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Abstract: In recent years, due to breeding improvements, strawberries with low anthocyanin content
and a white rind are now available, and they are highly valued in the market. Strawberries with white
skin color do not turn red when ripe, making it difficult to judge ripeness. The soluble solids content
(SSC) is an indicator of fruit quality and is closely related to ripeness. In this study, visible–near-
infrared (Vis-NIR) spectroscopy and near-infrared (NIR) spectroscopy are used for non-destructive
evaluation of the SSC. Vis-NIR (500–978 nm) and NIR (908–1676 nm) data collected from 180 samples
of “Tochigi iW1 go” white strawberries and 150 samples of “Tochigi i27 go” red strawberries are
investigated. The white strawberry SSC model developed by partial least squares regression (PLSR)
in Vis-NIR had a determination coefficient R2

p of 0.89 and a root mean square error prediction
(RMSEP) of 0.40%; the model developed in NIR showed satisfactory estimation accuracy with an
R2

p of 0.85 and an RMSEP of 0.43%. These estimation accuracies were comparable to the results of
the red strawberry model. Absorption derived from anthocyanin and chlorophyll pigments in white
strawberries was observed in the Vis-NIR region. In addition, a dataset consisting of red and white
strawberries can be used to predict the pigment-independent SSC. These results contribute to the
development of methods for a rapid fruit sorting system and the development of an on-site ripeness
determination system.

Keywords: white strawberry; Vis-NIR spectroscopy; non-destructive; spectral noise; fruit
pigment; Brix

1. Introduction

Strawberries, renowned globally for their aesthetic appeal, superior sensory attributes,
and robust nutritional profile, continue to be the focus of breeding efforts worldwide,
which aim to cultivate novel and distinct varieties. Among these, the white strawberry, a
variant diverging from the traditional red strawberry, has been developed and has gained
considerable popularity in Japan. The market for white strawberries could expand to
the international market as a luxury fruit and gift because of their unusual appearance,
good aroma, and sweetness. The white strawberry was registered as a variety in 2009,
and breeding has been underway since then. The characteristic red hue in strawberries
is attributed to anthocyanins, primarily Pelargonidin 3-Glucoside and Pelargonidin 3-
Rutinoside. Notably, the concentration of these anthocyanins in white strawberries is
markedly lower in comparison to their red counterparts [1,2].

In the commercial market, strawberries are selected based on external features such as
vibrant red coloration, size, form, and the absence of surface imperfections. Nevertheless, it
is the internal quality attributes, including sweetness, acidity, and aroma, that significantly
sway consumer preferences [1,3]. Sweetness, a critical determinant of flavor, is predomi-
nantly quantified by the soluble solids content (SSC), which is conventionally measured
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using a refractometer and denoted in degrees Brix. The SSC can be used as a valuable
indicator of fruit maturity because fruits accumulate sugar as they mature [4]. This method,
however, is invasive and labor-intensive. The challenge with white strawberries lies in their
minimal color transformation upon ripening, which poses difficulties in manual ripeness
assessment [1,2]. Current ripeness indicators for strawberry timing are based solely on fruit
surface color. The sorting of strawberry fruit is based on external attributes such as color
distribution, fruit size and shape, and the absence of physiological abnormalities, and is
primarily a visual inspection [5].

Visible–near-infrared (Vis-NIR) spectroscopy and near-infrared (NIR) spectroscopy,
which are extensively utilized in food analysis, offer a non-destructive and rapid method
of evaluation. The near-infrared spectral range (800–2500 nm) is characterized by broad,
overlapping bands arising from fundamental vibrations of molecular bonds (C-H, O-H,
N-H), along with harmonics and combination tones [6]. This technique has been em-
ployed to assess various physiological properties of strawberries, such as firmness, SSC,
pH, titratable acidity, and total phenolic content [5,7]. Developing sorting technology
that can non-destructively sort white strawberries by external and internal qualities will
increase consumer satisfaction, confidence, competitiveness, and profitability. For the
non-destructive evaluation of white strawberries, SSC estimation by near-infrared hyper-
spectral imaging with the application of NIR has been used [8], but there is no research
using NIR. Since hyperspectral imaging equipment is expensive and difficult to use in
practice, the relatively inexpensive Vis-NIR or NIR spectroscopy is easier to introduce into
a sorting system.

