Probabilistic Modelling of the Food Matrix Effects on Curcuminoid’s In Vitro Oral Bioaccessibility
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Food Matrices
2.2. Static In Vitro Digestion
2.3. Curcuminoid Bioaccessibility Quantification
2.4. Curcuminoid Quantification by HPLC-DAD
2.5. Characterization of Curcuminoid-Enriched Formulations
2.5.1. Food Digestibility Assays
2.5.2. Oil- and Water-Holding Capacities of Fibres
2.5.3. Bulk and Tapped Density of Fibres
2.5.4. Biscuit-Breaking Force
2.5.5. Textural Analysis of Custard
2.5.6. Fibre Colour Determination
2.5.7. Curcuminoids Relative Binding Capacity of Fibre Sources
2.5.8. Particle Size Distribution Measurement
2.6. Curcuminoid Bioaccessibility Model Development
2.6.1. Data Description
2.6.2. Feature Selection
2.6.3. Model Training
2.6.4. Model Validation and Assessment
3. Results and Discussion
3.1. Food Digestibility Assessment
3.2. Validation of the Spectrophotometric Method to Quantify Total Curcuminoids Content
3.3. Curcuminoids Bioaccessibility in Food Formulations
3.4. Curcuminoid Bioaccessibility—Explaining Matrix Effects
3.5. Modelling Bioaccessibility as a Function of Food Formulation Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Essa, M.M.; Bishir, M.; Bhat, A.; Chidambaram, S.B.; Al-Balushi, B.; Hamdan, H.; Govindarajan, N.; Freidland, R.P.; Qoronfleh, M.W. Functional foods and their impact on health. J. Food Sci. Technol. 2023, 60, 820–834. [Google Scholar] [CrossRef]
- Nicolescu, A.; Babotă, M.; Barros, L.; Rocchetti, G.; Lucini, L.; Tanase, C.; Mocan, A.; Bunea, C.I.; Crișan, G. Bioaccessibility and bioactive potential of different phytochemical classes from nutraceuticals and functional foods. Front. Nutr. 2023, 10, 1184535. [Google Scholar] [CrossRef]
- Steinmetz, K.A.; Potter, J.D. Vegetables, fruit, and cancer. I. Epidemiology. Cancer Causes Control 1991, 2, 325–357. [Google Scholar] [CrossRef]
- Liskova, A.; Stefanicka, P.; Samec, M.; Smejkal, K.; Zubor, P.; Bielik, T.; Biskupska-Bodova, K.; Kwon, T.K.; Danko, J.; Büsselberg, D.; et al. Dietary phytochemicals as the potential protectors against carcinogenesis and their role in cancer chemoprevention. Clin. Exp. Med. 2020, 20, 173–190. [Google Scholar] [CrossRef]
- Topolska, K.; Florkiewicz, A.; Filipiak-Florkiewicz, A. Functional Food-Consumer Motivations and Expectations. Int. J. Environ. Res. Public Health 2021, 18, 5327. [Google Scholar] [CrossRef]
- Langston, F.M.A.; Nash, G.R.; Bows, J.R.; Wakeley, E.C. Impact of pre-processing and drying method on the phytochemical content of vegetable baked snacks. Food Biosci. 2023, 53, 102656. [Google Scholar] [CrossRef]
- Scrob, T.; Varodi, S.M.; Vintilă, G.A.; Casoni, D.; Cimpoiu, C. Estimation of degradation kinetics of bioactive compounds in several lingonberry jams as affected by different sweeteners and storage conditions. Food Chem. X 2022, 16, 100471. [Google Scholar] [CrossRef] [PubMed]
- Debelo, H.; Li, M.; Ferruzzi, M.G. Processing influences on food polyphenol profiles and biological activity. Curr. Opin. Food Sci. 2020, 32, 90–102. [Google Scholar] [CrossRef]
