Deciphering Rind Color Heterogeneity of Smear-Ripened Munster Cheese and Its Association with Microbiota
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling and Sample Preparation
2.2. Imaging Setup
2.3. Rind pH and Salt Concentration Measurements
2.4. Bacterial and Yeast Mold Enumeration
2.5. DNA Extraction
2.6. Amplicon Sequencing
2.7. Sequence Analysis
2.8. K-means Clustering
2.9. Statistical Analysis
3. Results
3.1. Color Palette of the PDO Munster Rind Cheese
3.2. Color Heterogeneity of the PDO Munster Cheese Rinds
3.3. K-means Clustering of the PDO Munster Cheese Rinds
3.4. Color Properties of the Three Clusters of Munster Cheeses
3.5. Community Structure of Rinds with Different Levels of Color Heterogeneity
3.6. The Influence of Salt and pH on Color Heterogeneity
3.7. Link between Community Structure and Heterogeneity at the Intra-Cheese Spatial Scale
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Racette, C.M.; Homwongpanich, K.; Drake, M.A. Consumer Perception of Cheddar Cheese Color. J. Dairy Sci. 2024; in press. [Google Scholar] [CrossRef]
- INAO Appellation D’origine Protégée/Contrôlée (AOP/AOC). Available online: https://www.inao.gouv.fr/produit/3283 (accessed on 27 July 2023).
- Dufossé, L.; Galaup, P.; Carlet, E.; Flamin, C.; Valla, A. Spectrocolorimetry in the CIE L*a*b* Color Space as Useful Tool for Monitoring the Ripening Process and the Quality of PDO Red-Smear Soft Cheeses. Food Res. Int. 2005, 38, 919–924. [Google Scholar] [CrossRef]
- ISO/CIE 11664-4:2019. Available online: https://www.boutique.afnor.org/fr-fr/norme/iso-cie-1166442019/colorimetrie-partie-4-espace-chromatique-lab-cie-1976/xs134910/131885 (accessed on 18 June 2024).
- Galaup, P.; Sutthiwong, N.; Leclercq-Perlat, M.-N.; Valla, A.; Caro, Y.; Fouillaud, M.; Guérard, F.; Dufossé, L. First Isolation of Brevibacterium Sp. Pigments in the Rind of an Industrial Red-Smear-Ripened Soft Cheese. Int. J. Dairy Technol. 2015, 68, 144–147. [Google Scholar] [CrossRef]
- Sutthiwong, N.; Dufossé, L. Production of Carotenoids by Arthrobacter arilaitensis Strains Isolated from Smear-Ripened Cheeses. FEMS Microbiol. Lett. 2014, 360, 174–181. [Google Scholar] [CrossRef] [PubMed]
- Giuffrida, D.; Sutthiwong, N.; Dugo, P.; Donato, P.; Girard-Valenciennes, E.; Cacciola, F.; Mao, Y.L.; Monnet, C.; Fouillaud, M.; Caro, Y.; et al. Characterisation of the C50 Carotenoids Produced by Strains of the Cheese-Ripening Bacterium Arthrobacter arilaitensis. Int. Dairy J. 2016, 55, 10. [Google Scholar] [CrossRef]
- Galaup, P.; Flamin, C.; Carlet, E.; Dufossé, L. HPLC Analysis of the Pigments Produced by the Microflora Isolated from the ‘Protected Designation of Origin’ French Red-Smear Soft Cheeses Munster, Epoisses, Reblochon and Livarot. Food Res. Int. 2005, 38, 855–860. [Google Scholar] [CrossRef]
- Sutthiwong, N.; Sukdee, P.; Lekhavat, S.; Dufossé, L. Identification of Red Pigments Produced by Cheese-Ripening Bacterial Strains of Glutamicibacter arilaitensis Using HPLC. Dairy 2021, 2, 396–409. [Google Scholar] [CrossRef]