Visible near-infrared spectroscopy, encompassing the visible spectrum (380–800 nm),
is also used to evaluate parameters such as color, titratable acidity, SSC, and total phenolic
content [1,9]. Predictive models for numerous quality attributes of strawberries have been
developed using this approach. Vis-NIR has color information that influences the model.
Evaluating strawberries with a white pericarp in Vis-NIR can contribute to the discussion
of the influence of color information on the model and improve its robustness.

In previous approaches, improving accuracy has been considered by optimizing
chemometrics; in actual applications, optimizing measurement conditions on the instru-
ment side is required. Since measurement errors in absorbance affect quantitative analysis,
evaluating the S/N of each measurement condition of the spectrophotometer is adequate.
This information is also helpful for instrument design.

The objective of this research is to ascertain the efficacy of Vis-NIR and NIR spec-
troscopy in measuring the SSC of white strawberries. To achieve this, the SSC estimation of
white strawberries was performed from Vis-NIR and NIR spectra based on chemometric
methods. In the same way, an SSC estimation model was constructed for red strawberries
and compared with the SSC estimation model for white strawberries. In addition, it is neces-
sary to optimize the measurement conditions for practical application development. Since
noise caused by measurement conditions affects model accuracy, we examined methods to
evaluate noise.

2. Materials and Methods
2.1. Fruits Materials

Strawberry samples of “Tochigi iW1 go” with white skin (Figure 1a) were obtained
from the Strawberry Research Institute-Tochigi Prefectural Agricultural Experiment Station
(Tochigi-shi, Tochigi Pref. 328-0007, Japan) between February and March 2021. Here-
after, we refer to “Tochigi iW1 go” as white strawberries. “Tochigi i27 go with a red skin
(Figure 1b)” were grown in Sano City, Tochigi Prefecture, and were purchased in March
2021. Hereafter, we refer to “Tochigi i27 go” as red strawberries. We sampled 180 white
strawberries and 150 red strawberries. Judging from appearances, there were no extremely
underripe samples of white or red strawberries, and both ripeness and shape were gen-
erally considered within the range of ripeness available in the marketplace. Prior to the
experiment, the strawberries were stored under controlled conditions at 23 ◦C to minimize
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variation in the measurements due to temperature changes. The samples were refrigerated
after harvest and transported; they were kept in the refrigerator for approximately one
hour prior to measurements. No serious visual quality deterioration was observed during
the experiment.
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Figure 1. (a) White strawberry “Tochigi iW1 go”. (b) Red strawberry “Tochigi i27 go”.

2.2. Spectral Measurements

The absorbance spectra of the white and red strawberries were measured using a
spectrophotometer with a Vis-NIR wavelength range and a spectrophotometer with a
NIR wavelength range. The whole fruit was measured, but the measurement points were
limited to the fruit equator, where measurements could be taken stably. These systems are
both compact and lightweight and can be carried around and measured on site.

The Vis-NIR spectrophotometer (Fruits Selector, Kubota Co., Osaka, Japan) measure-
ment wavelength range is 500–978 nm, with a wavelength resolution of 2 nm. To obtain
sufficient light intensity, the number of integrations was set to 16 and the exposure time
was set to 150 ms for the white strawberries and 75 or 100 ms for the red strawberries. The
light source was halogen (35 W), and the white plate and dark current were measured
inside the device.