- Mishra, A.K.; Singh, R.; Rawat, H.; Kumar, V.; Jagtap, C.; Jain, A. The influence of food matrix on the stability and bioavailability of phytochemicals: A comprehensive review. Food Humanit. 2024, 2, 100202. [Google Scholar] [CrossRef]
- Kamiloglu, S.; Tomas, M.; Ozdal, T.; Capanoglu, E. Effect of food matrix on the content and bioavailability of flavonoids. Trends Food Sci. Technol. 2021, 117, 15–33. [Google Scholar] [CrossRef]
- Hiolle, M.; Lechevalier, V.; Floury, J.; Boulier-Monthéan, N.; Prioul, C.; Dupont, D.; Nau, F. In vitro digestion of complex foods: How microstructure influences food disintegration and micronutrient bioaccessibility. Food Res. Int. 2020, 128, 108817. [Google Scholar] [CrossRef]
- Palafox-Carlos, H.; Ayala-Zavala, J.F.; González-Aguilar, G.A. The Role of Dietary Fiber in the Bioaccessibility and Bioavailability of Fruit and Vegetable Antioxidants. J. Food Sci. 2011, 76, R6–R15. [Google Scholar] [CrossRef]
- Langston, F.M.A.; Nash, G.R.; Bows, J.R. The retention and bioavailability of phytochemicals in the manufacturing of baked snacks. Crit. Rev. Food Sci. Nutr. 2023, 63, 2141–2177. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wang, H.; Ai, C.; Lu, R.; Chen, L.; Xiao, J.; Teng, H. Food matrix-flavonoid interactions and their effect on bioavailability. Crit. Rev. Food Sci. Nutr. 2023, 1–22. [Google Scholar] [CrossRef]
- El-Saadony, M.T.; Yang, T.; Korma, S.A.; Sitohy, M.; Abd El-Mageed, T.A.; Selim, S.; Al Jaouni, S.K.; Salem, H.M.; Mahmmod, Y.; Soliman, S.M.; et al. Impacts of turmeric and its principal bioactive curcumin on human health: Pharmaceutical, medicinal, and food applications: A comprehensive review. Front. Nutr. 2022, 9, 1040259. [Google Scholar] [CrossRef] [PubMed]
- Micucci, M.; Budriesi, R.; Mandrioli, M.; Tura, M.; Corazza, I.; Frosini, M.; Aldini, R.; Mattioli, L.B.; Gallina Toschi, T. Effects of turmeric powder on intestinal and biliary functions: The influence of curcuminoids concentration on spontaneous contractility. J. Funct. Foods 2022, 99, 105314. [Google Scholar] [CrossRef]
- Goozee, K.G.; Shah, T.M.; Sohrabi, H.R.; Rainey-Smith, S.R.; Brown, B.; Verdile, G.; Martins, R.N. Examining the potential clinical value of curcumin in the prevention and diagnosis of Alzheimer’s disease. Br. J. Nutr. 2016, 115, 449–465. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, B.B.; Harikumar, K.B. Potential therapeutic effects of curcumin, the anti-inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases. Int. J. Biochem. Cell Biol. 2009, 41, 40–59. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Song, M.; Bai, H.; Wang, C.; Wang, F.; Yuan, Q. Curcumin improves the egg quality, antioxidant activity, and intestinal microbiota of quails during the late laying period. Poult. Sci. 2024, 103, 103233. [Google Scholar] [CrossRef]
- Hewlings, S.J.; Kalman, D.S. Curcumin: A review of its effects on human health. Foods 2017, 6, 92. [Google Scholar] [CrossRef]