- Giuffrida, D.; Monnet, C.; Laurent, F.; Cacciola, F.; Oteri, M.; Le Piver, M.; Caro, Y.; Donato, P.; Mondello, L.; Roueyre, D.; et al. Carotenoids from the Ripening Bacterium Brevibacterium linens Impart Color to the Rind of the French Cheese, Fourme de Montbrison (PDO). Nat. Prod. Res. 2020, 34, 10–15. [Google Scholar] [CrossRef] [PubMed]
- Meléndez-Martínez, A.J.; Mandić, A.I.; Bantis, F.; Böhm, V.; Borge, G.I.A.; Brnčić, M.; Bysted, A.; Cano, M.P.; Dias, M.G.; Elgersma, A.; et al. A Comprehensive Review on Carotenoids in Foods and Feeds: Status Quo, Applications, Patents, and Research Needs. Crit. Rev. Food Sci. Nutr. 2022, 62, 1999–2049. [Google Scholar] [CrossRef] [PubMed]
- Maoka, T. Carotenoids as Natural Functional Pigments. J. Nat. Med. 2019, 74, 1–16. [Google Scholar] [CrossRef]
- Sutthiwong, N.; Fouillaud, M.; Valla, A.; Caro, Y.; Dufossé, L. Bacteria Belonging to the Extremely Versatile Genus Arthrobacter as Novel Source of Natural Pigments with Extended Hue Range. Food Res. Int. 2014, 65 Pt B, 156–162. [Google Scholar] [CrossRef]
- Cleary, J.L.; Kolachina, S.; Wolfe, B.E.; Sanchez, L.M. Coproporphyrin III Produced by the Bacterium Glutamicibacter arilaitensis Binds Zinc and Is Upregulated by Fungi in Cheese Rinds. mSystems 2018, 3, e00036-18. [Google Scholar] [CrossRef]
- Bockelmann, W.; Willems, K.P.; Neve, H.; Heller, K.H. Cultures for the Ripening of Smear Cheeses. Int. Dairy J. 2005, 15, 719–732. [Google Scholar] [CrossRef]
- Mounier, J.; Coton, M.; Irlinger, F.; Landaud, S.; Bonnarme, P. Chapter 38—Smear-Ripened Cheeses. In Cheese, 4th ed.; McSweeney, P.L.H., Fox, P.F., Cotter, P.D., Everett, D.W., Eds.; Academic Press: San Diego, CA, USA, 2017; pp. 955–996. ISBN 978-0-12-417012-4. [Google Scholar]
- Sutthiwong, N.; Lekhavat, S.; Dufossé, L. Involvement of Versatile Bacteria Belonging to the Genus Arthrobacter in Milk and Dairy Products. Foods 2023, 12, 1270. [Google Scholar] [CrossRef]
- Sutthiwong, N.; Fouillaud, M.; Dufosse, L. The Influence of PH, NaCl, and the Deacidifying Yeasts Debaryomyces hansenii and Kluyveromyces marxianus on the Production of Pigments by the Cheese-Ripening Bacteria Arthrobacter arilaitensis. Foods 2018, 7, 190. [Google Scholar] [CrossRef]
- Mounier, J.; Goerges, S.; Gelsomino, R.; Vancanneyt, M.; Vandemeulebroecke, K.; Hoste, B.; Brennan, N.M.; Scherer, S.; Swings, J.; Fitzgerald, G.F.; et al. Sources of the Adventitious Microflora of a Smear-Ripened Cheese. J. Appl. Microbiol. 2006, 101, 668–681. [Google Scholar] [CrossRef]
- Leclercq-Perlat, M.-N.; Spinnler, H.-E. The Type of Cheese Curds Determined the Colouring Capacity of Brevibacterium and Arthrobacter Species. J. Dairy Res. 2010, 77, 287–294. [Google Scholar] [CrossRef]
- Sutthiwong, N.; Caro, Y.; Milhau, C.; Valla, A.; Fouillaud, M.; Dufossé, L. Arthrobacter arilaitensis Strains Isolated from Ripened Cheeses: Characterization of Their Pigmentation Using Spectrocolorimetry. Food Res. Int. 2014, 65, 184–192. [Google Scholar] [CrossRef]
