Essential Oils of Laurus nobilis L.: From Chemical Analysis to In Silico Investigation of Anti-Inflammatory Activity by Soluble Epoxide Hydrolase (sEH) Inhibition
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Essential Oil Isolation
2.3. GC-FID Analysis and GC/MS Analysis
2.4. Identification and Relative Percentage of EO Components
2.5. Multivariate Analysis
2.6. Determination of Total Phenolics from Samples
2.7. Antioxidant Capacity Assays
2.7.1. DPPH Radical Scavenging Activity
2.7.2. Ferric Reducing Power (FRAP)
2.8. Cell-Free sEH Activity Assay
2.9. In Silico Studies
3. Results and Discussion
3.1. Chemical Profile of Essential Oils
N. | tR (min) | Exp RI | Ref RI | Class | Compound | Area (%) ± SD | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
LNMO1 | LNMO2 | LNMO3 | LNMO4 | LNMO5 | LNCA | LNAB | ||||||
1 | 11.17 | 931 | 930 | BM | α-Thujene | 0.46 ± 0.06 | 0.35 ± 0.01 | 0.42 ± 0.08 | 0.33 ± 0.09 | 0.42 ± 0.05 | 0.47 ± 0.03 | 0.42 ± 0.04 |
2 | 11.48 | 937 | 939 | BM | α-Pinene | 4.83 ± 0.09 | 5.17 ± 0.1 | 7.41 ± 0.25 | 3.61 ± 0.21 | 4.80 ± 0.07 | 4.73 ± 0.04 | 4.06 ± 0.09 |
3 | 12.19 | 951 | 954 | BM | Camphene | 0.50 ± 0.07 | 0.90 ± 0.1 | 0.70 ± 0.06 | 0.11 ± 0.02 | 0.10 ± 0.01 | 0.10 ± 0.02 | 0.17 ± 0.03 |
4 | 13.62 | 976 | 975 | BM | Sabinene | 6.70 ± 0.38 | 9.84 ± 0.14 | 10.57 ± 0.38 | 9.12 ± 0.56 | 4.85 ± 0.28 | 10.2 ± 0.34 | 7.56 ± 0.11 |
5 | 13.71 | 979 | 979 | BM | β-Pinene | 3.77 ± 0.28 | 2.96 ± 0.33 | 3.81 ± 0.39 | 2.44 ± 0.35 | 2.47 ± 0.11 | 3.00 ± 0.24 | 2.61 ± 0.15 |
6 | 14.6 | 992 | 990 | AM | Myrcene | 0.38 ± 0.03 | 0.88 ± 0.01 | 0.74 ± 0.08 | 1.02 ± 0.06 | 0.56 ± 0.06 | 1.01 ± 0.05 | 0.7 ± 0.06 |
7 | 15.15 | 1003 | 1002 | MM | α-Phellandrene | 0.79 ± 0.06 | 0.04 ± 0.02 | 0.06 ± 0.01 | 0.03 ± 0.02 | 0.08 ± 0.01 | 0.16 ± 0.01 | 0.12 ± 0.01 |
8 | 15.48 | 1010 | 1011 | BM | δ-3-Carene | 0.34 ± 0.05 | 0.10 ± 0.01 | 0.58 ± 0.02 | - | 0.44 ± 0.02 | 0.47 ± 0.03 | 0.34 ± 0.07 |
9 | 15.81 | 1016 | 1017 | MM | α-Terpinene | 0.45 ± 0.04 | 0.41 ± 0.02 | 0.37 ± 0.02 | 0.41 ± 0.02 | 0.37 ± 0.02 | 0.47 ± 0.04 | 0.46 ± 0.06 |
10 | 16.36 | 1029 | 1024 | MM | o-Cymene | 0.63 ± 0.07 | - | - | - | - | - | - |
11 | 16.52 | 1035 | 1031 | BMO | 1,8-Cineole | 41.01 ± 0.3 | 43.52 ± 0.35 | 39.9 ± 1.17 | 40.7 ± 0.23 | 31.31 ± 0.17 | 42.39 ± 0.83 | 33.72 ± 0.14 |
12 | 17.57 | 1052 | 1050 | AM | (E)-β-Ocimene | 0.05 ± 0.01 | 0.13 ± 0.01 | 0.15 ± 0.01 | 0.27 ± 0.02 | 0.11 ± 0.01 | 0.10 ± 0.01 | 0.11 ± 0.01 |
13 | 18.03 | 1061 | 1059 | MM | γ-Terpinene | 0.79 ± 0.03 | 0.74 ± 0.01 | 0.75 ± 0.04 | 0.68 ± 0.03 | 0.71 ± 0.01 | 0.86 ± 0.01 | 0.83 ± 0.02 |
14 | 18.48 | 1070 | 1070 | BMO | cis-Sabinene hydrate | 0.22 ± 0.01 | 0.33 ± 0.02 | 0.32 ± 0.01 | 0.38 ± 0.01 | 0.22 ± 0.01 | 0.26 ± 0.01 | 0.21 ± 0.01 |
15 | 19.53 | 1088 | 1088 | MM | Terpinolene | 0.37 ± 0.03 | 0.28 ± 0.02 | 0.3 ± 0.02 | 0.30 ± 0.03 | 0.25 ± 0.02 | 0.44 ± 0.01 | 0.32 ± 0.02 |
16 | 20.08 | 1098 | 1098 | BM | trans-Sabinene hydrate | 0.18 ± 0.02 | 0.20 ± 0.03 | 0.17 ± 0.01 | 0.18 ± 0.03 | 0.06 ± 0.01 | 0.13 ± 0.01 | 0.11 ± 0.01 |
17 | 20.3 | 1102 | 1096 | AMO | Linalool | 1.08 ± 0.05 | 3.93 ± 0.06 | 1.09 ± 0.02 | 2.80 ± 0.03 | 11.72 ± 0.13 | 3.44 ± 1.85 | 10.29 ± 0.14 |
18 | 21.24 | 1123 | 1120 | BMO | Sabina ketone dehydro | 0.08 ± 0.01 | 0.09 ± 0.01 | 0.06 ± 0.01 | 0.08 ± 0.01 | 0.07 ± 0.01 | 0.07 ± 0.01 | 0.08 ± 0.01 |
19 | 21.51 | 1129 | 1126 | MMO | α-Campholenal | 0.01 ± 0.01 | - | - | - | - | - | - |
