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Abstract: Meat consumption is increasing globally. The safety and quality of meat are considered
important issues for human health. During evaluations of meat quality and freshness, microbiological
parameters are often analyzed. Counts of indicator cells can provide important references for meat
quality. In order to eliminate the error of manual operation and improve detection efficiency, this
paper proposed a Convolutional Neural Network (CNN) with a backbone called Detect-Cells-Rapidly-
Net (DCRNet), which can identify and count stained cells automatically. The DCRNet replaces the
single channel of residual blocks with the aggregated residual blocks to learn more features with
fewer parameters. The DCRNet combines the deformable convolution network to fit flexible shapes
of stained animal cells. The proposed CNN with DCRNet is self-adaptive to different resolutions of
images. The experimental results indicate that the proposed CNN with DCRNet achieves an Average
Precision of 81.2% and is better than traditional neural networks for this task. The difference between
the results of the proposed method and manual counting is less than 0.5% of the total number of cells.
The results indicate that DCRNet is a promising solution for cell detection and can be equipped in
future meat quality monitoring systems.

Keywords: cell counting; cell classification; meat quality; deep learning

1. Introduction

Meat consumption is increasing globally [1,2] and the scale of animal husbandry con-
tinues to expand [3,4]. Meanwhile, adverse environment and unprofessional management
during animal breeding, storage and transportation can make it hard to ensure meat safety
and quality. It is crucial in the meat industry to accurately assess meat quality attributes
by introducing advanced techniques [5,6]. Some researchers designed a spectroscopy
method, electronic nose or electronic tongue to evaluate meat quality [7,8]. However, most
researchers perform microbiological analysis in parallel. Researchers use microbial cell
number as a measure of meat spoilage [9–11]. This means that counting of microbial cells
is still the formal method to evaluate the quality and the freshness of meat. Currently, the
counts of cells mainly depend on manual observation under the microscope using a blood
cell counting plate for suspended cells and histological sections [12,13], which is often
expensive and time-consuming and requires qualified personnel [14]. Therefore, with the
development of computer vision algorithms, using macroscopic and microscopic images
of meat to detect meat spoilage automatically has become a research hotspot [15–17]. The
counting and classification of cells can identify disease markers, quantify cell status and
evaluate meat quality [18–20]. The proportion or number of stained cells can be an impor-
tant reference for the measurement of meat quality. Efficient and accurate cell recognition
and counting can improve the efficiency of meat quality testing.
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There have already been some automated cell counting technologies developed [21,22].
The Coulter Counter [23] is an instrument that can count the suspended cells when the
cells go through a pinhole. Flow Cytometry [24] is a laser-based technique used to detect
and analyze specific components or properties of cells in liquid suspension. However, both
instruments are limited to using a single cell suspension rather than adherent cells. The
Coulter Counter can only identify cells based on size instead of color. As for the Flow
Cytometer, many factors and parameters like dyeing schemes must be considered before
the counting process and the costs of the instruments and sample preparation are high.
Therefore, it would not be user-friendly nor easy for a newcomer to utilize this technology.
The Countess™ 3 Automated Cell Counter (ThermoFisher Co., Ltd., Carlsbad, CA, USA) is
equipped with a deep learning algorithm. It can count different types of cells and analyze
their viability. However, this instrument is limited to treating suspended cell solutions and
cannot be used for histological sections. Additionally, deformed and clustered cells bring a
huge challenge to high-precision automated cell recognition.

This paper presents a new algorithm to better characterize cell nuclei staining in
animal cell sections in an automated and user-friendly manner. This algorithm based on
deep learning can automatically identify and count stained cell nuclei with high sensitivity,
which can liberate people from tedious and repetitive labor. As a result, researchers can
direct their energy toward more important scientific research. In addition, the goal of this
study is to reduce or even eliminate the errors in the results created by different individuals,
instruments and environments during experiments.

2. Materials and Methods

To categorize the cells in the images as stained or unstained, two processing steps are
necessary. First, all of the cells in the images must be detected. Second, the detected cells
need to be analyzed to determine if they are stained or unstained based on their color.

Accomplishing these two steps requires a robust dataset and an effective detection
and classification algorithm. Therefore, this article presents a dataset created by the authors
and introduces a novel backbone for a CNN.