- Bertuzzi, A.S.; Walsh, A.M.; Sheehan, J.J.; Cotter, P.D.; Crispie, F.; McSweeney, P.L.H.; Kilcawley, K.N.; Rea, M.C. Omics-Based Insights into Flavor Development and Microbial Succession within Surface-Ripened Cheese. mSystems 2018, 3, e00211-17. [Google Scholar] [CrossRef]
- Wiens, J.A. The Emerging Role of Patchiness in Conservation Biology. In The Ecological Basis of Conservation: Heterogeneity, Ecosystems, and Biodiversity; Pickett, S.T.A., Ostfeld, R.S., Shachak, M., Likens, G.E., Eds.; Springer US: Boston, MA, USA, 1997; pp. 93–107. ISBN 978-1-4615-6003-6. [Google Scholar]
- Ladau, J.; Eloe-Fadrosh, E.A. Spatial, Temporal, and Phylogenetic Scales of Microbial Ecology. Trends Microbiol. 2019, 27, 662–669. [Google Scholar] [CrossRef] [PubMed]
- Mounier, J.; Monnet, C.; Vallaeys, T.; Arditi, R.; Sarthou, A.-S.; Hélias, A.; Irlinger, F. Microbial Interactions within a Cheese Microbial Community. Appl. Environ. Microbiol. 2008, 74, 172–181. [Google Scholar] [CrossRef] [PubMed]
- Dugat-Bony, E.; Garnier, L.; Denonfoux, J.; Ferreira, S.; Sarthou, A.-S.; Bonnarme, P.; Irlinger, F. Highlighting the Microbial Diversity of 12 French Cheese Varieties. Int. J. Food Microbiol. 2016, 238, 265–273. [Google Scholar] [CrossRef] [PubMed]
- Cogan, T.M.; Goerges, S.; Gelsomino, R.; Larpin, S.; Hohenegger, M.; Bora, N.; Jamet, E.; Rea, M.C.; Mounier, J.; Vancanneyt, M.; et al. Biodiversity of the Surface Microbial Consortia from Limburger, Reblochon, Livarot, Tilsit, and Gubbeen Cheeses. Microbiol. Spectr. 2014, 2, 219–250. [Google Scholar] [CrossRef] [PubMed]
- Montel, M.-C.; Buchin, S.; Mallet, A.; Delbes-Paus, C.; Vuitton, D.A.; Desmasures, N.; Berthier, F. Traditional Cheeses: Rich and Diverse Microbiota with Associated Benefits. Int. J. Food Microbiol. 2014, 177, 136–154. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023. [Google Scholar]
- Barthelme, S. Imager: Image Processing Library Based on “CImg”. 2024. Available online: https://CRAN.R-project.org/package=imager (accessed on 17 June 2024).
- León, K.; Mery, D.; Pedreschi, F.; León, J. Color Measurement in L∗a∗b∗ Units from RGB Digital Images. Food Res. Int. 2006, 39, 1084–1091. [Google Scholar] [CrossRef]
- Morrison, S. Schemr: Convert Images to Usable Color Schemes. 2023. Available online: https://CRAN.R-project.org/package=schemr (accessed on 17 June 2024).
- Cosetta, C.M.; Wolfe, B.E. Deconstructing and Reconstructing Cheese Rind Microbiomes for Experiments in Microbial Ecology and Evolution. Curr. Protoc. Microbiol. 2020, 56, e95. [Google Scholar] [CrossRef] [PubMed]
- Dijamentiuk, A.; Mangavel, C.; Elfassy, A.; Michaux, F.; Burgain, J.; Rondags, E.; Delaunay, S.; Ferrigno, S.; Revol-Junelles, A.-M.; Borges, F. Invert Emulsions Alleviate Biotic Interactions in Bacterial Mixed Culture. Microb. Cell Factories 2023, 22, 16. [Google Scholar] [CrossRef] [PubMed]
- Frétin, M.; Martin, B.; Rifa, E.; Isabelle, V.-M.; Pomiès, D.; Ferlay, A.; Montel, M.-C.; Delbès, C. Bacterial Community Assembly from Cow Teat Skin to Ripened Cheeses Is Influenced by Grazing Systems. Sci. Rep. 2018, 8, 200. [Google Scholar] [CrossRef] [PubMed]