20 | 21.65 | 1132 | 1132 | AM | (allo)-Ocimene | 0.01 ± 0.01 | 0.01 ± 0.01 | 0.02 ± 0.01 | 0.01 ± 0.01 | 0.01 ± 0.01 | 0.01 ± 0.01 | - |
21 | 22.07 | 1141 | 1139 | MBO | trans-Pinocarveol | 0.04 ± 0.01 | - | - | - | - | - | - |
22 | 22.17 | 1143 | 1144 | AM | (neo-allo)-Ocimene | 0.08 ± 0.01 | 0.03 ± 0.02 | 0.03 ± 0.01 | 0.04 ± 0.01 | 0.06 ± 0.01 | 0.04 ± 0.01 | 0.04 ± 0.01 |
23 | 23.83 | 1156 | 1154 | OT | Isobutyl hexanoate | - | 0.01 ± 0.01 | - | 0.02 ± 0.01 | 0.08 ± 0.01 | - | - |
24 | 24.04 | 1160 | 1164 | AMO | (Z)-Isocitral | 0.04 ± 0.01 | - | - | - | - | - | - |
25 | 23.44 | 1168 | 1169 | BMO | Borneol | 0.19 ± 0.01 | 0.37 ± 0.02 | 0.17 ± 0.01 | 0.02 ± 0.01 | 0.04 ± 0.01 | 0.03 ± 0.01 | 0.05 ± 0.01 |
26 | 23,52 | 1170 | 1171 | MMO | (neoiso)-Isopulegol | 0.22 ± 0.02 | 0.20 ± 0.02 | 0.26 ± 0.01 | 0.28 ± 0.01 | 0.14 ± 0.01 | 0.15 ± 0.01 | 0.2 ± 0.01 |
27 | 24.01 | 1179 | 1177 | MMO | Terpinen-4-ol | 2.33 ± 0.11 | 1.45 ± 0.03 | 1.46 ± 0.01 | 1.25 ± 0.01 | 1.74 ± 0.01 | 1.58 ± 0.05 | 1.69 ± 0.01 |
28 | 24.74 | 1192 | 1188 | MMO | α-Terpineol | 2.27 ± 0.10 | 1.00 ± 0.05 | 2.55 ± 0.04 | 2.91 ± 0.01 | 0.91 ± 0.01 | 1.31 ± 0.05 | 1.92 ± 0.03 |
29 | 25.05 | 1198 | 1196 | MMO | Methyl chavicol | 0.14 ± 0.01 | 0.07 ± 0.01 | 0.10 ± 0.01 | 0.17 ± 0.01 | 0.16 ± 0.01 | 0.93 ± 0.01 | 0.11 ± 0.01 |
30 | 26.52 | 1232 | 1229 | AMO | Nerol | 0.22 ± 0.01 | 0.20 ± 0.01 | 0.23 ± 0.01 | 0.10 ± 0.01 | 0.19 ± 0.01 | 0.10 ± 0.01 | 0.15 ± 0.01 |
31 | 27.81 | 1260 | 1257 | AMO | Linalool acetate | 0.06 ± 0.02 | 0.16 ± 0.04 | 0.05 ± 0.01 | 0.05 ± 0.01 | 0.73 ± 0.04 | 0.22 ± 0.01 | 0.57 ± 0.01 |
32 | 27.88 | 1261 | 1262 | OT | (Z)-Cinnamyl alcohol | 0.10 ± 0.02 | 0.04 ± 0.01 | - | 0.01 ± 0.01 | 0.16 ± 0.03 | - | - |
33 | 28.48 | 1274 | 1270 | OT | (E)-Cinnamaldehyde | 0.02 ± 0.01 | 0.02 ± 0.01 | 0.03 ± 0.01 | 0.03 ± 0.01 | 0.01 ± 0.01 | - | 0.02 ± 0.01 |
34 | 28.7 | 1278 | 1282 | BMO | (cis)-Verbenyl acetate | 0.14 ± 0.01 | 0.11 ± 0.05 | 0.03 ± 0.01 | 0.06 ± 0.01 | 0.23 ± 0.01 | 0.13 ± 0.01 | 0.12 ± 0.01 |
35 | 29.16 | 1288 | 1288 | BMO | Bornyl acetate | 0.59 ± 0.01 | 0.82 ± 0.15 | 0.25 ± 0.36 | 0.16 ± 0.02 | 0.13 ± 0.01 | 0.13 ± 0.01 | 0.19 ± 0.01 |
36 | 29.5 | 1294 | 1290 | BMO | (trans)-Sabinyl acetate | 0.16 ± 0.01 | 0.14 ± 0.01 | 0.02 ± 0.01 | 0.03 ± 0.01 | 0.28 ± 0.01 | 0.05 ± 0.01 | 0.04 ± 0.01 |
37 | 29.63 | 1297 | 1299 | MMO | Carvacrol | 0.02 ± 0.01 | - | - | - | - | - | - |
38 | 30.58 | 1319 | 1317 | MMO | δ-Terpinyl acetate | 0.60 ± 0.02 | 0.46 ± 0.11 | 0.44 ± 0.01 | 0.42 ± 0.01 | 0.48 ± 0.01 | 0.76 ± 0.01 | 0.4 ± 0.01 |
39 | 31.39 | 1338 | 1338 | MS | δ-Elemene | 0.05 ± 0.01 | 0.06 ± 0.01 | 0.21 ± 0.05 | 0.10 ± 0.03 | 0.08 ± 0.01 | 0.21 ± 0.01 | 0.27 ± 0.12 |
40 | 32.12 | 1355 | 1349 | MMO | α-Terpinyl acetate | 10.2 ± 0.24 | 11.43 ± 0.21 | 8.51 ± 1.31 | 9.16 ± 0.04 | 9.55 ± 0.03 | 13.00 ± 0.34 | 9.31 ± 0.12 |
41 | 32.45 | 1363 | 1359 | MMO | Eugenol | 4.12 ± 0.08 | 3.30 ± 0.11 | 3.41 ± 0.15 | 1.97 ± 0.12 | 4.05 ± 0.01 | 2.65 ± 0.02 | 2.81 ± 0.06 |
42 | 32.72 | 1368 | 1361 | AMO | Neryl acetate | 0.05 ± 0.01 | 0.06 ± 0.01 | - | 0.24 ± 0.01 | 0.10 ± 0.01 | 0.17 ± 0.01 | 0.09 ± 0.01 |
43 | 32.96 | 1374 | 1368 | OT | Hydrocinnamyl acetate | 0.04 ± 0.01 | - | - | 0.40 ± 0.01 | - | - | - |
44 | 33.1 | 1377 | 1376 | BS | a-Copaene | 0.01 ± 0.01 | - | - | - | - | - | 0.08 ± 0.01 |