- Dima, C.; Assadpour, E.; Dima, S.; Jafari, S.M. Bioavailability of nutraceuticals: Role of the food matrix, processing conditions, the gastrointestinal tract, and nanodelivery systems. Compr. Rev. Food Sci. Food Saf. 2020, 19, 954–994. [Google Scholar] [CrossRef]
- Brodkorb, A.; Egger, L.; Alminger, M.; Alvito, P.; Assunção, R.; Ballance, S.; Bohn, T.; Bourlieu-Lacanal, C.; Boutrou, R.; Carrière, F.; et al. INFOGEST static in vitro simulation of gastrointestinal food digestion. Nat. Protoc. 2019, 14, 991–1014. [Google Scholar] [CrossRef] [PubMed]
- Nemli, E.; Ozakdogan, S.; Tomas, M.; McClements, D.J.; Capanoglu, E. Increasing the Bioaccessibility of Antioxidants in Tomato Pomace Using Excipient Emulsions. Food Biophys. 2021, 16, 355–364. [Google Scholar] [CrossRef]
- Zagury, Y.; David, S.; Edelman, R.; Hazan Brill, R.; Livney, Y.D. Sugar beet pectin as a natural carrier for curcumin, a water-insoluble bioactive for food and beverage enrichment: Formation and characterization. Innov. Food Sci. Emerg. Technol. 2021, 74, 102858. [Google Scholar] [CrossRef]
- Krishnakumar, I.; Abhilash, R.; Dinesh, K.; Ramadasan, K.; Balu, M. An enhanced bioavailable formulation of curcumin using fenugreek-derived soluble dietary fibre. J. Funct. Foods 2012, 4, 348–357. [Google Scholar] [CrossRef]
- Anderson, J.W.; Baird, P.; Davis, R.H.; Ferreri, S.; Knudtson, M.; Koraym, A.; Waters, V.; Williams, C.L. Health benefits of dietary fiber. Nutr. Rev. 2009, 67, 188–205. [Google Scholar] [CrossRef]
- Barber, T.M.; Kabisch, S.; Pfeiffer, A.F.H.; Weickert, M.O. The Health Benefits of Dietary Fibre. Nutrients 2020, 12, 3209. [Google Scholar] [CrossRef]
- Tseng, Y.J.; Chuang, P.-J.; Appell, M. When Machine Learning and Deep Learning Come to the Big Data in Food Chemistry. ACS Omega 2023, 8, 15854–15864. [Google Scholar] [CrossRef]
- Fagerholm, U.; Hellberg, S.; Spjuth, O. Article advances in predictions of oral bioavailability of candidate drugs in man with new machine learning methodology. Molecules 2021, 26, 2572. [Google Scholar] [CrossRef]
- Nawirska, A.; Kwaśniewska, M. Dietary fibre fractions from fruit and vegetable processing waste. Food Chem. 2005, 91, 221–225. [Google Scholar] [CrossRef]
- Fu, S.; Augustin, M.A.; Shen, Z.; Ng, K.; Sanguansri, L.; Ajlouni, S. Bioaccessibility of curcuminoids in buttermilk in simulated gastrointestinal digestion models. Food Chem. 2015, 179, 52–59. [Google Scholar] [CrossRef] [PubMed]
- Tsugawa, H.; Cajka, T.; Kind, T.; Ma, Y.; Higgins, B.; Ikeda, K.; Kanazawa, M.; VanderGheynst, J.; Fiehn, O.; Arita, M. MS-DIAL: Data-independent MS/MS deconvolution for comprehensive metabolome analysis. Nat. Methods 2015, 12, 523–526. [Google Scholar] [CrossRef] [PubMed]
- Markussen, J.Ø.; Madsen, F.; Young, J.F.; Corredig, M. A semi dynamic in vitro digestion study of milk protein concentrate dispersions structured with different polysaccharides. Curr. Res. Food Sci. 2021, 4, 250–261. [Google Scholar] [CrossRef] [PubMed]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Horn, F.; Pack, R.; Rieger, M. The autofeat python library for automated feature engineering and selection. Commun. Comput. Inf. Sci. 2020, 1167, 111–120. [Google Scholar] [CrossRef]
