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Abstract: In recent years, the growing demand for algae in Western countries is due to their richness in
nutrients and bioactive compounds, and their use as ingredients for foods, cosmetics, nutraceuticals,
fertilizers, biofuels„ etc. Evaluation of the qualitative characteristics of algae involves assessing their
physicochemical and nutritional components to determine their suitability for specific end uses, but
this assessment is generally performed using destructive, expensive, and time-consuming traditional
chemical analyses, and requires sample preparation. The hyperspectral imaging (HSI) technique has
been successfully applied in food quality assessment and control and has the potential to overcome
the limitations of traditional biochemical methods. In this study, the nutritional profile (proteins,
lipids, and fibers) of seventeen edible macro- and microalgae species widely grown throughout
the world were investigated using traditional methods. Moreover, a shortwave infrared (SWIR)
hyperspectral imaging device and artificial neural network (ANN) algorithms were used to develop
multi-species models for proteins, lipids, and fibers. The predictive power of the models was
characterized by different metrics, which showed very high predictive performances for all nutritional
parameters (for example, R2 = 0.9952, 0.9767, 0.9828 for proteins, lipids, and fibers, respectively). Our
results demonstrated the ability of SWIR hyperspectral imaging coupled with ANN algorithms in
quantifying biomolecules in algal species in a fast and sustainable way.

Keywords: protein; lipid; fiber; microalgae; seaweeds

1. Introduction

Algae are a broad group of photosynthetic organisms of different dimensions, shapes,
and colors, and with different filament complexities, from simple to branched [1]. They are
widely spread across all of the world’s biogeographic areas, having a robust ability to adapt
to different environmental conditions (temperature, light, nutrient concentration, hydro
dynamism, etc.) [2]. Algae are classified as red (Rhodophyta), brown (Phaeophyceae),
green (Chlorophyta), and blue-green (Cyanophyta) algae depending on the nature of
their pigments. The first three phyla are often called seaweeds or macroalgae. They are
macroscopic marine algae, whose length can reach tens of meters [3]. Actually, there
are around 7533 red, 2133 brown and 8191 green species in nature [4]. Microalgae are
microscopic organisms naturally found in marine environments or fresh water. Although it
is estimated that there are many microalgal species, approximately 44,000 have currently
been studied [5]. Among these, only a small number, such as Auxenochlorella vulgaris and
Limnospira platensis, are commercially relevant [5].

According to the FAO, in 2021 the production of algae was 36 million tonnes (wet
weight), mainly from aquaculture and marine aquaculture [6]. The top producers were
China, Indonesia, the Republic of Korea, and the Philippines (with shares of 60%, 25%,
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5%, and 4%, respectively). The majority of algae (more than 95 percent, dominated by
seaweeds) is harvested from the sea. The major exporters of algae were the Republic of
Korea, Indonesia, and China, while China, Japan, and the USA were the leading importers.
Algae are consumed on a large scale in Far Eastern countries (especially in Japan, China,
Korea, the Philippines, and Indonesia), Mexico, Africa, and, on a smaller scale, in Europe.
However, their use has greatly increased in recent years even in Western countries. Accord-
ing to Meticulous Research® (www.meticulousresearch.com/product/algae-market-5424
accessed on 10 July 2024), the algae market is expected to reach USD 29.8 billion by 2030,
from USD 22.1 billion in 2024 [7]. This positive trend can be attributed to the growing pop-
ularity of algae due to their sustainability and environmental and nutritional benefits. In
fact, algae can be used as human foods, cosmetics, nutraceuticals, pharmaceuticals, plastics,
fertilizers, biofuels, and for the extraction of industrial gums (phytocolloids and gelling
agents, such as agar and carrageenan from Rhodophyta and alginates from Phaeophyceae)
and chemicals [1,8,9].