45 | 33.73 | 1391 | 1390 | BS | iso-Longifolene | 0.02 ± 0.02 | - | 0.03 ± 0.01 | - | - | 0.08 ± 0.01 | 0.14 ± 0.02 |
46 | 33.83 | 1393 | 1390 | MS | β-Elemene | 0.32 ± 0.02 | 0.20 ± 0.03 | 0.34 ± 0.07 | 0.32 ± 0.08 | 0.29 ± 0.01 | 0.58 ± 0.01 | 0.79 ± 0.02 |
47 | 34.14 | 1399 | 1400 | OT | Tetradecane | 0.02 ± 0.01 | 0.13 ± 0.01 | 0.15 ± 0.02 | 0.10 ± 0.01 | 0.05 ± 0.01 | 0.13 ± 0.01 | 0.14 ± 0.01 |
48 | 34.57 | 1410 | 1403 | MMO | Methyl eugenol | 10.54 ± 0.31 | 4.35 ± 0.07 | 6.08 ± 0.14 | 14.5 ± 0.22 | 14.96 ± 0.05 | 4.07 ± 0.10 | 10.86 ± 0.06 |
49 | 34.97 | 1420 | 1419 | BS | (E)-Caryophyllene | 0.42 ± 0.14 | 0.34 ± 0.01 | 0.79 ± 0.02 | 0.75 ± 0.02 | 0.32 ± 0.01 | 0.57 ± 0.02 | 0.77 ± 0.01 |
50 | 35.79 | 1441 | 1441 | BS | Aromadendrene | 0.05 ± 0.01 | 0.01 ± 0.01 | - | - | 0.07 ± 0.01 | - | 0.19 ± 0.01 |
51 | 35.98 | 1445 | 1444 | BS | 6,9-Guaiadiene | 0.03 ± 0.01 | - | - | - | - | - | - |
52 | 36.18 | 1449 | 1446 | MMO | (E)-Cinnamyl acetate | - | 0.03 ± 0.01 | - | 0.96 ± 0.02 | 0.09 ± 0.01 | - | - |
53 | 36.2 | 1451 | 1451 | BS | α-Himachalene | 0.03 ± 0.01 | - | - | - | - | - | - |
54 | 36.28 | 1453 | 1449 | BS | Spirolepechinene | - | - | - | - | 0.06 ± 0.01 | - | - |
55 | 36.39 | 1455 | 1454 | MS | α-Humulene | 0.05 ± 0.01 | 0.24 ± 0.01 | 0.12 ± 0.01 | 0.09 ± 0.01 | 0.08 ± 0.01 | 0.09 ± 0.01 | 0.13 ± 0.01 |
56 | 36.69 | 1462 | 1460 | BS | allo-Aromadendrene | 0.02 ± 0.01 | 0.01 ± 0.01 | - | - | 0.07 ± 0.01 | - | 0.09 ± 0.01 |
57 | 36.78 | 1463 | 1463 | BS | 1(6),4-diene, cis-Cadina | 0.03 ± 0.01 | - | - | - | - | - | - |
58 | 37.37 | 1479 | 1479 | BS | γ-Muurolene | - | - | - | - | 0.06 ± 0.01 | - | - |
59 | 37.54 | 1482 | 1485 | MS | Germacrene D | 0.09 ± 0.01 | 0.03 ± 0.01 | 0.23 ± 0.03 | 0.10 ± 0.01 | 0.03 ± 0.01 | 0.30 ± 0.01 | 0.13 ± 0.01 |
60 | 37.74 | 1487 | 1490 | BS | β-Selinene | 0.08 ± 0.02 | 0.04 ± 0.01 | 0.05 ± 0.02 | 0.10 ± 0.01 | 0.20 ± 0.01 | 0.07 ± 0.01 | 0.34 ± 0.01 |
61 | 38.12 | 1496 | 1494 | BSO | epi-Cubebol | 0.10 ± 0.02 | 0.10 ± 0.01 | 0.22 ± 0.01 | - | 0.14 ± 0.01 | - | 0.09 ± 0.01 |
62 | 38.18 | 1497 | 1495 | BS | γ-Amorphene | 0.08 ± 0.02 | 0.15 ± 0.01 | 0.38 ± 0.08 | 0.27 ± 0.05 | 0.46 ± 0.04 | 0.26 ± 0.02 | 0.73 ± 0.03 |
63 | 38.62 | 1508 | 1512 | BS | δ-Amorphene | 0.04 ± 0.01 | 0.07 ± 0.01 | 0.12 ± 0.02 | 0.27 ± 0.07 | 0.07 ± 0.02 | 0.18 ± 0.01 | 0.18 ± 0.03 |
64 | 38.82 | 1515 | 1513 | BS | γ-Cadinene | 0.10 ± 0.01 | 0.08 ± 0.02 | 0.38 ± 0.01 | - | 0.12 ± 0.01 | 0.27 ± 0.01 | 0.18 ± 0.01 |
65 | 39.27 | 1525 | 1523 | BS | δ-Cadinene | 0.15 ± 0.02 | 0.13 ± 0.01 | 0.25 ± 0.02 | 0.11 ± 0.01 | 0.18 ± 0.01 | 0.46 ± 0.01 | 0.55 ± 0.02 |
66 | 39.57 | 1533 | 1534 | BS | trans-Cadina-1,4-diene | 0.06 ± 0.01 | 0.07 ± 0.01 | 0.15 ± 0.01 | - | 0.01 ± 0.01 | - | 0.05 ± 0.01 |
67 | 40.03 | 1545 | 1545 | BS | α-Calacorene | 0.05 ± 0.01 | - | - | - | - | - | - |
68 | 40.32 | 1552 | 1549 | MSO | Elemol | 0.10 ± 0.01 | - | - | - | 0.06 ± 0.01 | - | - |
69 | 40.72 | 1563 | 1557 | MMO (OT) | Elemicin | 1.19 ± 0.06 | 0.57 ± 0.03 | 0.63 ± 0.01 | 0.60 ± 0.03 | 2.05 ± 0.02 | 0.69 ± 0.01 | 1.19 ± 0.02 |
70 | 41.41 | 1580 | 1578 | BSO | Spathulenol | 0.44 ± 0.06 | 0.86 ± 0.16 | 1.76 ± 0.12 | 0.26 ± 0.02 | 0.94 ± 0.01 | 0.49 ± 0.03 | 0.78 ± 0.02 |
71 | 41.63 | 1585 | 1583 | BSO | Caryophyllene oxide | 0.41 ± 0.05 | 0.63 ± 0.12 | 0.83 ± 0.04 | 0.16 ± 0.01 | 0.33 ± 0.01 | 0.21 ± 0.01 | 0.36 ± 0.02 |
72 | 41.97 | 1594 | 1592 | BSO | Viridiflor | 0.04 ± 0.01 | - | - | - | 0.09 ± 0.01 | - | - |