- Gardes, M.; Bruns, T.D. ITS Primers with Enhanced Specificity for Basidiomycetes--Application to the Identification of Mycorrhizae and Rusts. Mol. Ecol. 1993, 2, 113–118. [Google Scholar] [CrossRef] [PubMed]
- White, T.J.; Bruns, T.; Lee, S.; Taylor, J. Amplification and Direct Sequencing of Fungal Ribosomal Rna Genes for Phylogenetics; Elsevier: Amsterdam, The Netherlands, 1990; pp. 315–322. [Google Scholar]
- Bernard, M.; Rué, O.; Mariadassou, M.; Pascal, G. FROGS: A Powerful Tool to Analyse the Diversity of Fungi with Special Management of Internal Transcribed Spacers. Brief. Bioinform. 2021, 22, bbab318. [Google Scholar] [CrossRef]
- Escudié, F.; Auer, L.; Bernard, M.; Mariadassou, M.; Cauquil, L.; Vidal, K.; Maman, S.; Hernandez-Raquet, G.; Combes, S.; Pascal, G. FROGS: Find, Rapidly, OTUs with Galaxy Solution. Bioinformatics 2018, 34, 1287–1294. [Google Scholar] [CrossRef]
- Yoon, S.-H.; Ha, S.-M.; Kwon, S.; Lim, J.; Kim, Y.; Seo, H.; Chun, J. Introducing EzBioCloud: A Taxonomically United Database of 16S RRNA Gene Sequences and Whole-Genome Assemblies. Int. J. Syst. Evol. Microbiol. 2017, 67, 1613–1617. [Google Scholar] [CrossRef]
- Abarenkov, K.; Nilsson, R.H.; Larsson, K.-H.; Taylor, A.F.S.; May, T.W.; Frøslev, T.G.; Pawlowska, J.; Lindahl, B.; Põldmaa, K.; Truong, C.; et al. The UNITE Database for Molecular Identification and Taxonomic Communication of Fungi and Other Eukaryotes: Sequences, Taxa and Classifications Reconsidered. Nucleic Acids Res. 2024, 52, D791–D797. [Google Scholar] [CrossRef] [PubMed]
- McMurdie, P.J.; Holmes, S. Phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. PLoS ONE 2013, 8, e61217. [Google Scholar] [CrossRef] [PubMed]
- Paradis, E.; Schliep, K. Ape 5.0: An Environment for Modern Phylogenetics and Evolutionary Analyses in R. Bioinformatics 2019, 35, 526–528. [Google Scholar] [CrossRef] [PubMed]
- Lahti, L.; Shetty, S. Microbiome R Package 2012. Bioconductor. Available online: https://doi.org/10.18129/B9.bioc.microbiome (accessed on 17 June 2024).
- Oksanen, J.; Simpson, G.L.; Blanchet, F.G.; Kindt, R.; Legendre, P.; Minchin, P.R.; O’Hara, R.B.; Solymos, P.; Stevens, M.H.H.; Szoecs, E.; et al. Vegan: Community Ecology Package. 2024. Available online: https://CRAN.R-project.org/package=vegan (accessed on 17 June 2024).
- Wright, E.S. Using DECIPHER v2.0 to Analyze Big Biological Sequence Data in R. R J. 2016, 8, 352–359. [Google Scholar] [CrossRef]
- Schliep, K.P. Phangorn: Phylogenetic Analysis in R. Bioinformatics 2011, 27, 592–593. [Google Scholar] [CrossRef]
- Pagès, H.; Aboyoun, P.; Gentleman, R.; DebRoy, S. Biostrings: Efficient Manipulation of Biological Strings. 2024. Available online: https://bioconductor.org/packages/Biostrings (accessed on 17 June 2024).
- Kassambara, A.; Mundt, F. Factoextra: Extract and Visualize the Results of Multivariate Data Analyses. 2020. Available online: https://CRAN.R-project.org/package=factoextraI (accessed on 17 June 2024).