Because the world population is expected to increase up to 9.7 billion people by 2050,
and to ensure nutritious, adequate, and safe food for all, it is necessary to identify new
and sustainable sources of food. From this point of view, algae can play a promising role
in global food security. In fact, increasing attention has been directed at the use of both
microalgae and seaweeds for the development of functional foods, such as pasta, bread,
biscuits, snacks, vegetable soups, noodles, stews, burgers, garnishes, chips, candy bars or
gums, yogurts, ice creams, drinks, etc., due to the great variety of nutrients essential for
human health that they possess [4,8,10,11]. Algae are increasingly recognized as nutritious
and healthy foods that are claimed to be excellent sources of proteins, lipids, carbohy-
drates, dietary fibers, vitamins (A; B-complex, including B12; C; D; E; pantothenic acid; and
folic acid), minerals (calcium, magnesium, potassium, iodine, sodium, phosphorus, nickel,
chromium, selenium, iron, zinc, and manganese), pigments, and other biological com-
pounds, such as carotenoids, polyphenols, antioxidants, and phytoestrogens„ etc. [1,12,13].
Due to all these properties, the World Health Organization (WHO) has recommended algae
as an option to remedy malnutrition, as reported by Penalver et al. [14]. However, the
phytochemical content and nutrient profiles can exert significant variation, mainly ascribed
to different locations, growth conditions, and seasonality, even within species [15]. Algae
are generally considered a sustainable source of non-animal-derived proteins, rich in amino
acids (especially glycine, alanine, arginine, proline, glutamic, and aspartic acids) essential
for the human diet, whose content is often similar or higher to other traditional plant or
animal sources [1,16]. Although algae show a low lipid content, they can have a high
portion of unsaturated and polyunsaturated fatty acids, triglycerides, sterols, glycolipids,
and phospholipids [1,14]. For this reason, algae are often categorized as a low-calorie food.
Regarding their health benefits, it has been proven that regular consumption of seaweed can
improve intestinal function and can promote antioxidant, anti-inflammatory, antimicrobial,
antiviral, antihypertensive, antihyperlipidemic, immunomodulatory, anticancer, antidia-
betic and anticoagulant activities, weight management, and disease prevention [8,13,17–22].

The quality evaluation of algae involves assessing their physicochemical and nutri-
tional components to determine their suitability for specific end uses, which is generally
performed using destructive, labor-intensive, expensive, and time-consuming traditional
chemical analyses. In recent years, the hyperspectral imaging (HSI) technique has been
successfully applied in food quality assessment and control [23]. It combines computer
vision technology and spectroscopy to identify the sample’s two-dimensional images and
one-dimensional spectral information [24]. Therefore, each image contains physical proper-
ties, such as shape, texture, and color, and spectral bands, which underline the chemical
traits of the food product [24–26]. The main advantage of this technique is the ability to
acquire a large amount of data from large-scale samples, obtaining chemical and physical
information to qualitatively/quantitatively characterize complex food matrixes. Informa-
tion from these large datasets can be managed to develop the calibration and validation
of predictive models through appropriate chemometric tools. The rtificial neural network
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(ANN), one of the most common machine learning techniques, have gained attention due
to their ability to reliably and practically predict food quality traits [27]. Compared to other
linear algorithms, such as partial least square (PLS) regression, ANN can iteratively learn,
identify, and model complex and often nonlinear relationships between the dependent and
independent variables in the function of the provided patterns and without requiring prior
knowledge of the relationships between variables [27,28].

In light of these considerations, our study aimed to evaluate the nutritional profile
(proteins, lipids, and fibers) of seventeen macro- and microalgae species widely consumed
around the world; to evaluate, for the first time, the predictive performance of a shortwave
infrared (SWIR) hyperspectral imaging device (935–1720 nm), developing multi-species
calibration models using ANN algorithms for three nutritional parameters (proteins, lipids,
and fibers); to analyze prediction accuracy with different metrics; and to highlight the most
predictive input spectral regions for each model. To the best of our knowledge, no studies
have investigated the potential of shortwave infrared hyperspectral imaging devices to
develop predictive models for the assessment of the nutritional parameters of algae.

2. Materials and Methods
2.1. Algae Material

Forty-one macro- and microalgae samples of different origins were considered in this
study, as described in Table 1. The samples belonged to seventeen species widely consumed
around the world, namely Limnospira platensis, Auxenochlorella pyrenidosa, Chlorella vulgaris,
Chondrus crispus, Eisenia bicyclis, Himanthalia elongata, Laminaria digitata, Laminaria longissima,
Laminaria ochroleuca, Palmaria palmata, Porphyra umbilicalis, Pyropia yezoensis, Sargassum
fusiforme, Ulva lactuca, Ulva lactuca var. spiralis, Ulva pertusa, and Undaria pinnatifida. The
samples were grown in different environments and were purchased from Italian markets
over three years. The samples was ground by a Bühler MLI 203 sifter (Milan, Italy) and
sieved to obtain a fine and homogeneous flour with particle sizes from 400 to 500 µm.
Four aliquots were randomly extracted from each sample, on which the analyses were
carried out.

Table 1. Samples of algae divided by classes, species, and origin.