- Kursa, M.B.; Rudnicki, W.R. Feature selection with the boruta package. J. Stat. Softw. 2010, 36, 1–13. [Google Scholar] [CrossRef]
- Tibshirani, R. Regression Shrinkage and Selection Via the Lasso. J. R. Stat. Soc. Ser. B Methodol. 1996, 58, 267–288. [Google Scholar] [CrossRef]
- Capretto, T.; Piho, C.; Kumar, R.; Westfall, J.; Yarkoni, T.; Martin, O.A. Bambi: A Simple Interface for Fitting Bayesian Linear Models in Python. J. Stat. Softw. 2022, 103, 1–29. [Google Scholar] [CrossRef]
- Salvatier, J.; Wiecki, T.V.; Fonnesbeck, C. Probabilistic programming in Python using PyMC3. PeerJ Comput. Sci. 2016, 2016, e55. [Google Scholar] [CrossRef]
- Kumar, R.; Carroll, C.; Hartikainen, A.; Martin, O. ArviZ a unified library for exploratory analysis of Bayesian models in Python. J. Open Source Softw. 2019, 4, 1143. [Google Scholar] [CrossRef]
- Tan, Y.; McClements, D.J. Improving the bioavailability of oil-soluble vitamins by optimizing food matrix effects: A review. Food Chem. 2021, 348, 129148. [Google Scholar] [CrossRef] [PubMed]
- Ubeyitogullari, A.; Ciftci, O.N. A novel and green nanoparticle formation approach to forming low-crystallinity curcumin nanoparticles to improve curcumin’s bioaccessibility. Sci. Rep. 2019, 9, 19112. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, R.; Xu, Z.; Fan, H.; Xu, X.; Pan, S.; Liu, F. Recent advances in the effects of food microstructure and matrix components on the bioaccessibility of carotenoids. Trends Food Sci. Technol. 2024, 143, 104301. [Google Scholar] [CrossRef]
- Flory, S.; Sus, N.; Haas, K.; Jehle, S.; Kienhöfer, E.; Waehler, R.; Adler, G.; Venturelli, S.; Frank, J. Increasing Post-Digestive Solubility of Curcumin Is the Most Successful Strategy to Improve its Oral Bioavailability: A Randomized Cross-Over Trial in Healthy Adults and In Vitro Bioaccessibility Experiments. Mol. Nutr. Food Res. 2021, 65, 2100613. [Google Scholar] [CrossRef] [PubMed]
- Meca, G.; Meneghelli, G.; Ritieni, A.; Mañes, J.; Font, G. Influence of different soluble dietary fibers on the bioaccessibility of the minor Fusarium mycotoxin beauvericin. Food Chem. Toxicol. 2012, 50, 1362–1368. [Google Scholar] [CrossRef] [PubMed]
- Prosperini, A.; Meca, G.; Font, G.; Ruiz, M.J. Bioaccessibility of enniatins A, A1, B, and B1 in different commercial breakfast cereals, cookies, and breads of spain. J. Agric. Food Chem. 2013, 61, 456–461. [Google Scholar] [CrossRef] [PubMed]
- Bohn, T. Dietary factors affecting polyphenol bioavailability. Nutr. Rev. 2014, 72, 429–452. [Google Scholar] [CrossRef] [PubMed]
- Borel, P.; Caillaud, D.; Cano, N.J. Vitamin D bioavailability: State of the art. Crit. Rev. Food Sci. Nutr. 2015, 55, 1193–1205. [Google Scholar] [CrossRef] [PubMed]
- Bohn, T.; Mcdougall, G.J.; Alegría, A.; Alminger, M.; Arrigoni, E.; Aura, A.M.; Brito, C.; Cilla, A.; El, S.N.; Karakaya, S.; et al. Mind the gap-deficits in our knowledge of aspects impacting the bioavailability of phytochemicals and their metabolites-a position paper focusing on carotenoids and polyphenols. Mol. Nutr. Food Res. 2015, 59, 1307–1323. [Google Scholar] [CrossRef]