The NIR spectrophotometer (MicroNIR1700, JDSU Co., Milpitas, CA, USA) measure-
ment wavelength range is 908–1676 nm, with a wavelength resolution of 6.19 nm. To obtain
sufficient light intensity, the number of integrations was set to 128 and the exposure time
was set to 7.4 ms for the white strawberries and red strawberries. The light source was two
vacuum tungsten lamps (<1 W each lamp) placed near the detector. The white plate was
measured as a reference with the light source on. The dark current was measured with the
lights off.

The average absorbance was calculated using Equation (1) by measuring four points
at the equators of the red and white strawberries, approximately every 60 degrees, using
each device.

Aλ = −log
Sλ − Dλ

Wλ − Dλ
(1)

where λ represents wavelength, Aλ,t represents absorbance at wavelength λ, S and W
represent sample intensity and white reference intensity, respectively, and D denotes
dark intensity.

2.3. Measurement of Soluble Solid Content

After collecting the spectral data, the Brix value as the SSC of each sample was
measured using a Brix meter (PAL-1, ATAGO Co., Ltd., Tokyo, Japan) from whole fruit.
The juice obtained by squeezing the fruit in a non-woven wrapper was measured.
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2.4. Data Analysis
2.4.1. Dataset

Six datasets consisting of Vis-NIR and NIR spectra of the white strawberries, red
strawberries, and a mixture of white and red strawberries, as well as the SSC of each
sample, were created. It is practical to apply the calibration model to multiple strawberry
varieties, including red and white strawberries. Obvious outlier spectra were excluded
from the analysis. Each dataset was split at a 7:3 ratio into a training set for model building
and a test set for validation.

2.4.2. Spectral Pre-Processing

Second derivative processing was applied to each spectrum using the Savitzky–Golay
algorithm (window size: 15) to remove noise, for baseline correction, and to reduce
band overlap.

2.4.3. PLSR Modeling

The SSC estimation models were constructed from the training data using partial
least squares regression (PLSR) analysis. The prediction error sum of squares (PRESS)
values were calculated from the predicted values for each sample using leave-one-out cross-
validation, as shown in Equation (2). PLS factors (The latent variable for the PLSR model)
were determined by the F statistic to ensure that the PRESS was not significantly larger
than the minimum PRESS, since adopting the number of factors that yield the minimum
PRESS may result in overfitting [10].

PRESS =
n

∑
i=1

(yi − ŷi)
2 (2)

where yi represents the measured SSC values for each sample, and ŷi represents the
predicted value in cross-validation.

2.4.4. Validation

Each constructed model was applied to the test data to verify model performance.
The coefficient of determination of the cross-validation, calibration, and prediction (R2cv,
R2c, and R2p); the root mean square error (RMSE) of the cross-validation, calibration, and
prediction (RMSECV, RMSEC and RMSEP); and the ratio of performance to deviation (RPD)
were calculated as indicators to evaluate the model. A higher coefficient of determination is
desirable and a lower RMSE is better for the model. An RPD value below 1.5 indicates that
the model cannot be used to describe the dataset, while values between 1.5 and 2.0 indicate
that the model is able to discriminate between low and high values of the response variable
adequately; values between 2 and 2.5 indicate that approximate quantitative predictions are
possible. For values between 2.5 and 3.0 or above 3.0, the prediction is classified as good or
excellent, respectively [11–13]. These indices were calculated using Equations (3)–(5). The
overall reliability of the model should be judged from these indicators, and there should be
no deviation from the results of the cross-validation, calibration, and prediction.

RMSECV, RMSEC, RMSEP =

√
1
n∑n

i=1(ŷi − y)2 (3)

R2
cv , R2

c , R2
p = 1 −

{
∑n

i=1(yi − ŷ)2

∑n
i=1(yi − y)2

}
(4)

RPD =
σy_test

RMSEP
(5)

where n represents the number of samples; y represents the SSC values measured using
the Brix meter; y denotes the mean values of y; and ŷ denotes the Brix value forecast using
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Vis-NIR or NIR spectroscopy during cross-validation, calibration, and prediction; σy_test
represents the standard deviation of the SSC for the test sets.

