. The final food system’s phosphorus
inflow was insufficient, resulting in the net stock of the food system being negative, at
−566.79 ± 18% t P yr−1.

3.2. Food Phosphorus Footprint in Kisumu Food System

Figure 4 shows that the food phosphorus footprint in the food system of Kisumu
was 0.67 kg P cap−1yr−1 in 2023. More specifically, the contribution of each subsystem
to the food phosphorus footprint varies significantly. The household consumption sub-
system contributed 53.25% with 0.36 kg P cap−1yr−1 to the food phosphorus footprint.
The reason is that the development scale of Kisumu’s health infrastructure lags far behind
the urban population growth rate [48], and a large volume of domestic wastes, includ-
ing kitchen wastes, and blackwater were lost to the water bodies during household use
and consumption activity. The crop planting subsystem is a secondary component of the
food phosphorus footprint, producing a food phosphorus footprint of 0.17 P cap−1yr−1,
accounting for approximately 25.40%. This is primarily because the phosphorus appli-
cation rate in Kisumu farmland is as high as 15.95 kg P yr−1 [50]. Secondly, there are
topographic differences in the city, such as high terrain in the south and low terrain in the
north, when the topographic conditions, combined with high annual precipitation (~max.
550 mm) [48], exacerbate the phosphorus loss from farmland to water bodies. Approxi-
mately 1.99 kg P ha−1yr−1 phosphorous is reported to be lost from farmland to the local
waterways [51]. The food phosphorus footprint generated by the pit latrine subsystem is
0.13 kg P cap−1yr−1, accounting for approximately 19.76% in Kisumu. Many pit latrines in
Kisumu lack seal, and the incidence of rainy season overflow is usually common. Further,
human defecation and dumping in rivers are also a common practice, causing the high
food phosphorus footprint in the pit latrine subsystem [20]. Unlike other subsystems, the
food phosphorus footprint generated by the WWTP subsystem is relatively small, where
only 1.35% or 0.01 kg P cap−1yr−1 food phosphorous footprint is generated. The amount
of kitchen waste entering landfills is limited, and the amount of phosphorus lost through
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leaching is also small, so the proportion of phosphorus footprint for the WWTP subsystem
generated was not significant.
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3.3. Food Phosphorus Footprint in Different Scenarios in Kisumu Food System

With 2023 as the reference scenario (0.67 kg P cap−1yr−1), the food phosphorus
footprint in the BAU scenario will increase to 0.70 kg P cap−1yr−1 in Kisumu by 2030.
More specifically (Figure 5), in the vegetarian scenario, the food phosphorus footprint
decreased by 42.86% to 0.40 kg P cap−1yr−1 when compared to the BAU scenario, and
even significantly lower than 0.67 kg P cap−1yr−1 in the 2023 scenario. In the kitchen waste
scenario, there seem to be some benefits to the city’s environment due to the increase in
the collection rates of kitchen waste from the municipality. The amount of phosphorus
lost by the household consumption subsystem to Kisumu’s waterways has been found
to be significantly reduced. The phosphorus footprint reduced from 0.70 kg P cap−1yr−1

in the 2023 reference scenario to 0.58 kg P cap−1yr−1 in the 2030 BAU scenario. Urine
separation measures also have a significant impact on the reduction in the phosphorus
footprint. The food phosphorus footprint decreased by 14.29% or 0.60 kg P cap−1yr−1

when comparing the 2023 reference scenario and the BAU scenario. In the wastewater
treatment scenario, the food phosphorus footprint decreased to 0.68 kg P cap−1yr−1,
indicating that the improvement of sewage treatment level has a relatively significant
effect on the reduction in the food phosphorus footprint in Kisumu. Furthermore, the food
phosphorus footprint in Kisumu is reduced from 0.70 kg P cap−1yr−1 in the BAU scenario
to 0.69 kg P cap−1yr−1 in the waste incineration ash scenario; this is mainly because the
limited phosphorus loss may have occurred from the landfill leachate [52]. It is worth
noting that in the combined scenario, the food phosphorus footprint of the food system
decreased to 0.34 kg P cap−1yr−1, and is only 58.62% and 50.75% in the combined scenario
(2030) and reference scenario (2023), respectively.
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4. Discussion
4.1. Global Comparison of Food Phosphorus Footprint