Sample Number Phylum Species Origin

1

Chlorophyta
(green algae)

Auxenochlorella pyrenidosa Northwest France
2 Chlorella vulgaris China
3 Ulva lactuca Northwest Spain
4 Ulva lactuca Northwest France
5 Ulva lactuca Italy
6 Ulva lactuca var. spiralis Ireland
7 Ulva pertusa Japan

8 Cyanophyta
(blue-green algae)

Limnospira platensis Italy
9 Limnospira platensis China
10 Limnospira platensis Italy

11

Phaeophyceae
(brown algae)

Eisenia bicyclis Japan
12 Eisenia bicyclis Japan
13 Eisenia bicyclis Japan
14 Himanthalia elongata Northwest Spain
15 Himanthalia elongata Northwest France
16 Himanthalia elongata Northwest France
17 Laminaria digitata Northwest France
18 Laminaria digitata North Atlantic
19 Laminaria digitata Japan
20 Laminaria longissima Japan
21 Laminaria longissima Japan
22 Laminaria ochroleuca Atlantic
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Table 1. Cont.

Sample Number Phylum Species Origin

23

Phaeophyceae
(brown algae)

Laminaria ochroleuca Atlantic
24 Sargassum fusiforme Atlantic
25 Undaria pinnatifida Japan
26 Undaria pinnatifida Northwest Spain
27 Undaria pinnatifida Atlantic
28 Undaria pinnatifida Korea
29 Undaria pinnatifida Northwest Spain
30 Undaria pinnatifida Atlantic
31 Undaria pinnatifida Northwest Pacific

32

Rhodophyta
(red algae)

Chondrus crispus Ireland
33 Chondrus crispus Ireland
34 Palmaria palmata Atlantic
35 Palmaria palmata Atlantic
36 Palmaria palmata Ireland
37 Palmaria palmata Atlantic
38 Porphyra umbilicalis Southwest Atlantic
39 Porphyra umbilicalis Argentina
40 Porphyra umbilicalis Atlantic
41 Pyropia yezoensis Northwest France

2.2. Proximate Composition

Determination of the proximate composition of the algae was performed in triplicate
and the data were expressed as g 100 g−1 on a dry weight basis (dw). The proteins and
lipids were determined by the ICC standard methods 105/2 and 136, respectively [29].
Protein content was estimated using the conversion factor 5.0 instead of 6.25. In fact, recent
studies highlighted that the use of a conversion factor equal to 6.25 overestimated the
algae protein content and they identified the value 5.0 as the most suitable nitrogen-to-
protein conversion factor [30–33]. Total dietary fiber content was measured according to
Lee et al. [34].

2.3. Hyperspectral Imaging

Shortwave infrared (SWIR) hyperspectral images of the algae samples (5 g of material
in a Petri dish) were acquired in reflectance mode using a SisuCHEMA Hyperspectral
Chemical Imaging Analyser (SPECIM, Spectral Imaging LTD, Oulu, Finland) system, as
well described by Amoriello et al. [24]. The system (Figure 1) consists of a scanner table
having a maximum scanning rate of 60 mm/s and a spatial resolution of 600 µm, with
an integrated SPECIM diffusive line illumination unit, and a monochrome InGaAs image
sensor detector (Specim FX17, Spectral Imaging Ltd., Oulu, Finland) with a spectral range of
935–1720 nm, a spectral resolution of 8 nm, and a spatial resolution of 640 pixels. The images
were acquired and converted to spectral reflectance with Lumo-Scanner software (version
2022, Lumo-Scanner, Specim, Spectral Imaging Ltd., Oulu, Finland). The exposure time of
the hyperspectral camera was set to 4.70 ms, the frame rate to 15.20 Hz, the positioning
speed of the platform to 20.00 mm s−1, and the scanning speed to 5.84 mm s−1. The
reflectance of the acquired hyperspectral images was calibrated using the white and dark
reference images, according to the following equation:

R =
Rraw − RB

RW − RR

where R = the corrected reflectance, Rraw = the original reflectance, RB = the black reference,
and RW = the white reference.
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Figure 1. Shortwave infrared (SWIR) hyperspectral imaging device.

The HSI images were processed using Evince software (version 2.7.12, Prediktera AB,
Umeå, Sweden). A principal component analysis (PCA) algorithm was used for the image
segmentation and to remove the background, as described by Amoriello et al. [24]. Then,
the reflectance spectra were smoothed with a baseline correction and the application of the
first-order Savitzky–Golay filter for noise reduction. The light scattering was minimized
using standard normal variate (SNV) correction. The mean spectrum was calculated as the
average of the spectra related to all of the pixels of each sample, considering the overall
hyperspectral image. All mean spectra were transformed by first-derivative treatment with
a central difference approach to highlight species differences.