2.1. Dataset

An appropriate and comprehensive dataset is the key to obtaining a reliable model. In
order to be more targeted, the dataset should contain corresponding data instead of univer-
sal data. In this study, an original corresponding dataset is created. Chinese experimental
mini-pigs (CEMPs) were established through full-sib inbreeding and negative selection of
Xiang pigs. The samples came from CEMP kidney cells with polycystic kidney disease.
Kidneys from CEMPs were harvested, minced and fixed in a 10% neutral buffered formalin
solution. Then, the samples were dehydrated and embedded in paraffin. The nuclei were
stained with Ki-67 [25]. The cell images were obtained by using a digital microscope camera
(Olympus, DP70, Tokyo, Japan). Considering that different operators would adopt different
parameters for imaging, several sets of common parameters were adopted (exposure is
1/1400, plotting scale is 4080 × 3072, variable resolution, as shown in Table 1) to obtain
cell images which cover the most common imaging conditions and enrich the dataset. The
microscope was set to capture cell images with resolutions of 3840 × 2880 and 2560 × 1920.
Finally, a set of 435 images was captured, which consisted of 225 images in 3840 × 2880
and 210 images in 2560 × 1920. These images captured by the digital microscope camera
were defined as original cell images. The original cell images with different resolutions
were divided into a training set, a validation set and a test set, respectively, according to
the ratio of 6:3:1.
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Table 1. Microscope camera parameters for imaging.

Parameters Value

Exposure 1/1400
Plotting scale 4080 × 3072

Resolution variable

Using data augmentation technology is a common method for deep learning to avoid
form overfitting [26]. There were two steps to accomplish data augmentation in this study.
The first step was that the images were flipped both horizontally and vertically. As for an
individual cell, its orientation changes randomly due to its movement and the extrusion
of other cells. Flipping the cell images allows the dataset to cover more cells’ orientation
information and helps the deep learning model to learn more details of the orientation
features. After flipping, the second step was to cut all of the images into smaller sizes. In
real experiments, different experiment operators use different plotting scales. On different
plotting scales, the cells’ number of pixels and the ratio of the cells’ pixels to the entire
image’s pixels are different. Hence, it is a multi-scale task for the deep learning model to
detect cells at different plotting scales. In order to make the model more reliable, it was
necessary to enrich the multi-scale information in the dataset. Cutting cell images into
several smaller sizes is an effective method. In one image, the number of pixels required to
display one cell is relatively fixed. If the resolution of the cell images changes, the ratio of
the cell’s size to the image’s size will also change, which means the relative size of a cell
will change accordingly. Thus, cutting cell images into smaller sizes produces multi-scale
objects and improves the model’s performance in multi-scale detection tasks. In order to
make full use of the information in the images, the resolution of the original images should
be an integral multiple of the small-sized images’ resolution. Meanwhile, the resolutions of
small-sized images should be typical and should be divisible by mainstream resolutions.
Therefore, each original cell image in the dataset was cut into small-sized images with
resolutions of 320 × 240, 640 × 480 and 1280 × 960. The number of images in each set is
shown in Table 2.

Table 2. The number of images in each set.

Resolution (Pixel) Training Set Validation Set

3840 × 2880 (original images) 135 67
2560 × 1920 (original images) 126 63

1280 × 960 1719 855
640 × 480 6876 3420
320 × 240 27,504 13,680

Total 36,360 18,085

Labeling these images was another essential operation. In the obtained images, there
were two classes of cells: blue stained cells and brown unstained cells. An image labeling
tool (LabelImg v1.8.5) was used to complete the labeling task in this study. A part of the
labeled dataset of cells is shown in Figure 1, where the rectangles are the ground truths.
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Figure 1. Parts of the labeled images in the dataset. The resolution of the images in (A) is 320 × 240, 
in (B), it is 640 × 480, and in (C), it is 1280 × 960. The labeled blue cells are unstained, and the brown 
cells are stained with either Ki-67 antibody or TUNEL kit. 

2.2. Cell Detection Algorithm 
In order to detect and recognize cells using deep learning methods, it is important to 

employ a reliable object detection-based algorithm. CNN modules can build an effective 
detection network which is able to draw bounding boxes and classify cells. Upon these 
considerations, this work introduces an original neural network based on Faster R-CNN 
[27]. The novel backbone DCRNet based on ResNet-101 takes inspiration from the design 
of Faster R-CNN. The network’s structure is shown in Figure 2. 

Figure 1. Parts of the labeled images in the dataset. The resolution of the images in (A) is 320 × 240,
in (B), it is 640 × 480, and in (C), it is 1280 × 960. The labeled blue cells are unstained, and the brown
cells are stained with either Ki-67 antibody or TUNEL kit.