- Cao, Y.; Dong, Q.; Wang, D.; Zhang, P.; Liu, Y.; Niu, C. MicrobiomeMarker: An R/Bioconductor Package for Microbiome Marker Identification and Visualization. Bioinformatics 2022, 38, 4027–4029. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Sun, D.-W. Colour Measurements by Computer Vision for Food Quality Control—A Review. Trends Food Sci. Technol. 2013, 29, 5–20. [Google Scholar] [CrossRef]
- Minz, P.S.; Saini, C.S. Comparison of Computer Vision System and Colour Spectrophotometer for Colour Measurement of Mozzarella Cheese. Appl. Food Res. 2021, 1, 100020. [Google Scholar] [CrossRef]
- Marchesini, G.; Balzan, S.; Segato, S.; Novelli, E.; Andrighetto, I. Colour Traits in the Evaluation of the Ripening Period of Asiago Cheese. Ital. J. Anim. Sci. 2009, 8, 411–413. [Google Scholar] [CrossRef]
- Jose Delgado, F.; Gonzalez-Crespo, J.; Cava, R.; Ramirez, R. Proteolysis, Texture and Colour of a Raw Goat Milk Cheese throughout the Maturation. Eur. Food Res. Technol. 2011, 233, 483–488. [Google Scholar] [CrossRef]
- Irlinger, F.; Monnet, C. Temporal Differences in Microbial Composition of Époisses Cheese Rinds during Ripening and Storage. J. Dairy Sci. 2021, 104, 7500–7508. [Google Scholar] [CrossRef] [PubMed]
- Irlinger, F.; Layec, S.; Hélinck, S.; Dugat-Bony, E. Cheese Rind Microbial Communities: Diversity, Composition and Origin. FEMS Microbiol. Lett. 2015, 362, 1–11. [Google Scholar] [CrossRef] [PubMed]
- EFSA Panel on Biological Hazards (BIOHAZ); Koutsoumanis, K.; Allende, A.; Álvarez-Ordóñez, A.; Bolton, D.; Bover-Cid, S.; Chemaly, M.; de Cesare, A.; Hilbert, F.; Lindqvist, R.; et al. Update of the List of Qualified Presumption of Safety (QPS) Recommended Microorganisms Intentionally Added to Food or Feed as Notified to EFSA. EFSA J. 2023, 21, e07747. [Google Scholar] [CrossRef]
- International Dairy Federation, T.I.D. Inventory of Microbial Food Cultures with Safety Demonstration in Fermented Food Products. 2022. Available online: https://shop.fil-idf.org/products/bulletin-of-the-idf-n-514-2022-inventory-of-microbial-food-cultures-with-safety-demonstration-in-fermented-food-products (accessed on 17 June 2024).
- Goerges, S.; Mounier, J.; Rea, M.C.; Gelsomino, R.; Heise, V.; Beduhn, R.; Cogan, T.M.; Vancanneyt, M.; Scherer, S. Commercial Ripening Starter Microorganisms Inoculated into Cheese Milk Do Not Successfully Establish Themselves in the Resident Microbial Ripening Consortia of a South German Red Smear Cheese. Appl. Environ. Microbiol. 2008, 74, 2210–2217. [Google Scholar] [CrossRef] [PubMed]
- Kothe, C.I.; Bolotin, A.; Kraïem, B.-F.; Dridi, B.; Renault, P. Unraveling the World of Halophilic and Halotolerant Bacteria in Cheese by Combining Cultural, Genomic and Metagenomic Approaches. Int. J. Food Microbiol. 2021, 358, 109312. [Google Scholar] [CrossRef] [PubMed]
- Irlinger, F.; Yung, S.A.Y.I.; Sarthou, A.-S.; Delbès-Paus, C.; Montel, M.-C.; Coton, E.; Coton, M.; Helinck, S. Ecological and Aromatic Impact of Two Gram-Negative Bacteria (Psychrobacter celer and Hafnia alvei) Inoculated as Part of the Whole Microbial Community of an Experimental Smear Soft Cheese. Int. J. Food Microbiol. 2012, 153, 332–338. [Google Scholar] [CrossRef] [PubMed]
- Brennan, N.M.; Ward, A.C.; Beresford, T.P.; Fox, P.F.; Goodfellow, M.; Cogan, T.M. Biodiversity of the Bacterial Flora on the Surface of a Smear Cheese. Appl. Environ. Microbiol. 2002, 68, 820–830. [Google Scholar] [CrossRef] [PubMed]
- Feurer, C.; Vallaeys, T.; Corrieu, G.; Irlinger, F. Does Smearing Inoculum Reflect the Bacterial Composition of the Smear at the End of the Ripening of a French Soft, Red-Smear Cheese? J. Dairy Sci. 2004, 87, 3189–3197. [Google Scholar] [CrossRef]
- Delcenserie, V.; Taminiau, B.; Delhalle, L.; Nezer, C.; Doyen, P.; Crevecoeur, S.; Roussey, D.; Korsak, N.; Daube, G. Microbiota Characterization of a Belgian Protected Designation of Origin Cheese, Herve Cheese, Using Metagenomic Analysis. J. Dairy Sci. 2014, 97, 6046–6056. [Google Scholar] [CrossRef]