2.4. Artificial Neural Networks

Three nutritional parameters (protein, lipid, and total fiber) were predicted using
artificial neural network (ANN). The feed-forward architecture of the ANN, i.e., multilayer
perceptron (MLP), combined with the Levenberg–Marquardt learning algorithm, was used
to develop nonlinear models for the nutritional variables. The SWIR spectra of each algal
sample represented the independent variables, and the dataset was randomly split into a
training set (70% of the data), a testing set (15% of the data), and a validation set (15% of the
data). The ANN architecture (Figure 2) was composed by three main layers: an input layer,
which contains 164 spectral data, an output layer, i.e., the three nutritional parameters, and
a hidden layer, as well described by Amoriello et al. [27].

Four activation functions (identity function, logistic function, hyperbolic tangent
function, and exponential function) applied in the hidden or output layers and differ-
ent topologies with different neurons in the hidden layer (from 1 to 25) were tested to
evaluate the best topology for each model. The training process of the network was run
100,000 times with random initial values of weights and biases. The prediction perfor-
mances were assessed using different metrics: the coefficient of correlation between ob-
served and predicted values (r), the coefficient of determination (R2), the mean absolute
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error (MAE), the root mean squared error (RMSE), and the relative standard error (RSE), as
described by Amoriello et al. [27]. The models and sensitivity analyses were developed
using TIBCO® Statistica statistical package software (version 13.5, TIBCO software Inc.,
Palo Alto, CA, USA).
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2.5. Statistical Analysis

Differences between all of the nutritional variables were determined using the Kruskal–
Wallis non-parametric test and Dunn’s post hoc test at a significance level of 5%, using
PAST statistical software (version 4.17).

3. Results and Discussion
3.1. Exploratory Analysis

Table 2 summarizes the nutrient composition in terms of protein, lipid, and to-
tal fiber contents of different algae species. Protein content differed significantly be-
tween samples, showing the highest mean values for Limnospira platensis (62.1 ± 3.2 g
100 g−1 dw), formerly known as Spirulina, for Auxenochlorella pyrenidosa (59.0 ± 0.2 g
100 g−1 dw), and for Chlorella vulgaris (57.9 ± 0.2 g 100 g−1 dw). Conversely, the lowest
values were recorded for brown algae, particularly by Laminaria ochroleuca (2.2 ± 0.2 g
100 g−1 dw, sample 23), in accordance with the results of Salido et al. [1] and Penalver
et al. [13], which suggested a protein content near or below 15 g 100 g−1 dw for brown
algae. The Food and Agriculture Organization of the United Nations (FAO) and the World
Health Organization (WHO) recommend the consumption of Spirulina and Chlorella mi-
croalgae in the diet due to their high protein content, up to 70% protein per unit of dry
weight [14]. Furthermore, these algae are composed of essential amino acids, suitable for
human nutrition [5]. For these reasons, these microalgae are considered as a desirable and
sustainable ingredient for protein supplements, to be consumed especially in vegetarian
or vegan diets. However, seaweeds can also be considered a good source of protein due
to their overall protein level and their amino acid composition [34]. For example, in our
study, red algae also showed a good average protein content, from the 15.4 ± 1.4 g 100 g−1

dw of Chondrus crispus to the 26.6 ± 3.4 g 100 g−1 dw of Porphyra umbilicalis, as previously
reported by Salido et al. [1] and Sultana et al. [35]. However, the differences in the chemical
composition of algal species can be due to geographical location and environmental factors,
such as seasonality, year, salinity, water temperature, and light irradiation, which could
influence the nutrient supply, including the nitrogen availability [1,36].
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Table 2. Nutrient composition (protein, lipid, and total fiber) of algal samples.

Sample Number Species Protein
(g 100 g−1 dw)

Lipid
(g 100 g−1 dw)

Fiber
(g 100 g−1 dw)

1 Auxenochlorella pyrenidosa 59.0 ± 0.2 c 10.1 ± 0.1 a 9.0 ± 0.2 r
2 Chlorella vulgaris 57.9 ± 0.2 d 6.7 ± 0.1 c 12.2 ± 0.2 q
3 Ulva lactuca 16.9 ± 0.2 l 0.6 ± 0.1 m 34.6 ± 0.6 i
4 Ulva lactuca 16.5 ± 0.1 l 1.2 ± 0.7 il 34.6 ± 0.6 i
5 Ulva lactuca 16.9 ± 0.3 l 0.7 ± 0.1 m 35.0 ± 0.3 i
6 Ulva lactuca var. spiralis 12.8 ± 0.2 n 0.9 ± 0.1 l 40.7 ± 0.7 f
7 Ulva pertusa 27.4 ± 0.3 f 1.5 ± 0.2 i 43.1 ± 0.3 e