2.2. Cell Detection Algorithm

In order to detect and recognize cells using deep learning methods, it is important to
employ a reliable object detection-based algorithm. CNN modules can build an effective
detection network which is able to draw bounding boxes and classify cells. Upon these con-
siderations, this work introduces an original neural network based on Faster R-CNN [27].
The novel backbone DCRNet based on ResNet-101 takes inspiration from the design of
Faster R-CNN. The network’s structure is shown in Figure 2.

Firstly, the image is transformed into a fixed size (1200 × 1800 in this study). The
image with a fixed size will then enter a Feature Pyramid Network (FPN). ReLU (Rectified
linear unit) is used to activate the convolutional layers [28]. The activated layers will be
handled by pooling layers to generate the feature maps. The Region Proposal Network
(RPN) uses the feature maps to generate the positive anchors and box regression. It will then
produce the region proposals and transport them to the Region-of-Interest (RoI) pooling
layers. The RoI pooling layers are able to obtain proposal features and transport them to
the classification network.
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Additional effective methods were applied to make the model converge better in
the backbone of DCRNet. Faster R-CNN uses the VGG-16 to extract features, which is
unfit for extracting features of small-sized objects [29]. Therefore, the authors adopted
ResNet-101 instead of the VGG-16 [30]. ResNet-101 improved the accuracy by widening
and deepening the network, but it caused hyperparameter explosion and an increase in
computation cost [31]. Therefore, this work aimed to improve the detection accuracy while
keeping the floating-point arithmetic within an acceptable range. Inspired by Inception-V4,
DCRNet used the strategy of split–transform–merge [32]. Authors replaced the original
residual block with a 64-path aggregated residual block to perform the convolution process.
As a result, it was possible to learn more features of small objects like cells. Meanwhile, the
modified aggregated residual block with fewer parameters has a similar computational
complexity to the original ResNet block.

The down-sampling block was also adjusted. In ResNet, down-sampling is completed
by a 1 × 1 convolutional kernel with a stride of 2, which will lose the information of
some grids of the input feature map. Those grids that are ignored may contain important
information. Especially for small targets like cells, each grid may contain key information
about whether they are stained. Therefore, in DCRNet, the 1 × 1 convolutional layer is
replaced by two parts. The authors used an average pooling layer with a stride of 2 and a
1 × 1 convolutional layer with a stride of 1 to make sure that there is no information
loss and that the dimension of the output stays the same. These adjustments practically
improved the accuracy.

The convolutional kernels were also modified. Due to the squeezing among the tubular
epithelial cells and interstitial cells, they may take on various shapes (spindly, fusiform)
rather than being round or oval. How to extract the feature of daedal cells’ shapes and
make it contributive to model training is a challenge. A traditional CNN usually relies
on extending the dataset or using algorithms like Scale-invariant feature transform (SIFT)
to solve relevant problems [33,34]. Instead, this study tried to solve these problems by
modifying the backbone. The ‘shape’ of an object is defined as the edge lines between the
object and the background. Dynamic convolution can adjust the parameters in the kernel
automatically, which is effective for identifying the edge features of cells. In order to use the
cells’ ‘shape’ feature better, deformable convolution networks (DCNs) were adopted [35].
They are represented by Equation (1):

Y(P0) = ∑
Pn∈R

w(Pn)·X(P0 + Pn + ∆Pn), (1)
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In Equation (1), R is a regular grid on the input feature map X; w is the sampled
values’ weights; P0 is the location in the feature map Y; Pn is the location in the regular
grid R. In line with DCNs, the offset parameters of the kernel can be trained, as shown in
Figure 3.
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2.3. Ethical Statement

All of the procedures were conducted according to the guidelines developed by the
China Council on Animal Care and Protocol and were approved by China Agricultural
University (No. SKLAB-2012-04-03).

3. Results
3.1. Model Performance Evaluation

Effective training is an important step to develop a reliable model. To make the model
converge more quickly, the network was trained on the COCO dataset for 160 epochs in
advance. The output weights were saved for further training.