- Wang, R.; Mohammadi, M.; Mahboubi, A.; Taherzadeh, M.J. In-vitro digestion models: A critical review for human and fish and a protocol for in-vitro digestion in fish. Bioengineered 2021, 12, 3040–3064. [Google Scholar] [CrossRef]
- Mohammadian, M.; Salami, M.; Assadpour, E.; Jafari, S.M. Curcumin-protein complexes: Technological and biological functionalities. Trends Food Sci. Technol. 2024, 145, 104372. [Google Scholar] [CrossRef]
- Kannamangalam Vijayan, U.; Shah, N.N.; Muley, A.B.; Singhal, R.S. Complexation of curcumin using proteins to enhance aqueous solubility and bioaccessibility: Pea protein vis-à-vis whey protein. J. Food Eng. 2021, 292, 110258. [Google Scholar] [CrossRef]
- Liang, Y.; Matia-Merino, L.; Patel, H.; Ye, A.; Gillies, G.; Golding, M. Effect of sugar type and concentration on the heat coagulation of oil-in-water emulsions stabilized by milk-protein-concentrate. Food Hydrocoll. 2014, 41, 332–342. [Google Scholar] [CrossRef]
- Jiang, T.; Charcosset, C. Encapsulation of curcumin within oil-in-water emulsions prepared by premix membrane emulsification: Impact of droplet size and carrier oil type on physicochemical stability and in vitro bioaccessibility. Food Chem. 2022, 375, 131825. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhang, H.; Li, H.; Zhang, H.; Chi, Y.; Xia, N.; Li, Z.; Jiang, L.; Zhang, X.; Rayan, A.M. Fabrication and digestive characteristics of high internal phase Pickering emulsions stabilized by ovalbumin-pectin complexes for improving the stability and bioaccessibility of curcumin. Food Chem. 2022, 389, 133055. [Google Scholar] [CrossRef] [PubMed]
- Lv, Z.; Rao, J.; Lü, B.; Chen, G.; Hao, X.; Guan, Y.; Bian, J.; Peng, F. Microencapsulated phase change material via Pickering emulsion based on xylan nanocrystal for thermoregulating application. Carbohydr. Polym. 2023, 302, 120407. [Google Scholar] [CrossRef] [PubMed]
- Chuesiang, P.; Kim, J.T.; Shin, G.H. Observation of curcumin-encapsulated Pickering emulsion stabilized by cellulose nanocrystals-whey protein isolate (CNCs-WPI) complex under in vitro lipid digestion through INFOGEST model. Int. J. Biol. Macromol. 2023, 234, 123679. [Google Scholar] [CrossRef] [PubMed]
- Jakobek, L.; Matić, P. Non-covalent dietary fiber—Polyphenol interactions and their influence on polyphenol bioaccessibility. Trends Food Sci. Technol. 2019, 83, 235–247. [Google Scholar] [CrossRef]
- Idowu, S.O.; Fatokun, A.A. Artificial Intelligence (AI) to the Rescue: Deploying Machine Learning to Bridge the Biorelevance Gap in Antioxidant Assays. SLAS Technol. 2021, 26, 16–25. [Google Scholar] [CrossRef]
- Hou, T.; Wang, J.; Zhang, W.; Xu, X. ADME evaluation in drug discovery. 6. Can oral biavailability in humans be effectively predicted by simple molecular property-based rules? J. Chem. Inf. Model. 2007, 47, 460–463. [Google Scholar] [CrossRef]
- Kumar, R.; Sharma, A.; Varadwaj, P.K. A prediction model for oral bioavailability of drugs using physicochemical properties by support vector machine. J. Nat. Sci. Biol. Med. 2011, 2, 168–173. [Google Scholar] [CrossRef] [PubMed]