2.5. Strawberry Pigment

In strawberries, the primary pigments are anthocyanin, which is a red pigment, and
chlorophyll, which is a green pigment. To explore their absorption wavelengths, sample
solutions were prepared. This research utilized Pelargonidin 3-Glucoside, a prominent an-
thocyanin in strawberries. The Pelargonidin 3-Glucoside powder (Toronto Research Chem-
icals, North York, ON, Canada) was solubilized in water to a concentration of 0.1 (mg/mL).
Similarly, chlorophyll samples were created by dissolving chlorophyll powder (Tokyo
Chemical Industry Co., Ltd., Tokyo, Japan) in water to a concentration of 0.2 (mg/mL).
Spectrophotometric analysis was conducted using a UV-Vis-NIR spectrophotometer (UV-
3100PC, SHIMADZU Co., Kyoto, Japan), with spectra gathered in the 190–3100 nm range
at 1 nm resolution. The 450–800 nm range was selected for analysis. The intensities of
the pigment sample (It) and the reference water (I0) were measured in a quartz cell. The
absorbance of the pigments was calculated using the following Equation (6).

Aλ = −log
(

I0,λ

It,λ

)
(6)

where λ represents wavelength, Aλ represents absorbance at wavelength λ, and I0 and It
represent water intensity and pigment sample intensity at the wavelength, respectively.

2.6. Noise Evaluation of Spectrometer

Errors in quantitative analysis are important for the absorbance measurement errors,
i.e., the instrumental errors. These noise evaluations are also useful for new equipment
design. The Vis-NIR spectrophotometer and NIR spectrophotometer used in this study
allow the exposure and number of integrations to be set. The reference was measured
repeatedly by varying the exposure and integration to evaluate the potential noise effects
due to measurement conditions. In the case of the Vis-NIR spectrophotometer, 30 conditions
were set with 6 exposure times (10, 60, 120, 180, 240, and 300 ms) and 5 integration times
(8, 16, 32, 64, and 128 times); in the case of the NIR spectrophotometer, there were 6
exposure times (0.01, 1.5, 3.0, 4.5, 6.0, and 7.4 ms), and the number of integrations was set
to 30 conditions with 5 steps (8, 16, 32, 64, and 128 integrations). The white plates were
measured 20 times each under these conditions. The apparent absorbance was calculated
according to Equation (7). Nineteen apparent absorbance spectra were calculated for each
condition based on the first measurement.

Aλ,t = −log
Wλ,t − Dλ,t

Wλ,t0 − Dλ,t0
(7)

where λ represents wavelength, Aλ,t represents absorbance at wavelength λ, Wλ,t0 repre-
sent white reference intensity at the first measurement and after the first measurement,
respectively, and D denotes dark intensity.

The obtained spectra were converted to second derivative spectra using the Savitzky–
Golay algorithm. The standard deviations of the second derivative of absorbance for each
of the 20 points in the wavelength ranged from 834 nm to 872 nm for Vis-NIR and from
1435 nm to 1552 nm for NIR and were calculated using Equation (8). These wavelength
bands are also the range where high-intensity luminance values are measured in the
obtained luminance spectra. This calculation yields the standard deviation spectrum (for
20 wavelengths) for each exposure and the number of integrations. Lastly, for the noise
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level (NL), the average value of the 20 wavelengths of the standard deviation spectrum
obtained for each exposure condition and integrations were calculated using Equation (9).

σλ =

√√√√√∑N
i=1

(( ..
Aλ,i

)
−

..
Aλ

)2

N − 1
(8)

where λ represents wavelength, σλ represents the standard deviation of the samples at
each wavelength point,

..
Aλ,i represents the second derivative of absorbance at the wave-

length,
..

Aλ represents the mean second derivative of absorbance at the wavelength, and N
represents degrees of freedom: sample size.

NL =
∑ σλ

M
(9)

where NL represents noise level, and M represents degrees of freedom: number of wave-
lengths selected.