8 Limnospira platensis 63.3 ± 0.4 b 8.1 ± 0.2 b 6.9 ± 0.3 s
9 Limnospira platensis 65.1 ± 0.3 b 5.9 ± 0.2 d 2.5 ± 0.3 t
10 Limnospira platensis 58.0 ± 0.4 d 8.3 ± 0.2 b 7.1 ± 0.3 s

11 Eisenia bicyclis 9.1 ± 0.3 op 1.6 ± 0.1 i 63.2 ± 0.2 b
12 Eisenia bicyclis 7.0 ± 0.2 r 1.2 ± 0.1 l 66.9 ± 0.3 a
13 Eisenia bicyclis 7.0 ± 0.3 r 1.1 ± 0.2 l 66.6 ± 0.3 a
14 Himanthalia elongata 7.8 ± 0.3 q 1.0 ± 0.1 l 35.9 ± 0.3 h
15 Himanthalia elongata 10.2 ± 0.1 o 2.6 ± 0.1 g 31.2 ± 0.3 n
16 Himanthalia elongata 10.0 ± 0.2 o 2.6 ± 0.2 g 31.1 ± 0.2 n
17 Laminaria digitata 8.8 ± 0.2 p 1.8 ± 0.1 i 35.9 ± 0.3 h
18 Laminaria digitata 9.2 ± 0.3 o 1.1 ± 0.1 l 33.4 ± 0.3 m
19 Laminaria digitata 8.8 ± 0.2 p 1.8 ± 0.1 i 36.1 ± 0.1 h
20 Laminaria longissima 7.9 ± 0.3 q 3.1 ± 0.1 f 32.6 ± 0.3 m
21 Laminaria longissima 8.8 ± 0.1 p 1.7 ± 0.2 i 36.0 ± 0.1 h
22 Laminaria ochroleuca 7.2 ± 0.1 r 2.1 ± 0.1 h 35.1 ± 0.3 i
23 Laminaria ochroleuca 2.2 ± 0.2 s 0.0 ± 0.0 n 9.4 ± 0.1 r
24 Sargassum fusiforme 6.8 ± 0.2 r 1.2 ± 0.1 l 61.4 ± 0.3 c
25 Undaria pinnatifida 17.5 ± 0.2 i 3.2 ± 0.2 f 31.0 ± 0.1 n
26 Undaria pinnatifida 16.9 ± 0.1 l 2.2 ± 0.1 h 33.0 ± 0.1 m
27 Undaria pinnatifida 16.9 ± 0.2 l 2.7 ± 0.2 g 31.1 ± 0.2 n
28 Undaria pinnatifida 14.2 ± 0.2 m 1.7 ± 0.1 i 35.1 ± 0.1 i
29 Undaria pinnatifida 17.1 ± 0.3 l 2.0 ± 0.3 h 34.0 ± 0.2 l
30 Undaria pinnatifida 16.8 ± 0.2 l 2.6 ± 0.1 g 30.8 ± 0.3 n
31 Undaria pinnatifida 17.9 ± 0.2 h 4.0 ± 0.1 e 29.2 ± 0.2 o

32 Chondrus crispus 16.7 ± 0.1 l 2.3 ± 0.1 h 30.6 ± 0.1 n
33 Chondrus crispus 14.1 ± 0.1 m 0.0 ± 0.0 n 46.0 ± 0.2 d
34 Palmaria palmata 18.2 ± 0.1 h 0.5 ± 0.1 m 31.1 ± 0.3 n
35 Palmaria palmata 27.0 ± 0.1 f 1.2 ± 0.1 l 43.0 ± 0.2 e
36 Palmaria palmata 17.9 ± 0.1 h 0.6 ± 0.1 m 31.0 ± 0.2 n
37 Palmaria palmata 27.2 ± 0.2 f 1.2 ± 0.2 l 42.9 ± 0.1 e
38 Porphyra umbilicalis 22.1 ± 0.1 g 0.0 ± 0.0 n 36.6 ± 0.1 h
39 Porphyra umbilicalis 29.0 ± 0.1 e 2.7 ± 0.2 g 26.2 ± 0.1 p
40 Porphyra umbilicalis 28.8 ± 0.2 e 2.6 ± 0.2 g 26.0 ± 0.2 p
41 Pyropia yezoensis 22.0 ± 0.2 g 0.6 ± 0.1 m 39.1 ± 0.2 g

Differences between letters (a–t) in the same column indicate significant differences (p < 0.05).