Food phosphorus footprint offers comparative analysis of research results among dif-
ferent geographic regions and scales. In our study, as far as possible, we chose the regions
with different socio-economic development levels currently available as comparison objects
to reflect the food phosphorus footprint level of Kisumu in the world. The Kisumu food
phosphorus footprint is lower (0.67 kg P cap−1yr−1) than the food phosphorous footprint
of Brussels, Luxembourg, the USA, Belgium, Japan, China, and India (Table 3), suggesting
that cities in developing countries including Africa are still far behind in the consumption
of food phosphorous. The lower food phosphorus footprint in Kisumu is due the city being
lower in animal-based dietary consumption [53], as well as the limited use of phosphate
fertilizer in agriculture [54]. The World Health Organization reported that Kisumu’s protein
consumption is lower than the recommended intake of 75 g cap−1day−1 [55]. Study sug-
gests that low food supply and low animal-based dietary consumption reduces phosphorus
loss from the food consumed, and also during the production stages of foods with high
protein content [13]. Being a small-scale food system, Kisumu has lower phosphorus losses
during food production stages [14]. The food phosphorus footprints of some develop-
ing countries in Asia and Africa such as Indonesia (0.40 kg P cap−1yr−1) and Rwanda
(0.31 kg P cap−1yr−1) are comparable to Kisumu, suggesting that people of cities in less
developed economies have low dietary proteins. A very low food phosphorus footprint
(1.60 kg P cap−1yr−1) of India compared to Brussels, Luxembourg, the USA, Belgium,
Japan, and China strongly suggests that India, as a typical vegetarian country, consumes
low animal protein [11]. Brussels has the highest food phosphorus footprint, followed by
Luxembourg, the USA, Belgium, Japan, and China. These countries are not only richer
economies, but they also consume more animal proteins with higher food phosphorous
footprint [16].

Table 3. Comparison of the food phosphorus footprints of Kisumu with other regions around
the world.

Study Local Year Scale Method Food Phosphorus Footprint (Kg P cap−1yr−1)

[16] Brussels 2011 City Based on SFA 7.70
[56] Luxembourg 2007 Country P-Calculator model 7.64
[56] USA 2007 Country P-Calculator model 6.09
[56] Belgium 2007 Country P-Calculator model 5.21
[11] Japan 2013 Country P-Calculator model 6.05
[11] China 2013 Country P-Calculator model 4.77
[11] India 2013 Country P-Calculator model 1.60
[15] Indonesia 2013 Country P-Calculator model 0.40
[14] Rwanda 2020 Country P-Calculator model 0.31

This study Kisumu 2023 City Based on SFA 0.67

The global trend of food phosphorus footprint changes along with urbanization and
socio-economic development (Section 4.1). When the food phosphorus footprint is fitted
with the corresponding human development index (HDI) of countries, this shows two
distinct stages: primarily the HDI shift, and the inverted U-shaped trend (Figure 6). When
the HDI was between 0 and 0.9, the food phosphorus footprint of most regions worldwide
increased along with the increase in the HDI, indicating a clear positive correlation be-
tween food phosphorus footprint and the HDI. However, when the HDI is in the range of
0–0.6, the food phosphorus footprint becomes relatively slow, mainly concentrating in the
African continent, such as Burundi, Rwanda, Mozambique, as well as Kisumu. The HDI
(0.6–0.9) reflects accelerated food phosphorus footprint due to improved living standard
of the people [35]. Especially the changes in diets, both types and consumption pattern,
such as shifting from vegetarian to animal-based diets, was eminent [11]. Developing
countries such as Egypt, Indonesia, and China have all had a rapidly increasing trend of
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food phosphorous footprint. For instance, a global 3 kg P cap−1yr−1 food phosphorous
footprint at 0.66 HDI has been found to increase to 6.05 kg P cap−1yr−1 at 0.71 HDI, in-
dicating that the food phosphorus footprint of low-level cities, including Kisumu, may
increase along with the socio-economic development in future. However, in the second
stage, when the HDI exceeds 0.9, the food phosphorus footprint shows a downward trend,
suggesting that restrictions in the excessive use of phosphorus and development of inno-
vative technologies, such as chemical precision in agriculture, and biological phosphorus
removal method would be paramount [57]. In addition, the European Union (EU), together
with some representative countries, including Australia, Canada, France, the Netherlands,
Norway, and Iceland, have proposed legislative amendments to phosphorus use, calling
for a low-phosphorus diet and strengthening the recycling of organic wastes, to achieve
a low-phosphorus future through green, renewable, or net-zero emission technologies
worldwide [58].
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4.2. Measures of Phosphorus Footprint