3. Results and Discussion
3.1. Sugar Content Distribution

Figure 2 shows histograms of the SSC for the white and red strawberries. The mean and
standard deviation of the SSC for the white strawberries were 10.04% and 1.29, respectively.
On the other hand, the mean and standard deviation of the SSC for the red strawberries were
8.13% and 1.18%, respectively. Each distribution was determined to be close to a normal
distribution. The white strawberries had a higher mean SSC than the red strawberries. The
SSCs were widely distributed and likely contained samples of various maturity levels.
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3.2. Vis-NIR Spectra

Figure 3a shows the average absorbance spectra of the white and red strawberries
measured by the Vis-NIR spectrophotometer. Figure 3b shows the second derivative spectra
of the white and red strawberries, anthocyanin, and chlorophyll. The second derivative
spectrum of pelargonidin 3-glucoside measured as anthocyanin showed an absorption
peak near 505 nm. The white and red strawberries also showed a peak around 505 nm, due
to pelargonidin 3-glucoside. The absorption peak near 550 nm in the white strawberries
and the absorption peak near 560 nm in the red strawberries are due to a shift in the
absorption peak of the anthocyanins appearing near 500–535 nm [14]. It has been noted
that anthocyanins in strawberries are less stable because they are affected by vitamin C
and amino acids [15]. The absorption peak around 673 nm that appears in the second
derivative spectrum of chlorophyll appeared in both the red and white strawberries. The
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absorption spectrum of the white strawberries shows that they contain anthocyanins and
chlorophyll like the red strawberries. It is inferred that white strawberries appear white due
to the higher content of chlorophyll and the lower content of anthocyanins, which affect
scattering. Red strawberries have lower absorbance at wavelengths longer than 600 nm;
so, white strawberries are less reflective in this band. In addition, no differences in the
characteristics of the pericarp surface other than color were visually observed; so, it was
inferred that the effect of reflection was more limited than the scattering. To verify this, it is
necessary to investigate the scattering and absorption coefficients at different wavelengths
by microscopic observation of the pericarp surface and Monte Carlo simulation [16,17].
Absorptions near 838 nm and 970 nm associated with sugar-related O-H and C-H [18]
appeared in the secondary differential spectra of the red and white strawberries.
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3.3. NIR Spectra

Figure 4a shows the average absorbance spectra of the white and red strawberries
measured by the NIR spectrophotometer. Figure 4b shows the second derivative spectra of
the white and red strawberries.
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In the NIR region, minimal differences were noted in the spectral properties relating to
the skin color of strawberries, as compared to the Vis-NIR spectra. The main peaks observed
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in Figure 5a, at 952, 1187, and 1459 nm, are attributed to the overtones and combination
tones of O-H and C-H bonds. Additionally, the peaks at 976, 1075, and 1416 nm in Figure 5b
correlate with the O-H bonds of water, while the peak at 1168 nm is associated with the
C-H bonds in sugars [18,19].
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3.4. Determination of Sugar Content

Table 1 shows the PLSR results for the development of the SSC estimation model for
each dataset, and Figure 6 shows the relationship between the measured and estimated
values for the test set. Since there were no R2 or RMSE differences between the cross-
validation on the training set and the calibration and validation on the test set for all
the datasets, we conclude that there is no overfitting in the developed SSC estimation
model. The R2

p and RMSEP for the white strawberry SSC estimation model developed
in the Vis-NIR wavelength range (Figure 5a) were 0.89 and 0.40%, respectively, while
the model developed in the NIR range (Figure 5b) had an R2

p of 0.85 and an RMSEP of
0.43%. Both models were robust with RPD values of 2.98 in the Vis-NIR region and 2.64
in the NIR region. It was shown that SSC estimation was possible with practical accuracy
for the white strawberries using the Vis-NIR wavelength range and the NIR wavelength
range. The R2