The total lipid content of the algal species is quite low, ranging between the
0.6 ± 0.1 g 100 g−1 dw of Pyropia yezoensis and the 10.1 ± 0.1 g 100 g−1 dw of Auxenochlorella
pyrenidosa. Generally, seaweeds contain limited lipid quantities (around 1–5%), whereas
microalgae exhibit higher values (10–12%) [4,14,37,38]. Our study confirmed this lipid
content. Slight discrepancies can be due to some physical factors, such as sunlight in-
tensity, temperature, nutrient limitation, pH, and oxidative stress, which can affect lipid
biosynthesis and composition, as described by Morales et al. [38] and Breuer et al. [39].
Algal lipid fraction is mainly composed of neutral lipids, such as fatty acids (especially,
omega-3 polyunsaturated fatty acids), triglycerides and sterols, and complex lipids, such
as glycolipids and phospholipids [40–42]. For this reason, algae are recognized for their
health benefits and used in functional foods and nutraceuticals.
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Some edible algae are an important source of fiber, especially algae belonging to the
Pheophyceae (brown algae) and Rhodophyceae (red algae) phylum. Eisenia bicyclis showed
the highest fiber content (66.9 ± 0.3, 66.6 ± 0.3. 63.2 ± 0.3 g 100 g−1 dw for samples
12, 13, and 11, respectively), followed by Sargassum fusiforme (61.4 ± 0.3 g 100 g−1 dw),
whilst Limnospira platensis showed the lowest (2.5 ± 0.2 g 100 g−1 dw, Sample 9). Similar
fiber ranges for algae were reported by other authors, except for the Limnospira platensis
values [4,14]. Algae are an excellent source of fibers, particularly soluble fibers (50–85%
dw), such as alginates, fucoidans, carrageenans, and exopolysaccharides, contrary to the
typical composition of fibers in terrestrial plants [13,43]. Due to their high fiber content,
algae can contribute to a more balanced diet, enhancing daily fiber intake.

3.2. Spectral Characteristics

The SWIR first-derivatives spectra (935–1720 nm) were depicted in Figure 3 and
contained information on different functional groups of the algae samples. The mean SWIR
raw spectra of each algae sample are represented in Supplementary Figure S1. In general,
the SWIR regions were mainly characterized by second-overtone spectral regions, which
could be associated with the aliphatic chain (C–Hn), hydroxyl group (O–H), and aminic
group (N–H) characteristics of complex carbohydrates (cellulose, lignin, etc.), lipids, water,
and proteins [44].

Functional groups, such as C–H, O–H, and N–H, were typical in the molecules of
the biochemical substances of the algae. Qualitative and quantitative NIR analyses are
often based on these [45]. The reflectance spectra showed similar profiles characterized by
six notable peaks and of different magnitudes among all of the algae samples. The broad
spectral region between 1100 and 1300 nm could be mainly referred to the C–H and C–H2
stretching vibration [46]. The prominent peak at around 1400 nm was assigned to O–H and
N-H stretching of the first and second overtone. The signals in the wavelength region from
1600 nm to 1700 nm were caused by C–H and C–H2 vibrations [47].

In general, differences in the peaks’ intensities in the SWIR spectra between the
different samples, especially in the regions between 1350 and 1450 nm, could be mainly
related to the compounds, such as proteins, lipids, carbohydrates, and water contents,
typical of the various algal species and phyla. At the same time, the geographical origin,
the growth conditions, and the nutritional input could have influenced the formation and
content of the chemical components and could have caused significant variability in the
samples, as shown by the spectra [33,48,49].
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Among the samples belonging to the Chlorophyta phylum (Figure 3A), Samples 2
and 4 (Chlorella vulgaris and Ulva lactuca) showed different spectral profiles in the regions
between 1100 and 1200 nm, 1350 and 1450 nm, 1650 and 1700 nm, and prominent peaks at
around 950 nm, 1200 nm, and 1500 nm. Conversely, Cyanophyta samples showed similar
characteristic peaks, albeit with different signal intensities (Figure 3B).