Low-resolution (at a resolution of 640 × 480 or lower) images were trained for
30 epochs at first. Cells in low-resolution images have larger relative sizes compared
to the image. This trick makes the model learn more information about the cells. Therefore,
training low-resolution images firstly helped the model learn more features about small
objects and converge faster. Then, the model went on to be trained on the complete training
set for 270 epochs. The batch size was set to 4. The loss was recorded every five iterations.
The training process is shown in Figure 4. The Average Precision (AP) in Figure 4A is
an indicator to measure how many samples are correctly positive in the total predicted
samples by using bounding boxes.

In order to see the advantage of DCRNet, authors have conducted the ablation experi-
ments, whose the results of which are shown in Table 3. AP50 means the Average Precision
(AP) at the Intersection over Union (IoU) at 50%. AP75 means the AP at the IoU at 75%.
APS shows the AP for small objects whose pixels are less than 32 × 32 pixels. APM is for
middle-sized objects whose pixels are between 32 × 32 and 96 × 96, and APL is for large
objects whose pixels are more than 96 × 96 in size. For a more intuitive display, the results
in Table 3 are magnified by 100.
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Table 3. Results of ablation experiments.

Models
Aggregated

Residual
Block

New Down-
Sampling

Block

Deformable
Convolution AP AP50 AP75 APS APM APL

DCRNet
√ √ √

81.2 99 95.6 80.8 90.3 81.2
DCRNet-v2

√ √
77.8 99.0 94.5 77.6 83.7 76.3

DCRNet-v3
√

75.1 97.3 92.4 74 80.9 75.2
ResNet-101 73.8 96 88.8 73.6 84.5 73.8

Note: “
√

” means the module is used.

The authors trained some mainstream object detection models in the same way and
compared them with DCRNet. The prediction results of the trained models are shown in
Table 4. Based on the results, we believe that the DCRNet-based detection model is more
accurate than other mainstream models, including Faster R-CNN, SSD and Yolov3. With
DCRNet, the Faster R-CNN model produced better prediction results with an acceptable
processing speed. In line with the purpose of this study, DCRNet has apparent advantages
in detecting cells, based on the column APS in Table 4. In conclusion, the proposed
DCRNet-based detection model is more balanced while performing better.

Table 4. Prediction results of other mainstream models on testing set.

Model Backbone AP AP50 AP75 APS APM
FPS

(RTX3090)

Faster R-CNN DCRNet 81.2 99 95.6 80.8 90.3 12
Faster R-CNN ResNet-50 69.5 94.6 83 69.2 79.9 9
Faster R-CNN ResNet-101 73.8 96 88.8 73.6 84.5 7

SSD VGG-16 43.1 81 42.9 42.7 57.5 38
Yolov3 Darknet-53 49.4 84 54.2 49.2 60 30
Yolov3 ResNet-50 47.3 82.4 53.1 47.4 50.6 28

3.2. Practical Experiment

A practical experiment was conducted to validate the accuracy and reliability of
DCRNet. In the practical experiment, a pathology experimentalist was asked to count
cells manually for comparison. The pathology experimentalist and DCRNet conducted
the counting operation on the same picture; the counting results of DCRNet and manual
operation are shown in Table 5.
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Table 5. Counting results of DCRNet method and manual operation.

Unstained Total Unstained Rate *

DCRNet method 242 1272 0.19
Manual operation 231 1196 0.193

* unstained rate = unstained/total.

In addition, it is worth paying attention to the detailed level of detection and the
counting results. A typical sample is depicted in Figure 5, which shows a typical predicted
result on a raw image. In this sample, the cells with a blue bounding box and label are
stained, while the others with a brown bounding box and label are unstained. Based on the
predicted results, most cells were detected accurately and categorically divided into two
classes: stained (blue ones) and unstained (brown ones). The specific counting results of
this sample are shown in Table 6.
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Table 6. Counting results of typical sample.

Unstained Total Unstained Rate *

DCRNet method 82 809 0.101
Manual operation 68 709 0.096

* unstained rate = unstained/total.

It was found that the unstained rates separately output by DCRNet and manual
operation were close. This is due to the DCRNet’s powerful feature extraction capability for
small-sized objects as well as its adaptive learning and detection capabilities for deformable
objects, as shown in Figure 6. In order to make the results more intuitive to facilitate
discussion, the labels in the predicted results are removed while only the bounding boxes
are retained.



Foods 2024, 13, 2270 9 of 12Foods 2024, 13, 2270 9 of 12 
 

 

  
(A) (B) 

Figure 6. DCRNet’s capabilities to detect (A) small-sized adherent cells and (B) deformed cells. 