- Schneckener, S.; Grimbs, S.; Hey, J.; Menz, S.; Osmers, M.; Schaper, S.; Hillisch, A.; Göller, A.H. Prediction of Oral Bioavailability in Rats: Transferring Insights from in Vitro Correlations to (Deep) Machine Learning Models Using in Silico Model Outputs and Chemical Structure Parameters. J. Chem. Inf. Model. 2019, 59, 4893–4905. [Google Scholar] [CrossRef] [PubMed]
- Bennett-Lenane, H.; Griffin, B.T.; O’Shea, J.P. Machine learning methods for prediction of food effects on bioavailability: A comparison of support vector machines and artificial neural networks. Eur. J. Pharm. Sci. 2022, 168, 106018. [Google Scholar] [CrossRef]
- Dong, Z.; Yan, K.; Liu, Y.; Naidu, R.; Duan, L.; Wijayawardena, A.; Semple, K.T.; Rahman, M.M. A meta-analysis to correlate lead bioavailability and bioaccessibility and predict lead bioavailability. Environ. Int. 2016, 92–93, 139–145. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.S.; Yang, J.Q.; Wang, N.; Deng, Z.Q.; Qing, Y.; Wu, M.; Cai, H.; Liu, H.; He, G.S. Estimation of the bio-accessibility of methylmercury from aquatic foods using a PBTK model with an approximate Bayesian computation method in Chinese pregnant women. Food Chem. Toxicol. 2022, 168, 113372. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Prieto, D.; Garre, A.; Agulló, V.; García-Viguera, C.; Egea, J.A. Differences Due to Sex and Sweetener on the Bioavailability of (Poly)phenols in Urine Samples: A Machine Learning Approach. Metabolites 2023, 13, 653. [Google Scholar] [CrossRef] [PubMed]
- D’Amelio, P.; Sassi, F. Gut Microbiota, Immune System, and Bone. Calcif. Tissue Int. 2018, 102, 415–425. [Google Scholar] [CrossRef] [PubMed]
- Gommers, L.M.M.; Ederveen, T.H.A.; van der Wijst, J.; Overmars-Bos, C.; Kortman, G.A.M.; Boekhorst, J.; Bindels, R.J.M.; de Baaij, J.H.F.; Hoenderop, J.G.J. Low gut microbiota diversity and dietary magnesium intake are associated with the development of PPI-induced hypomagnesemia. FASEB J. 2019, 33, 11235–11246. [Google Scholar] [CrossRef] [PubMed]
- Bielik, V.; Kolisek, M. Bioaccessibility and Bioavailability of Minerals in Relation to a Healthy Gut Microbiome. Int. J. Mol. Sci. 2021, 22, 6803. [Google Scholar] [CrossRef]
Ingredients | Custard | Biscuit | Fibre-Fortified Custard | Fibre-Fortified Biscuit |
---|---|---|---|---|
Semi-skimmed milk (%) | 68.3 | 4.1 | 64.1 | 3.8 |
Egg yolk (%) | 13.2 | 39.9 | 12.6 | 37.7 |
Sugar (%) | 10.6 | 32 | 10.1 | 30.2 |
Corn starch (%) | 7.9 | - | 7.5 | - |
T45 Wheat flour (%) | - | 24 | - | 22.6 |
Fibre (%) | - | - | 5.7 | 5.7 |
Insoluble Fibre (%) | Soluble Fibre (%) | Protein (%) | Carbohydrates (%) | Total Fat (%) | Water (%) | Ash (%) | Cellulose (%) | Hemicellulose (%) | Pectin (%) | Fructans (%) | Lignin (%) | Dextrin (%) | Origin | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Orafti® GR | 0 | >90 | - | <10 | - | 3 | <0.2 | - | - | - | >90 | - | - | Chicory |
Nutriose® FM06 | - | 82–88 | <0.3 | <0.5 | 0.1 | <5 | <0.5 | - | - | - | - | - | 82–88 | Maize |
FST 00007 KaroPRO 1-26 | 33 | 27 | 5 | 21 | 1 | 6 | 4 | 41 | 7 | 5 | - | 7 | - | Carrot |