73 | 42.21 | 1600 | 1600 | OT | Hexadecane | 0.08 ± 0.01 | 0.20 ± 0.06 | 0.28 ± 0.02 | 0.21 ± 0.01 | 0.12 ± 0.01 | 0.29 ± 0.04 | 0.33 ± 0.01 |
74 | 43.01 | 1622 | 1623 | BSO | 10-epi-γ Eudesmol | 0.05 ± 0.02 | - | - | - | 0.07 ± 0.01 | - | - |
75 | 43.41 | 1633 | 1632 | BSO | γ-Eudesmol | 0.27 ± 0.01 | - | - | - | - | - | - |
76 | 44.17 | 1653 | 1653 | BSO | α-Eudesmol | 0.23 ± 0.01 | 0.08 ± 0.03 | 0.28 ± 0.02 | 0.11 ± 0.01 | 0.38 ± 0.01 | 0.14 ± 0.02 | 0.25 ± 0.03 |
77 | 44.33 | 1658 | 1658 | BSO | Valerianol | 0.29 ± 0.03 | 0.39 ± 0.08 | 0.16 ± 0.02 | 0.15 ± 0.01 | 0.35 ± 0.04 | 0.37 ± 0.02 | 0.55 ± 0.05 |
78 | 44.51 | 1662 | 1663 | BSO | 7-epi-α Eudesmol | 0.08 ± 0.01 | 0.14 ± 0.02 | 0.14 ± 0.01 | 0.15 ± 0.01 | 0.08 ± 0.02 | 0.08 ± 0.01 | 0.08 ± 0.01 |
3.2. Multivariate Analysis
3.3. Total Phenols, Antioxidant Potential, and Reducing Activity
Sample | TPC (mg GAE/g) | DPPH IC50 (μg/mL) | FRAP (mmol TE/g) |
---|---|---|---|
LNMO1 | 11.36 ± 0.23 | 465.58 ± 2.80 | 0.51 ± 0.01 |
LNMO2 | 10.55 ± 0.24 | 411.55 ± 13.11 | 0.32 ± 0.01 |
LNMO3 | 10.13 ± 0.14 | 423.04 ± 26.24 | 0.30 ± 0.01 |
LNMO4 | 6.60 ± 0.29 | 535.90 ± 28.02 | 0.27 ± 0.01 |
LNMO5 | 10.24 ± 0.30 | 505.91 ± 10.57 | 0.40 ± 0.01 |
LNCA | 7.97 ± 0.24 | 519.90 ± 17.12 | 0.27 ± 0.01 |
LNAB | 8.28 ± 0.17 | 423.76 ± 10.86 | 0.30 ± 0.01 |
Ascorbic acid | - | 3.75 ± 0.01 | 11.10 ± 0.2 |
3.4. Cell-Free sEH Activity Assay
3.5. Computational Studies to Analyze Interactions between sEH and the Main Chemical Constituents of the EOs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Reuter, S.; Gupta, S.C.; Chaturvedi, M.M.; Aggarwal, B.B. Oxidative stress, inflammation, and cancer: How are they linked? Free Radic. Biol. Med. 2010, 49, 1603–1616. [Google Scholar] [CrossRef] [PubMed]
- Vona, R.; Pallotta, L.; Cappelletti, M.; Severi, C.; Matarrese, P. The impact of oxidative stress in human pathology: Focus on gastrointestinal disorders. Antioxidants 2021, 10, 201. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, S. Chapter Two—Oxidative Stress, Inflammation, and Disease. In Oxidative Stress and Biomaterials; Dziubla, T., Butterfield, D.A., Eds.; Academic Press: Cambridge, MA, USA, 2016; pp. 35–58. [Google Scholar]
- Pahwa, R.; Goyal, A.; Jialal, I. Chronic Inflammation; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Furman, D.; Campisi, J.; Verdin, E.; Carrera-Bastos, P.; Targ, S.; Franceschi, C.; Ferrucci, L.; Gilroy, D.W.; Fasano, A.; Miller, G.W.; et al. Chronic inflammation in the etiology of disease across the life span. Nat. Med. 2019, 25, 1822–1832. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Deng, H.; Cui, H.; Fang, J.; Zuo, Z.; Deng, J.; Li, Y.; Wang, X.; Zhao, L. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget 2018, 9, 7204–7218. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.X.J.; Ulu, A.; Zhang, L.N.; Hammock, B. Soluble epoxide hydrolase in atherosclerosis. Curr. Atheroscler. Rep. 2010, 12, 174–183. [Google Scholar] [CrossRef] [PubMed]
- Newman, D.J.; Cragg, G.M. Natural Products as Sources of New Drugs over the Nearly Four Decades from 01/1981 to 09/2019. J. Nat. Prod. 2020, 83, 770–803. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Wang, C.; Zhu, Y.; Ai, D. Soluble epoxide hydrolase: A potential target for metabolic diseases. J. Diabetes 2016, 8, 305–313. [Google Scholar] [CrossRef] [PubMed]