Although the current food phosphorus footprint of the Kisumu food system in our
study was at a low level, it would still impact negatively on local waterways. With the
city’s socio-economic development, the food phosphorus footprint in Kisumu may further
accelerate. Hence, appropriate measures, such as the reuse and recycling of nutrients
or a shift to a shorter and more local food system, should be adopted to reduce the
food phosphorus footprint in Kisumu [16]. Closure in phosphorus import and recycling
within food phosphorous subsystems is crucial for Kisumu. For instance, the subsystems,
crop planting, animal breeding, and household consumption, when interacting with each
other, only achieve partial phosphorus waste cycling. The phosphorus utilized in the crop
planting subsystem is far from sufficient to compensate for the soil nutrient deficit caused by
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crop nutrient absorption (Figure 3). Hence, the waste generated from the animal breeding
subsystem should be utilized for urban agriculture by constructing a closed loop of planting
and breeding waste [59]. It is worth noting that about 108.77 ± 9% t P yr−1 phosphorus
in human manure in Kusum is derived from the household consumption subsystem. The
human manure is then utilized by the agricultural planting subsystem in the city. However,
there is still as high as 329.6 ± 7.8% t P yr−1 entering pit latrines, where 50% of this lost to
waterways in Kisumu (Figure 3), causing eutrophication and management challenges. Our
scenario analysis results suggest that separating urine phosphorous from the pit latrine
subsystem would be an efficient and cost-effective measure in Kisumu. The WHO pointed
out that human urine is basically sterile, and if urine and manure are separated in the
pit latrines [60], then the urine can be safely stored and used for agricultural production.
Furthermore, measures such as the anaerobic biological treatment of human manure and
urine have also been suggested to be useful for the region [3]. In the tropics, the bacterial
activity is relatively high in waste decomposition processes, so anaerobic treatment could be
effective for the mixture of urine and manure [61]. Installing a septic tank (ST) can effectively
solve the household hygiene treatment system [62], and can be applied either separately to
individual residential areas or centrally to residential communities. Shutting down crude
pit latrines by replacing the ST system will greatly reduce the risk of phosphorus loss,
thereby slowing down the growth of food phosphorus footprint in the city. Furthermore,
a 42.86% reduction in the food phosphorus footprint in the vegetable scenario (Figure 5)
strongly suggests that the adjustment of the dietary structure in the city, especially a
decrease in animal-based product consumption or maintenance of nutrient intake as per
the nutritional requirements of city people, is needed [56].

As mentioned earlier, the waste loss from the household consumption subsystem
is the largest contributor to the phosphorus footprint of the Kisumu food system, which
is largely caused by the scarcity of solid and liquid disposal facilities within the city.
Buathong et al. [63] argue that in the construction process of urban waste disposal facilities
in low-level developing countries, multiple flexible measures should be adopted. If the
population density is high in the central area of Kisumu, constructing a centralized sewage
treatment plant is the best solution for the inner urban area, while for the urban central
edge area, the combination of centralized sewage treatment plants and decentralized
sewage treatment plants may be the best choice. It has been argued that suburban areas
cannot be integrated into the centralized sewage systems and treatment plants due to
the distance and high construction costs; hence, constructing small-scale decentralized
on-site sanitation systems is considered a feasible option for cities like Kisumu [64]. Our
on-site investigation also found that the current waste entering the Kisumu landfills is
mostly a mixture of multiple waste streams, which makes it difficult to recover phosphorus.
Therefore, important resource streams related to phosphorus need to be separated and
recycled separately to reduce the food phosphorus footprint [65]. The scenario analysis
results in our study suggesting that developing a detailed framework in the implementation
of a comprehensive scenario plan throughout the entire life cycle process from phosphorus
input to waste disposal is the best choice to reduce phosphorus loss and avoid an increase in
the food phosphorus footprint in Kisumu in the future. Furthermore, given the similarities
in social, economic, cultural, and geographical characteristics of cities along Lake Victoria,
we believe that these measures can also be used for phosphorus resource management and
environmental protection in other rapidly urbanizing areas around the Lake Victoria basin.