FST 00018 KaroPRO SG | ||||||||||||||
Pea fibre 50 M | >50 | - | <10 | 35 | - | <10 | 3 | 20 | 30 | - | - | - | - | Yellow pea |
FST 00224 ApplePRO 60+ | 52 | 8 | 5.8 | 27.6 | <3.2 | <8 | 1.8 | 27 | 16 | 6 | - | 10 | - | Apple |
Ceamfibre 7000 | 85 | 1.5 | 2.9 | - | 0.8 | 7.6 | - | 41 | 16 | 1.5 | - | 6 | - | Citrus peel |
Vitacel WF200 | 97 | - | 0.4 | - | 0.2 | <8 | <3 | 24 | 73 | - | - | - | - | Wheat |
Microcrystalline cellulose | 100 | - | - | - | - | - | - | 100 | - | - | - | - | - | Wood pulp |
Fibre | Liquid-Holding Capacities (mL/Gram) | Densities (g/cm3) | Colour Measurements | Curcuminoid-Binding Capacity (mmol) | D4.3–De Brouckere Mean (µm) | Specific Surface Area (m2/g) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Oil | Water | Bulk | Tapped | L | a | b | c | h | ||||
Inulin (Orafti®GR) | 2.2 ± 0.1 | - * | 0.60 | 0.65 | 93 ± 1 | −11 ± 1 | 19 ± 1 | 22 ± 1 | 119 ± 2 | - * | 121 ± 63 | 0.15 ± 0.02 |
Nutriose FM06 | 2.8 ± 0.1 | - * | 0.38 | 0.45 | 89 ± 2 | 6 ± 1 | 18 | 19 ± 1 | 73 ± 2 | - * | 147 ± 15 | 0.15 ± 0.02 |
FST 00007 KaroPRO 1-26 | 4.3 | 8.7 ± 1.7 | 0.17 | 0.23 ± 0.10 | 85 ± 1 | 9 | 24 ± 1 | 25 ± 1 | 70 | 100 | 255 ± 3 | 0.04 ± 0.01 |
FST 00018 KaroPRO SG | 3.0 ± 0.2 | 6.1 ± 0.1 | 0.33 | 0.54 ± 0.05 | 65 ± 1 | 18 | 33 | 38 | 61 | 100 | 37 | 0.28 |
Pea fibre 50 M | 2.5 ± 0.1 | 4.2 ± 0.5 | 0.47 | 0.65 ± 0.03 | 72 ± 3 | 17 ± 1 | 28 ± 2 | 33 ± 2 | 59 ± 1 | 40 | 89 ± 2 | 0.17 |
FST 00224 ApplePRO 60+ | 2.3 ± 0.1 | 5.1 ± 0.6 | 0.41 | 0.69 ± 0.05 | 47 ± 2 | 23 ± 1 | 37 | 43 | 58 ± 1 | 320 ± 10 ** | 65 ± 4 | 0.41 ± 0.01 |
Ceamfibre 7000 | 4.2 ± 0.1 | 4.0 ± 0.6 | 0.21 | 0.30 ± 0.09 | 60 | 18 | 37 | 41 | 64 | 460 ± 70 ** | 262 ± 4 | 0.03 |
Vitacel WF200 | 6.3 ± 0.1 | 8.2 ± 0.5 | 0.12 | 0.23 ± 0.10 | 89 ± 2 | 5 ± 1 | 16 ± 1 | 17 ± 1 | 72 ± 5 | 220 ± 30 ** | 105 ± 1 | 0.13 |
Microcrystalline cellulose | 3.0 | 2.2 ± 0.1 | 0.37 | 0.47 | 68 ± 1 | 17 | 25 | 30 ± 1 | 57 | 260 ± 10 ** | 91 ± 1 | 0.14 |
Fibre | Biscuit Hardness (g) | Custard Viscosity (mPa·s) | Custard Firmness (g) | Custard Stickiness (g) |
---|---|---|---|---|
Inulin (Orafti®GR) | 1802 ± 711 | 5383 ± 442 | 68 ± 22 | −33 ± 10 |
Nutriose FM06 | 1612 ± 633 | 4242 ± 679 | 43 ± 15 | −19 ± 6 |
FST 00007 KaroPRO 1-26 | 2075 ± 1573 | sat. * | 318 ± 16 | −166 ± 23 |
FST 00018 KaroPRO SG | 2157 ± 422 | 15,381 ± 1467 | 213 ± 21 | −114 ± 14 |
FST 00224 ApplePRO 60+ | 1229 ± 229 | sat. * | 297 ± 14 | −135 ± 17 |
Pea fibre 50 M | 1419 ± 622 | sat. * | 506 ± 23 | −303 ± 24 |
Ceamfibre 7000 | 3039 ± 1437 | sat. * | 354 ± 33 | −152 ± 2 |
Vitacel WF200 | 3028 ± 675 | 17,963 ± 1231 | 250 ± 17 | −135 ± 12 |
Microcrystalline cellulose | 2362 ± 660 | 13,659 ± 1712 | 166 ± 12 | −90 ± 13 |
none | 1709 ± 285 | 7453 ± 1608 | 91 ± 55 | −60 ± 43 |
All Formulations | Custards | Biscuits | ||
---|---|---|---|---|
Fibre properties | Oil-holding capacity | n.a. | –0.39 ** | –0.10 (1) |
Water-holding capacity | –0.14 | –0.47 ** (2) | ||
Bulk density | –0.39 ** | –0.12 | ||
Curcumin-binding capacity | –0.19 | –0.37 (2) | ||
Particle size | –0.14 (1) | –0.31 * | ||
Matrix properties | Biscuit hardness | n.a. | –0.17 | |