- Das Mahapatra, A.; Choubey, R.; Datta, B. Small molecule soluble epoxide hydrolase inhibitors in multitarget and combination therapies for inflammation and cancer. Molecules 2020, 25, 5488. [Google Scholar] [CrossRef]
- Sun, C.-P.; Zhang, X.-Y.; Morisseau, C.; Hwang, S.H.; Zhang, Z.-J.; Hammock, B.D.; Ma, X.-C. Discovery of Soluble Epoxide Hydrolase Inhibitors from Chemical Synthesis and Natural Products. J. Med. Chem. 2021, 64, 184–215. [Google Scholar] [CrossRef]
- Gazzillo, E.; Terracciano, S.; Ruggiero, D.; Potenza, M.; Chini, M.G.; Lauro, G.; Fischer, K.; Hofstetter, R.K.; Giordano, A.; Werz, O.; et al. Repositioning of Quinazolinedione-Based Compounds on Soluble Epoxide Hydrolase (sEH) through 3D Structure-Based Pharmacophore Model-Driven Investigation. Molecules 2022, 27, 3866. [Google Scholar] [CrossRef]
- Seca, A.M.L.; Moujir, L. Natural compounds: A dynamic field of applications. Appl. Sci. 2020, 10, 4025. [Google Scholar] [CrossRef]
- Boshtam, M.; Asgary, S.; Kouhpayeh, S.; Shariati, L.; Khanahmad, H. Aptamers Against Pro- and Anti-Inflammatory Cytokines: A Review. Inflammation 2017, 40, 340–349. [Google Scholar] [CrossRef] [PubMed]
- Mucha, P.; Skoczyńska, A.; Małecka, M.; Hikisz, P.; Budzisz, E. Overview of the antioxidant and anti-inflammatory activities of selected plant compounds and their metal ions complexes. Molecules 2021, 26, 4886. [Google Scholar] [CrossRef] [PubMed]
- Miguel, M.G. Antioxidant and anti-inflammatory activities of essential oils: A short review. Molecules 2010, 15, 9252–9287. [Google Scholar] [CrossRef] [PubMed]
- Giacometti, J.; Bursać Kovačević, D.; Putnik, P.; Gabrić, D.; Bilušić, T.; Krešić, G.; Stulić, V.; Barba, F.J.; Chemat, F.; Barbosa-Cánovas, G.; et al. Extraction of bioactive compounds and essential oils from mediterranean herbs by conventional and green innovative techniques: A review. Food Res. Int. 2018, 113, 245–262. [Google Scholar] [CrossRef] [PubMed]
- Awada, F.; Hamade, K.; Kassir, M.; Hammoud, Z.; Mesnard, F.; Rammal, H.; Fliniaux, O. Laurus nobilis Leaves and Fruits: A Review of Metabolite Composition and Interest in Human Health. Appl. Sci. 2023, 13, 4606. [Google Scholar] [CrossRef]
- Jaradat, N.; Abualhasan, M.; Hawash, M.; Qadi, M.; Al-Maharik, N.; Abdallah, S.; Mousa, A.; Zarour, A.; Arar, M.; Sobuh, S.; et al. Chromatography analysis, in light of vitro antioxidant, antidiabetic, antiobesity, anti-inflammatory, antimicrobial, anticancer, and three-dimensional cancer spheroids’ formation blocking activities of Laurus nobilis aromatic oil from Palestine. Chem. Bio Technol. Agric. 2023, 10, 25. [Google Scholar] [CrossRef]
- Dobroslavić, E.; Garofulić, I.E.; Zorić, Z.; Pedisić, S.; Dragović-Uzelac, V. Polyphenolic characterization and antioxidant capacity of Laurus nobilis L. Leaf extracts obtained by green and conventional extraction techniques. Processes 2021, 9, 1840. [Google Scholar] [CrossRef]
- Anzano, A.; de Falco, B.; Grauso, L.; Motti, R.; Lanzotti, V. Laurel, Laurus nobilis L.: A review of its botany, traditional uses, phytochemistry and pharmacology. Phytochem. Rev. 2022, 21, 565–615. [Google Scholar] [CrossRef]
- Paparella, A.; Nawade, B.; Shaltiel-Harpaz, L.; Ibdah, M. A Review of the Botany, Volatile Composition, Biochemical and Molecular Aspects, and Traditional Uses of Laurus nobilis L. Plants 2022, 11, 1209. [Google Scholar] [CrossRef]
- Bianchi, A. The Mediterranean aromatic plants and their culinary use. Nat. Prod. Res. 2015, 29, 201–206. [Google Scholar] [CrossRef] [PubMed]