The spectra of the Phaeophyceae samples (Figure 3C,D) were characterized by high
variability in profile and intensity. The spectral signals for Samples 17 and 18 (Laminaria
digitata from Northwest France and Laminaria digitata from the North Atlantic) were the
lowest, whereas those of Samples 24, 25, and 30 (Sargassum fusiforme, Undaria pinnatifida
from Japan, and Undaria pinnatifida from the Atlantic, respectively) the highest at between
900 and 1300 nm. Regarding to the Rhodophyta phylum samples, Sample 37 (Palmaria
palmata from the Atlantic) showed a spectral profile very different from those of other red
algae, especially for the regions between 1100 and 1200 nm, 1350 and 1450 nm, and 1650
and 1700 nm. Furthermore, prominent peaks at 950 nm, 1200 nm, and 1500 nm can be
observed (Figure 3E).

These results demonstrate that the SWIR device can capture the intraspecies spectral
differences, probably derived from the different growth conditions of the algae, and inter-
species differences, in relation to the quantity of macroconstituents indicated by the band
intensity at well-defined wavelengths.

3.3. ANN Model Prediction

The ANN models were developed using first-derivative transformed spectral data.
The ANN activation functions for the best topology generated for each output variable and
the modeling performance in terms of the coefficient of correlation (r), the coefficient of
determination (R2), the mean absolute error (MAE), the root mean squared error (RMSE),
and the relative standard error (RSE) for the training, test, and validation sets are shown in
Table 3 and Figure 4, whilst the results from the sensitivity analysis for each ANN model
are reported in Figure 5. The best five ANN architectures for each parameter are shown in
Table S1 (Supplementary Materials).

Sensitivity analysis is one of the most widely used methods to rate the importance of
the models’ input variables. It is based on the partial derivatives method, and it consists of
calculating the derivative of the output regarding each input variable of the neural network,
evaluated on each data sample of a given dataset, as described by Pizarroso et al. [50].
The contribution of each input is calculated in both magnitude and sign considering the
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connection weights, the activation functions, and the values of each input. Once the
sensitivity has been calculated for each variable and observation, a global sensitivity can
be defined considering the sum of the derivatives of the output of the k-th neuron in the
output layer regarding the i-th input variable divided by the number of samples. If variable
is important, the global sensitivity should be large (>>1).

All models showed optimal prediction accuracy. In detail, the best model for the
protein content was obtained with 11 neurons in the hidden layer, and a hyperbolic tangent
activation function for the hidden and output neurons. The very high values of r and
R2 (0.9976 and 0.9952, respectively) and the low values of RMSE, MAE, and RSE (1.2891,
0.2590, and 5.8128, respectively) for the test set showed an excellent prediction performance.
Sensitivity analysis (Figure 5) showed bands with high intensity peaks in the spectral
range at around 1700–1750 nm and at around 1175–1225 nm, followed by several bands
between 950 and 1000 nm, 1125 and 1175 nm, 1250 and 1300 nm, and 1560 and 1600 nm,
characterized by lower intensities. Indeed, the spectral regions close to 1730 nm and
1200 nm were characterized by S–H first- and second-overtone absorption, whereas in the
other regions a N–H first and second overtone was observed. Niemi et al. [33] reported a
similar spectral range contribution to the development of a FT-NIR prediction model of
protein in North Atlantic seaweeds. Specifically, they found positive correlation between
the major protein bands at around 1050–1350 nm, 1550–1600 nm, and 1700–1750 [33].

The best model for the lipid content, built with 24 neurons in the hidden layer, an
exponential function for the hidden neurons, and a logistic activation function for the
output neurons, presented an optimal predictive ability due to values of r and R2 equal to
0.9823 and 0.9767, respectively, and due to high values of the other metrics for the test set
(RMSE = 0.4096 and MAE = 0.0834). Although the RSE metric is quite high (RSE = 15.6521),
the estimate may still be considered reliable because the value does not exceed the 30%
threshold, as indicated by Amoriello et al. [27]. Sensitivity analysis (Figure 3) revealed
that the bands of lipids with high intensity peaks were centered at around 1195–1215 nm
for the C–H3 and C–H2 second overtone of C–H stretch and at around 1290–1310 nm for
the C–H3 first overtone of C-H stretch. Absorptions at around 1680 nm were contributed
by C–H stretch (–CH=CH–) and can be used to quantify unsaturated fatty acids [48,49].
As previously reported by Liu et al. [51], the NIR spectra within the wavelength ranges
of 1030–1500 and 1600–1880 nm correspond to the area where fatty acids show dominant
absorbance.

Table 3. Neural network architectures; regression metrics for the highest training, test, and validation
sets predictions; goodness of fit; and residual analysis for the developed ANN models.