Custard viscosity | –0.05 | n.a. | ||
Custard firmness | –0.06 | |||
Custard stickiness | –0.07 | |||
Cellulose | –0.41 ** (1) | –0.15 | ||
Hemicellulose | –0.12 | –0.66 ** (1, 2, 3) | ||
Pectin | –0.10 | –0.45 ** (1) | ||
Insoluble fibre | –0.31 | –0.14 (1) | ||
Soluble fibre | –0.38 ** (3) | –0.0 (1, 3) | ||
Protein | –0.89 ** | –0.36 ** | –0.72 ** | |
Carbohydrate | –0.89 ** | –0.46 ** | –0.65 ** | |
Fat | –0.84 ** | –0.12 | –0.52 ** | |
Water | –0.62 ** | –0.30 * | –0.72 ** | |
Ash | –0.72 ** | –0.23 | –0.70 ** | |
Feature-engineered matrix properties | Macronutrient | –0.89 ** | –0.47 ** (1, 2, 3) | –0.66 ** (2, 3) |
Model Complexity (n Parameters) | Additional Predictors | Training Performance | LOOCV Performance | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Custard Formulations | Biscuit Formulations | All Formulations | Custard Formulations | Biscuit Formulations | All Formulations | ||||||||||||||
MAE | RMSE | MAE | RMSE | MAE | RMSE | MAE | RMSE | MAE | RMSE | MAE | RMSE | ||||||||
2 | - | 0.31 | 2.04 | 2.33 | 0.53 | 2.12 | 2.92 | 0.94 | 2.08 | 2.64 | 0.17 | 2.23 | 2.56 | 0.46 | 2.31 | 3.13 | 0.93 | 2.27 | 2.86 |
4 | +soluble fibre | 0.57 | 1.74 | 1.85 | 0.53 | 2.13 | 2.91 | 0.95 | 1.93 | 2.44 | 0.27 | 2.21 | 2.40 | 0.41 | 2.52 | 3.28 | 0.93 | 2.36 | 2.88 |
6 | +hemicellulose | 0.70 | 1.37 | 1.53 | 0.73 | 1.87 | 2.23 | 0.97 | 1.62 | 1.91 | 0.34 | 2.00 | 2.29 | 0.38 | 2.77 | 3.36 | 0.93 | 2.38 | 2.88 |
8 | +food texture | 0.73 | 1.27 | 1.47 | 0.80 | 1.59 | 1.6 | 0.97 | 1.43 | 1.70 | 0.29 | 2.00 | 2.37 | 0.37 | 2.81 | 3.39 | 0.92 | 2.40 | 2.92 |
Parameter | Mean ± Std | HDI Lower | HDI Upper | |
---|---|---|---|---|
Intercept | 14.3 ± 1.0 | 12.5 | 16.1 | |
Macronutrient content | 37.8 ± 1.7 | 34.9 | 41.3 | |
Soluble fibre | Custards | 5.1 ± 1.2 | 3.0 | 7.4 |
Biscuits | 3.2 ± 1.3 | 0.9 | 5.5 | |
Hemicellulose | Custards | 3.1 ± 1.2 | 0.8 | 5.4 |
Biscuits | 6.2 ± 1.6 | 3.0 | 9.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Castro Cogle, K.; Kubo, M.T.K.; Merlier, F.; Josse, A.; Anastasiadi, M.; Mohareb, F.R.; Rossi, C. Probabilistic Modelling of the Food Matrix Effects on Curcuminoid’s In Vitro Oral Bioaccessibility. Foods 2024, 13, 2234. https://doi.org/10.3390/foods13142234
de Castro Cogle K, Kubo MTK, Merlier F, Josse A, Anastasiadi M, Mohareb FR, Rossi C. Probabilistic Modelling of the Food Matrix Effects on Curcuminoid’s In Vitro Oral Bioaccessibility. Foods. 2024; 13(14):2234. https://doi.org/10.3390/foods13142234
Chicago/Turabian Stylede Castro Cogle, Kevin, Mirian T. K. Kubo, Franck Merlier, Alexandra Josse, Maria Anastasiadi, Fady R. Mohareb, and Claire Rossi. 2024. "Probabilistic Modelling of the Food Matrix Effects on Curcuminoid’s In Vitro Oral Bioaccessibility" Foods 13, no. 14: 2234. https://doi.org/10.3390/foods13142234
APA Stylede Castro Cogle, K., Kubo, M. T. K., Merlier, F., Josse, A., Anastasiadi, M., Mohareb, F. R., & Rossi, C. (2024). Probabilistic Modelling of the Food Matrix Effects on Curcuminoid’s In Vitro Oral Bioaccessibility. Foods, 13(14), 2234. https://doi.org/10.3390/foods13142234