- Dinsmore, S.; Grams, M.-K.; Couris, R.R. Bay Leaf: Leaf of the European Laurel: An Overview of Potential Benefits and Safety. Nutr. Today 2018, 53, 47–55. [Google Scholar] [CrossRef]
- Ordoudi, S.A.; Papapostolou, M.; Nenadis, N.; Mantzouridou, F.T.; Tsimidou, M.Z. Bay Laurel (Laurus nobilis L.) Essential Oil as a Food Preservative Source: Chemistry, Quality Control, Activity Assessment, and Applications to Olive Industry Products. Foods 2022, 11, 752. [Google Scholar] [CrossRef] [PubMed]
- Batool, S.; Khera, R.A.; Hanif, M.A.; Ayub, M.A. Bay Leaf. In Medicinal Plants of South Asia: Novel Sources for Drug Discovery, 1st ed.; Hanif, M.A., Nawaz, H., Khan, M.M., Byrne, H.J., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 63–74. [Google Scholar]
- Caputo, L.; Nazzaro, F.; Souza, L.F.; Aliberti, L.; De Martino, L.; Fratianni, F.; Coppola, R.; De Feo, V. Laurus nobilis: Composition of essential oil and its biological activities. Molecules 2017, 22, 930. [Google Scholar] [CrossRef] [PubMed]
- Alejo-Armijo, A.; Altarejos, J.; Salido, S. Phytochemicals and Biological Activities of Laurel Tree (Laurus nobilis). Nat. Prod. Commun. 2017, 12, 743–757. [Google Scholar] [CrossRef] [PubMed]
- Mansour, O.; Darwish, M.; Ismail, G.; Douba, Z.A.-A.; Ismaeel, A.; Eldair, K. Review Study on the Physiological Properties and Chemical Composition of the Laurus nobilis. Pharm. Chem. J. 2018, 5, 225–231. [Google Scholar]
- Fidan, H.; Stefanova, G.; Kostova, I.; Stankov, S.; Damyanova, S.; Stoyanova, A.; Zheljazkov, V.D. Chemical Composition and Antimicrobial Activity of Laurus nobilis L. Essential oils from Bulgaria. Molecules 2019, 24, 804. [Google Scholar] [CrossRef]
- Georgiev, E.; Stoyanova, A. A Guide for the Specialist in the Aromatic Industry; UFT Acad. Publ. House: Plovdiv, Bulgaria, 2006; pp. 219–232. [Google Scholar]
- Sayyah, M.; Saroukhani, G.; Peirovi, A.; Kamalinejad, M. Analgesic and anti-inflammatory activity of the leaf essential oil of Laurus nobilis Linn. Phytother. Res. 2003, 17, 733–736. [Google Scholar] [CrossRef]
- Sayyah, M.; Valizadeh, J.; Kamalinejad, M. Anticonvulsant activity of the leaf essential oil of Laurus nobilis against pentylenetetrazole- and maximal electroshock-induced seizures. Phytomedicine 2002, 9, 212–216. [Google Scholar] [CrossRef] [PubMed]
- De Marino, S.; Borbone, N.; Zollo, F.; Ianaro, A.; Di Meglio, P.; Iorizzi, M. Megastigmane and Phenolic Components from Laurus nobilis L. Leaves and Their Inhibitory Effects on Nitric Oxide Production. J. Agric. Food Chem. 2004, 52, 7525–7531. [Google Scholar] [CrossRef]
- Muñiz-Márquez, D.B.; Rodríguez, R.; Balagurusamy, N.; Carrillo, M.L.; Belmares, R.; Contreras, J.C.; Nevárez, G.V.; Aguilar, C.N. Phenolic content and antioxidant capacity of extracts of Laurus nobilis L., Coriandrum sativum L. and Amaranthus hybridus L. CYTA J. Food 2014, 12, 271–276. [Google Scholar] [CrossRef]
- Dias, M.I.; Barros, L.; Dueñas, M.; Alves, R.C.; Oliveira, M.B.P.P.; Santos-Buelga, C.; Ferreira, I.C.F.R. Nutritional and antioxidant contributions of Laurus nobilis L. leaves: Would be more suitable a wild or a cultivated sample? Food Chem. 2014, 156, 339–346. [Google Scholar] [CrossRef] [PubMed]
- Vinha, A.F.; Guido, L.F.; Costa, A.S.G.; Alves, R.C.; Oliveira, M.B.P.P. Monomeric and oligomeric flavan-3-ols and antioxidant activity of leaves from different Laurus sp. Food Funct. 2015, 6, 1944–1949. [Google Scholar] [CrossRef] [PubMed]