4.3. Limitations and Implications of Model Choices

Sufficient baseline data are of great significance for accurately analyzing the phospho-
rus flow and developing effective and credible phosphorus management policies. However,
there is a certain degree of uncertainty in our results due to the use of statistical data and pa-
rameter data from different sources. The data on phosphorus flow calculated by inputting
relevant material flow quality and corresponding modeling were from different sources, and
can have inherent uncertainties. To reduce uncertainty, we conducted statistical analysis in
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the reliability level distribution of the existing data (in Supplementary Material Table S1),
as suggested by Hedbrant and Sörme [39]. We identified any uncertainty that remained
in the phosphorus flow model of the Kisumu food system quantitatively (Figure 3 and
Supplementary Material Table S2). Our study also identified priority fields for data col-
lection. While constructing the phosphorus flow analysis model for the Kisumu food
system, the complete subsystems for phosphorus flow were limited by data availability.
For example, before crops or animal products enter the household consumption subsystem,
there may be phosphorous leakages at the food processing plant subsystem, becoming an
important source of phosphorus pollution in water bodies. Unlike other studies [16], no
information related to food processing logistics in Kisumu was available, so we were not
able to incorporate the food processing plant subsystem in our model. There were also
shortcomings in the model, such as simplifying assumptions about the transfer process of
phosphorus in the environment, which may have biased the results. For example, during
the field investigation, we found that, apart from being collected into landfills, the rest of
the household solid waste was piled into open spaces such as the banks of rivers or dumped
directly into the river in Kisumu. We hypothesized that these uncollected municipal solid
wastes would have directly or indirectly entered the water bodies. However, a certain
amount of this portion would also have entered the soil; hence, the actual migration and
transformation process and pathway were not further described in this study. Although
limited to objective factors, these defects generally exist in the SFA studies [3] and it is
difficult to avoid. Future studies should build more suitable models based on first-hand
data, to more clearly and accurately characterize the food phosphorus flow in Kisumu and
other cities in the Lake Victoria basin.

5. Conclusions

This study used substance flow analysis to quantitatively investigate the food phos-
phorus flow process in the Kisumu food system in Lake Victoria in 2023, and changes in
the Kisumu food phosphorus footprint under different scenarios in 2030 were explored. In
2023, the main sources of phosphorus input into the Kisumu food system were fertilizer and
food imports, while the phosphorus output was mainly animal and plant product exports.
The runoff/leaching/erosion of the crop planting subsystem, waste loss of the household
consumption subsystem, and blackwater loss of the pit latrine subsystem were the main
pathways of phosphorus loss in the Kisumu food system, and these three subsystems were
also the main contributors to the food phosphorus footprint of the city. Subsystems such as
pit latrines and landfill were the key nodes for phosphorus accumulation in the Kisumu
food system and have not been effectively utilized. Implementing strong governance
measures in the upstream subsystem of the food system is the key to reducing the food
phosphorus footprint in the city. The 2030 scenario analysis results indicate that the vegetar-
ian scenario is the most effective single scenario solution for reducing the food phosphorus
footprint in the future, while the implementation of combined scenarios, a comprehensive
package of scenario solutions throughout the entire life cycle, from phosphorus source
input to waste disposal, is the best choice for reducing phosphorus loss and suppressing
an increase in food phosphorus footprint in the future. Our results indicate that Kisumu
may enter a continuous upward trend with the improvement of socio-economic develop-
ment of the city. Therefore, we propose a series of possible measures to reduce the food
phosphorus footprint, including urine separation, installation of ST, proactive adjustment
of dietary structure, especially reducing the consumption of animal-based products or at
least maintaining phosphorus intake close to scientific recommendations, flexible layout of
sanitary disposal facilities, and separation of organic and other waste streams in the city.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/foods13142225/s1. Table S1. Parameters of phosphorus flow and
stock calculations. Table S2. Equation of phosphorus flow model, output results and uncertainty.
Refs. [66–78] are cited in Supplementary Material.
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