Focusing on Figure 6A, there are quite a few adherent cells in a specific zone. For 
those adherent cells, DCRNet succeeded in detecting them separately. In the red solid box, 
there are three cells. Compared with other cells, these three cells are small-sized and se-
verely adherent. The magnified image of the red solid box is located within the red dashed 
box, and the raw unprocessed image of this area is located within the green dashed box. 
There are three cells in the red solid box which were all detected by DCRNet. In Figure 
6B, there are several cells that have deformed into spindle-shaped or bar-shaped cells due 
to extrusion. The morphology of these cells is vastly different from other common cells 
that are round or oval, which makes it difficult to detect them using traditional deep learn-
ing models. Instead, DCRNet is capable of detecting deformed cells. 

4. Discussion 
DCRNet has a better performance than other mainstream models, especially in de-

tecting small-sized and extremely deformed cells. However, there is still room for DCRNet 
to improve in detecting and separating stains from the complicated adhesion of spindle-
shaped and bar-shaped cells. 

The counting results of the cells obtained by DCRNet were always higher than the 
results obtained by manual operation. The authors tried to figure out the cause of this 
problem. During the process of finding the cause, the following details attracted our at-
tention, as shown in Figure 7. 

Figure 6. DCRNet’s capabilities to detect (A) small-sized adherent cells and (B) deformed cells.

Focusing on Figure 6A, there are quite a few adherent cells in a specific zone. For
those adherent cells, DCRNet succeeded in detecting them separately. In the red solid
box, there are three cells. Compared with other cells, these three cells are small-sized and
severely adherent. The magnified image of the red solid box is located within the red
dashed box, and the raw unprocessed image of this area is located within the green dashed
box. There are three cells in the red solid box which were all detected by DCRNet. In
Figure 6B, there are several cells that have deformed into spindle-shaped or bar-shaped
cells due to extrusion. The morphology of these cells is vastly different from other common
cells that are round or oval, which makes it difficult to detect them using traditional deep
learning models. Instead, DCRNet is capable of detecting deformed cells.

4. Discussion

DCRNet has a better performance than other mainstream models, especially in detect-
ing small-sized and extremely deformed cells. However, there is still room for DCRNet
to improve in detecting and separating stains from the complicated adhesion of spindle-
shaped and bar-shaped cells.

The counting results of the cells obtained by DCRNet were always higher than the
results obtained by manual operation. The authors tried to figure out the cause of this
problem. During the process of finding the cause, the following details attracted our
attention, as shown in Figure 7.

Figure 7A shows a traditional problem in the deep learning field: the false positive
question. The black object which was recognized as a cell is an unspecific stain commonly
seen in immunohistochemistry. The deep learning model was confused because the stain
is similar to the cells in morphology. DCRNet recognized the stain as a cell but gave a
low confidence. However, some true cells with strange shapes were also recognized and
given a low confidence. Hence, simply raising the confidence threshold would filter out
true cells as well as stains. For Figure 7B, there are some invalid bounding boxes in the
red solid box. The reason for this phenomenon is that the cells in the red solid box are
extremely deformed and have a certain degree of adhesion. For the adhesion of common
round or oval cells, DCRNet can detect cells separately through edge information such
as concave points. But for the adhesion of spindle-shaped or bar-shaped cells, the edge
information including concave points becomes blurred and difficult to find. Thus, adhesive
spindle-shaped and bar-shaped cells, especially the cells with adhesion at their ends, are
arduous to detect separately.
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In further research, DCRNet can be modified in two ways: (1) enhancing its feature
extraction capability for cell interior texture to filter out the stains; (2) enhancing its edge
information identification capability for adhesive spindle-shaped and bar-shaped cells,
especially cells which are adhesive at their ends, so as to detect and recognize these
cells separately.

5. Conclusions

This study presented a new deep learning architecture named DCRNet which can
be used as a backbone in cell recognition. DCRNet provides automated solutions for the
unstained rate of cells via cell counting, which is a compelling reference to evaluate meat
quality. DCRNet also frees the labor force from the repetitive and time-consuming counting
work. The experimental results show that DCRNet achieved an Average Precision of 81.2%
and performed better than traditional neural networks. The unstained rates obtained by
DCRNet were less than 0.5% different from those obtained by a pathology experimentalist.
All predictions generated by DCRNet can be exported to other image or data analysis
software. Moreover, for more accurate cell detection, there is a need to enhance its feature
extraction capability for cell interior texture and further explore the identification method
of extremely deformed and clustered cells.
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