- Senchenko, S.P.; Nasukhova, N.M.; Agova, L.A.; Konovalov, D.A. Use of Micellar Electrokinetic Chromatography to Analyze Sesquiterpene Lactones from Laurus nobilis L. Pharm. Chem. J. 2016, 50, 320–322. [Google Scholar] [CrossRef]
- Barla, A.; Topçu, G.; Öksüz, S.; Tümen, G.; Kingston, D.G.I. Identification of cytotoxic sesquiterpenes from Laurus nobilis L. Food Chem. 2007, 104, 1478–1484. [Google Scholar] [CrossRef]
- Matsuda, H.; Kagerura, T.; Toguchida, I.; Ueda, H.; Morikawa, T.; Yoshikawa, M. Inhibitory effects of sesquiterpenes from Bat Leaf on nitric oxide production in lipopolysaccharide-activated macrophages: Structure requirement and role of heat shock protein induction. Life Sci. 1999, 66, 2151–2157. [Google Scholar] [CrossRef] [PubMed]
- Dobroslavić, E.; Repajić, M.; Dragović-Uzelac, V.; Garofulić, I.E. Isolation of Laurus nobilis Leaf Polyphenols: A Review on Current Techniques and Future Perspectives. Foods 2022, 11, 235. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Wang, Z.; Xie, Y.; Hu, H. Antitumor activity and mechanism of costunolide and dehydrocostus lactone: Two natural sesquiterpene lactones from the Asteraceae family. Biomed. Pharmacother. 2020, 125, 109955. [Google Scholar] [CrossRef]
- Butturini, E.; Carcereri De Prati, A.; Boriero, D.; Mariotto, S. Natural Sesquiterpene Lactones Enhance Chemosensitivity of Tumor Cells through Redox Regulation of STAT3 Signaling. Oxid. Med. Cell Longev. 2019, 2019, 4568964. [Google Scholar] [CrossRef]
- Pacifico, S.; Gallicchio, M.; Lorenz, P.; Potenza, N.; Galasso, S.; Marciano, S.; Fiorentino, A.; Stintzing, F.C.; Monaco, P. Apolar Laurus nobilis leaf extracts induce cytotoxicity and apoptosis towards three nervous system cell lines. Food Chem. Toxicol. 2013, 62, 628–637. [Google Scholar] [CrossRef]
- Saab, A.M.; Tundis, R.; Loizzo, M.R.; Lampronti, I.; Borgatti, M.; Gambari, R.; Menichini, F.; Esseily, F.; Menichini, F. Antioxidant and antiproliferative activity of Laurus nobilis L. (Lauraceae) leaves and seeds essential oils against K562 human chronic myelogenous leukaemia cells. Nat. Prod. Res. 2012, 26, 1741–1745. [Google Scholar] [CrossRef]
- Dall’acqua, S.; Viola, G.; Giorgetti, M.; Loi, M.C.; Innocenti, G. Two New Sesquiterpene Lactones from the Leaves of Laurus nobilis; Chem. Pharm. Bull. 2006, 54, 1187–1189. [Google Scholar] [CrossRef]
- Panza, E.; Tersigni, M.; Iorizzi, M.; Zollo, F.; De Marino, S.; Festa, C.; Napolitano, M.; Castello, G.; Ialenti, A.; Ianaro, A. Lauroside B, a Megastigmane Glycoside from Laurus nobilis (Bay Laurel) Leaves, Induces Apoptosis in Human Melanoma Cell Lines by Inhibiting NF-κB Activation. J. Nat. Prod. 2011, 74, 228–233. [Google Scholar] [CrossRef] [PubMed]
- Autiero, I.; Roviello, G.N. Interaction of Laurusides 1 and 2 with the 3C-like Protease (Mpro) from Wild-Type and Omicron Variant of SARS-CoV-2: A Molecular Dynamics Study. Int. J. Mol. Sci. 2023, 24, 5511. [Google Scholar] [CrossRef] [PubMed]
- Chahal, K.K.; Singh, D.K.; Panchbhaiya, A.; Singh, N.; Kaur, M.; Bhardwaj, U.; Singla, N.; Kaur, A. A review on chemistry and biological activities of Laurus nobilis L. essential oil. J. Pharmacogn. Phytochem. 2017, 6, 1153–1161. [Google Scholar]
- Siriken, B.; Yavuz, C.; Guler, A. Antibacterial Activity of Laurus nobilis: A review of literature. Med. Sci. Discov. 2018, 5, 374–379. [Google Scholar] [CrossRef]