p and RMSEP for the red strawberry SSC estimation model developed
in the Vis-NIR wavelength range (Figure 5c) were 0.89 and 0.36%, respectively, while
the model developed in the NIR range (Figure 5d) had an R2

p of 0.89 and an RMSEP
of 0.36%. Both models were robust with RPD values of 3.05 in the Vis-NIR region and
3.04 in the NIR region. These results indicate that Vis-NIR and NIR can estimate the
SSC for strawberries with white skin color as accurately as for red strawberries. The
R2

p and RMSEP for the red and white strawberry SSC estimation model developed in
the Vis-NIR wavelength range (Figure 5e) were 0.91 and 0.48%, respectively, while the
model developed in the NIR range (Figure 5d) had an R2

p of 0.87 and an RMSEP of
0.57%. Both models were robust with RPD values of 3.35 in the Vis-NIR region and
2.27 in the NIR region. Practical models among multiple varieties can be developed
with excellent predictive performance, primarily when variability and heterogeneity
are well represented in the calibration set. A comparison of this model [20–22] with
other fruit multiple-variety models showed similarly good estimation accuracy. The
results suggest that it is possible to construct a practical estimation model for the SSC
estimation from a dataset of strawberry varieties with different peel colors in both the
Vis-NIR and NIR regions.

Table 1. Characteristics of the PLS regression models for the prediction of Brix in the white and red
strawberries based on the spectra of fruits.

Model Calibration Cross-Validation Prediction

Strawberry
Color Wavelength PLS

Factor R2
C

RMSEC
(%) R2

CV
RMSECV

(%) R2
p

RMSEP
(%) RPDp Slope Offset Bias

White Vis-NIR 7 0.96 0.26 0.95 0.30 0.89 0.40 2.98 1.06 −0.54 0.07
White NIR 6 0.84 0.53 0.80 0.59 0.85 0.43 2.64 0.82 1.92 0.06
Red Vis-NIR 7 0.92 0.34 0.87 0.44 0.89 0.36 3.05 1.01 −0.01 0.04
Red NIR 7 0.88 0.42 0.84 0.48 0.89 0.36 3.04 0.91 0.80 0.07

White and
Red Vis-NIR 8 0.96 0.34 0.95 0.38 0.91 0.48 3.35 0.99 0.14 0.08

White and
Red NIR 7 0.91 0.52 0.89 0.56 0.87 0.57 2.77 0.93 0.60 −0.07
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3.5. Model Replacement

To further examine the influence of skin color on SSC estimation in Vis-NIR and NIR,
we attempted to estimate the SSC for the white strawberries with a model built from a
red strawberry dataset and the SSC for red strawberries with a model built from a white
strawberry dataset. Table 2 shows the results of the application of the SSC estimation
model to data from the different color test sets. The R2

p and RMSEP of the red straw-
berry SSC estimation model developed in the Vis-NIR wavelength range applied to the
white strawberry test data were 0.80 and 1.03%, respectively. The R2

p and RMSEP of
the white strawberry SSC estimation model developed in the Vis-NIR wavelength range
applied to the red strawberry test data were 0.09 and 6.55%, respectively. This indicates
that the pigments affect the SSC estimation in the Vis-NIR region. Figure 6a shows the
regression coefficients of the SSC estimation model developed from the red strawberry and
white strawberry datasets in Vis-NIR. The position and size of the peaks of the regression
coefficients were different below 800 nm, including pigments such as anthocyanins and
chlorophyll. However, the model developed from the dataset consisting of the red and
white strawberries could estimate the SSC. These results suggest that sufficient sampling of
the red and white strawberry data could reduce the influence of pigment on the model. On
the other hand, the R2

p and RMSEP of the red strawberry SSC estimation model developed
in the NIR wavelength range applied to the white strawberry test data were 0.65 and 0.60%,
respectively. The R2

p and RMSEP of the white strawberry SSC estimation model developed
in the NIR wavelength range applied to the red strawberry test data were 0.73 and 0.76%,
respectively. Since pigment absorption information does not appear in the near-infrared
region, applying the model to test sets with different skin colors did not seriously decrease
estimation accuracy. The positions of the peak wavelengths of the regression coefficients in
the NIR region for the red and white strawberries were generally consistent, suggesting
that the difference in peak size affected the accuracy of the estimation.