Protein
(g 100 g−1 dw)

Lipid
(g 100 g−1 dw)

Fiber
(g 100 g−1 dw)

Activation Function
Hidden Neurons Tahn Exp Exp
Output Neurons Tahn Logistic Identity

Training Set

r 0.9994 0.9972 0.9988
R2 0.9988 0.9944 0.9976
MAE 0.0396 0.0027 0.0473
RMSE 0.5593 0.1606 0.6350
RSE 2.7248 7.0000 1.9405

Test Set

r 0.9976 0.9883 0.9914
R2 0.9952 0.9767 0.9828
MAE 0.2590 0.0834 0.7968
RMSE 1.2891 0.4096 2.3032
RSE 5.8128 15.6521 7.5954

Validation Set

r 0.9978 0.9691 0.9833
R2 0.9956 0.9392 0.9670
MAE 0.0250 0.0146 0.2701
RMSE 0.9340 0.4534 2.7609
RSE 5.0772 24.9689 7.7873

Tanh = hyperbolic tangent function; Exp = exponential function.
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Figure 4. Predicted vs. experimental values of the protein, lipid, and fiber contents using the optimal
ANN topologies and first-derivative transformed SWIR spectra. The coefficients of determination
(R2) for the training, test, and validation sets are reported.
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A high predictive accuracy was also found for best model of fiber content, developed
with 10 neurons in the hidden layer, an exponential function for the hidden neurons, and
an identity function for the output neurons. In fact, metrics for the test set were 0.9914,
0.9828, 2.3032, 0.7968, and 7.5954 for r, R2, RMSE, MAE, and RSE, respectively. Sensitivity
analyses highlighted the wavebands that exhibited the best predictive ability for fiber
content (Figure 5). The spectra regions that contribution to the model development can
be attributed to O-H bending and C–H stretching (characteristic of wave lengths between
1000 nm and 1100 nm), C–H stretching (characteristic of spectral bands between 1200 nm
and 1350 nm), C–H3, C–H2, and C–H stretching (characteristic of wave bands between
1550 nm and 1720 nm), which mainly form carbohydrates [52,53].

The good performances of the ANN models for the three algal nutritional parameters
highlighted the advantages of the use of the ANN technique to develop accurate prediction
models. Ordinary statistical techniques, such as partial least square (PLS) regression, are
not always able to precisely quantify the complex inter- and intra-relations between input
and output variables [54]. Conversely, ANN, inspired by the biological neural network
comprising the human brain, has numerous advantages. First of all, it has the ability to
solve complex nonlinear relationships between dependent and independent variables,
learning iteratively the characteristics of algae via the extraction of features from a large
database (i.e., the spectral data). No prior knowledge of the relationships between the
process variables, no constraints on input variables, and no fixed relationships in the data
are required [55]. Then, the ANN can also be used for unstable, noisy, imprecise, and
incomplete data [56].

The high predictive accuracy of the models can also be due to having considered many
algal genotypes, thus obtaining multi-species models. In fact, according to Gholipoor and
Nadali [54], the models could be more reliable the greater the number of genotypes, and
therefore the greater the variability, if the genotypes are substantially different in terms
of traits.

Finally, the sensitivity analysis made it possible to highlight the most important
wavelengths of the three models. This result can be useful to build less expensive devices
to use in screening or process control applications in the algal industry.

4. Conclusions

The nutritional profile of macro- and microalgae species can vary a great deal and
their biochemical properties are strongly influenced by algal genotype, growth and environ-
mental conditions, and nutrient availability. A fast, easy, and non-destructive assessment
of the qualitative and quantitative characteristics of algae is increasingly requested by food
industry. The overall results demonstrated that the use of an SWIR hyperspectral imaging
device combined with machine learning techniques was able to successfully predict the al-
gal composition. In fact, the multi-species models for proteins, lipids, and fibers, developed
with the artificial neural network, showed excellent and robust predictive performances.
A goal of this study was a reduction in species-specific influences using the SWIR spectra
of seventeen algal species of different phylogenetic divisions. Therefore, the developed
models can be applied to any species with a high confidence level. Moreover, the sensitivity
analysis enabled the identification of the most informative spectral wavelengths and those
that were redundant and irrelevant. Although our results are very promising, a further
test of the goodness of the models needs to be conducted on unknown samples before its
application on a routine basis in food industries.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/foods13142277/s1, Figure S1: Mean raw reflectance spectra
between 935 and 1720 nm wavelength of each algae sample; Table S1: Neural network architectures
and correlation coefficients for the developed ANN models.
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