- Kamelamela, N.; Zalesne, M.; Morimoto, J.; Robbat, A.; Wolfe, B.E. Indigo- and Indirubin-Producing Strains of Proteus and Psychrobacter Are Associated with Purple Rind Defect in a Surface-Ripened Cheese. Food Microbiol. 2018, 76, 543–552. [Google Scholar] [CrossRef] [PubMed]
- Peng, Z.; Qian, X.; Liu, Y.; Li, X.; Gao, H.; An, Y.; Qi, J.; Jiang, L.; Zhang, Y.; Chen, S.; et al. Land Conversion to Agriculture Induces Taxonomic Homogenization of Soil Microbial Communities Globally. Nat. Commun. 2024, 15, 3624. [Google Scholar] [CrossRef] [PubMed]
- Olden, J.D.; Rooney, T.P. On Defining and Quantifying Biotic Homogenization. Glob. Ecol. Biogeogr. 2006, 15, 113–120. [Google Scholar] [CrossRef]
- Wiens, J.A. Spatial Scaling in Ecology. Funct. Ecol. 1989, 3, 385–397. [Google Scholar] [CrossRef]
- Bokulich, N.A.; Mills, D.A. Facility-Specific “House” Microbiome Drives Microbial Landscapes of Artisan Cheesemaking Plants. Appl. Environ. Microbiol. 2013, 79, 5214–5223. [Google Scholar] [CrossRef]
- Guinee, T.P.; Fox, P.F. Salt in Cheese: Physical, Chemical and Biological Aspects. In Cheese: Chemistry, Physics and Microbiology; Fox, P.F., McSweeney, P.L.H., Cogan, T.M., Guinee, T.P., Eds.; General Aspects; Academic Press: Cambridge, MA, USA, 2004; Volume 1, pp. 207–259. [Google Scholar]
Target Region | Primer Orientation | Primer Name | Primer Sequence (Targeting Sequence in Bold) | Reference |
---|---|---|---|---|
V3–V4 16S rRNA | Forward | 16SV3F-1id | TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGNNNNNNTACGGRAGGCWGCAG | [35] |
16SV3F-2id | TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGNNNNNTACGGRAGGCWGCAG | [35] | ||
16SV3F-3id | TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGTACGGRAGGCWGCAG | [35] | ||
Reverse | 16SV4R-id | GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGNNNNN NTACCAGGGTATCTAATCCT | [35] | |
ITS | Forward | ITS1F-1id | TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGNNNNNNCTTGGTCATTTAGAGGAAGTAA | [36] |
ITS1F-2id | TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGNNNNNCTTGGTCATTTAGAGGAAGTAA | [36] | ||
ITS1F-3id | TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGNNNNCTTGGTCATTTAGAGGAAGTAA | [36] | ||
Reverse | ITS2R1id | GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGNNNNNNGCTGCGTTCTTCATCGATGC | [37] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martin, A.J.; Revol-Junelles, A.-M.; Petit, J.; Gaiani, C.; Leyva Salas, M.; Nourdin, N.; Khatbane, M.; Mafra de Almeida Costa, P.; Ferrigno, S.; Ebel, B.; et al. Deciphering Rind Color Heterogeneity of Smear-Ripened Munster Cheese and Its Association with Microbiota. Foods 2024, 13, 2233. https://doi.org/10.3390/foods13142233
Martin AJ, Revol-Junelles A-M, Petit J, Gaiani C, Leyva Salas M, Nourdin N, Khatbane M, Mafra de Almeida Costa P, Ferrigno S, Ebel B, et al. Deciphering Rind Color Heterogeneity of Smear-Ripened Munster Cheese and Its Association with Microbiota. Foods. 2024; 13(14):2233. https://doi.org/10.3390/foods13142233
Chicago/Turabian StyleMartin, Amandine J., Anne-Marie Revol-Junelles, Jérémy Petit, Claire Gaiani, Marcia Leyva Salas, Nathan Nourdin, Mohammed Khatbane, Paulo Mafra de Almeida Costa, Sandie Ferrigno, Bruno Ebel, and et al. 2024. "Deciphering Rind Color Heterogeneity of Smear-Ripened Munster Cheese and Its Association with Microbiota" Foods 13, no. 14: 2233. https://doi.org/10.3390/foods13142233
APA StyleMartin, A. J., Revol-Junelles, A. -M., Petit, J., Gaiani, C., Leyva Salas, M., Nourdin, N., Khatbane, M., Mafra de Almeida Costa, P., Ferrigno, S., Ebel, B., Schivi, M., Elfassy, A., Mangavel, C., & Borges, F. (2024). Deciphering Rind Color Heterogeneity of Smear-Ripened Munster Cheese and Its Association with Microbiota. Foods, 13(14), 2233. https://doi.org/10.3390/foods13142233