Table 2. Characteristics of the PLS regression models for the prediction of Brix in the white and red
strawberry based on the spectra of fruits.

Sample Model Wavelength R2
p RMSEP (%) RPDp Slope Offset Bias

White Red Vis-NIR 0.80 1.03 1.25 1.05 −1.30 0.78
Red White Vis-NIR 0.09 6.55 0.18 0.40 11.22 −6.35

White Red NIR 0.65 1.15 1.11 0.60 3.24 0.86
Red White NIR 0.73 1.16 1.02 0.76 2.93 −0.99
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3.6. Noise Evaluation of Spectrometer

Figure 7 shows the relationship between noise level, number of integrations, and
exposure time for the white plates measured with the Vis-NIR spectrophotometer (Figure 3a)
and the NIR spectrophotometer (Figure 3b). For the set range of integration times and
exposure times, the noise level of the Vis-NIR spectrophotometer is lower when the number
of integrations increases than when the exposure time increases. On the other hand, for the
NIR spectrophotometer, increasing the exposure time decreases the noise level more than
increasing the number of integrations. Furthermore, the NIR spectrophotometer shows a
larger decrease in noise level under different conditions than the Vis-NIR spectrophotometer.
The light source of the Vis-NIR spectrophotometer is more intense and has a longer exposure
time than the light source of the NIR spectrophotometer, which improves the stability of the
measurement. The minimum noise level was 0.208 µabs for the Vis-NIR spectrophotometer
with an exposure time of 300 ms and 128 integrations; for the NIR spectrophotometer,
the noise level was 0.331 µabs with an exposure time of 7.4 ms and 128 integrations. The
measurement conditions for the strawberries when using the NIR spectrophotometer in
this study were minimal noise levels. In the Vis-NIR spectrophotometer, the noise level can
be reduced more by increasing the number of integrations, but this should be considered in
conjunction with other factors, such as the practicality of the measurement speed. Thus,
it was shown that it is effective to consider the measurement conditions according to the
noise level. The relationship between noise level and SSC estimation performance in such
basic experiments is also helpful for determining the specifications of new practical devices
when they are designed.
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4. Conclusions

This study explored the possibility of Vis-NIR spectroscopy and NIR spectroscopy
as valid methods for the non-destructive SSC evaluation of white strawberries. The SSC
estimation model was developed by PLSR using the second derivative spectrum. The
results showed good estimation accuracy with an R2

p of 0.89 and RMSEP of 0.40% for
Vis-NIR and an R2

p of 0.85 and RMSEP of 0.43% for NIR. These estimation accuracies were
comparable to the results of the model for red strawberries. Vis-NIR spectroscopy and NIR
spectroscopy are effective methods for the SSC of strawberries regardless of the color of the
skin. The relationship between the non-destructive measurements and sensory evaluation
results for each strawberry fruit can be investigated to verify whether the SSC estimation
by Vis-NIR and NIR for strawberries is useful for ripeness and quality evaluation. As
with the red strawberries, the second derivative spectra in the Vis-NIR region observed an
absorption derived from anthocyanin and chlorophyll pigments in the white strawberries.
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When estimating the SSC for red and white strawberries in a single model in the Vis-NIR
region, biased sampling may cause the model to become unstable.

Furthermore, these results contribute to the development of methods for a rapid
fruit sorting system and the development of an on-site ripeness determination system.
For practical development, it is desirable to optimize for low noise within acceptable
measurement conditions (speed, light source intensity, etc.) using a noise level index.
The noise level indicator used in this study was able to visualize differences in spectral
noise for each measurement condition. The results of this research will contribute to the
development of a practical white strawberry quality evaluation system.
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