- Mssillou, I.; Agour, A.; El Ghouizi, A.; Hamamouch, N.; Lyoussi, B.; Derwich, E. Chemical Composition, Antioxidant Activity, and Antifungal Effects of Essential Oil from Laurus nobilis L. Flowers Growing in Morocco. J. Food Qual. 2020, 2020, 8819311. [Google Scholar] [CrossRef]
- Dearlove, R.P.; Greenspan, P.; Hartle, D.K.; Swanson, R.B.; Hargrove, J.L. Inhibition of Protein Glycation by Extracts of Culinary Herbs and Spices. J. Med. Food 2008, 11, 275–281. [Google Scholar] [CrossRef]
- Basak, S.S.; Candan, F. Effect of Laurus nobilis L. Essential Oil and its Main Components on α-glucosidase and Reactive Oxygen Species Scavenging Activity. Iran. J. Pharm. Res. 2013, 12, 367–379. [Google Scholar]
- Al-Kalaldeh, J.Z.; Abu-Dahab, R.; Afifi, F.U. Volatile oil composition and antiproliferative activity of Laurus nobilis, Origanum syriacum, Origanum vulgare, and Salvia triloba against human breast adenocarcinoma cells. Nutr. Res. 2010, 30, 271–278. [Google Scholar] [CrossRef]
- Ercin, E.; Kecel-Gunduz, S.; Gok, B.; Aydin, T.; Budama-Kilinc, Y.; Kartal, M. Laurus nobilis L. Essential Oil-Loaded PLGA as a Nanoformulation Candidate for Cancer Treatment. Molecules 2022, 27, 1899. [Google Scholar] [CrossRef] [PubMed]
- Pilipović, K.; Jurišić Grubešić, R.; Dolenec, P.; Kučić, N.; Juretić, L.; Mršić-Pelčić, J. Plant-Based Antioxidants for Prevention and Treatment of Neurodegenerative Diseases: Phytotherapeutic Potential of Laurus nobilis, Aronia melanocarpa, and Celastrol. Antioxidants 2023, 12, 746. [Google Scholar] [CrossRef]
- Ferreira, A.; Proença, C.; Serralheiro, M.L.M.; Araújo, M.E.M. The in vitro screening for acetylcholinesterase inhibition and antioxidant activity of medicinal plants from Portugal. J. Ethnopharmacol. 2006, 108, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Cherrat, L.; Espina, L.; Bakkali, M.; García-Gonzalo, D.; Pagán, R.; Laglaoui, A. Chemical composition and antioxidant properties of Laurus nobilis L. and Myrtus communis L. essential oils from Morocco and evaluation of their antimicrobial activity acting alone or in combined processes for food preservation. J. Sci. Food Agric. 2014, 94, 1197–1204. [Google Scholar] [CrossRef]
- Amorati, R.; Foti, M.C.; Valgimigli, L. Antioxidant Activity of Essential Oils. J. Agric. Food Chem. 2013, 61, 10835–10847. [Google Scholar] [CrossRef] [PubMed]
- Alimi, D.; Hajri, A.; Jallouli, S.; Sebai, H. In vitro acaricidal activity of essential oil and crude extracts of Laurus nobilis, (Lauraceae) grown in Tunisia, against arthropod ectoparasites of livestock and poultry: Hyalomma scupense and Dermanyssus gallinae. Vet. Parasitol. 2021, 298, 109507. [Google Scholar] [CrossRef] [PubMed]
- Furtado, R.; Baptista, J.; Lima, E.; Paiva, L.; Barroso, J.G.; Rosa, J.S.; Oliveira, L. Chemical composition and biological activities of Laurus essential oils from different Macaronesian Islands. Biochem. Syst. Ecol. 2014, 55, 333–341. [Google Scholar] [CrossRef]
- Adişen, E.; Önder, M. Allergic contact dermatitis from Laurus nobilis L oil induced by massage. Contact Dermatitis 2007, 56, 360–361. [Google Scholar] [CrossRef] [PubMed]
- Kıvrak, Ş.; Göktürk, T.; Kıvrak, İ. Assessment of Volatile Oil Composition, Phenolics and Antioxidant Activity of Bay (Laurus nobilis L) Leaf and Usage in Cosmetic Applications. Inter. J. Sec Metabolite 2017, 4, 148–161. [Google Scholar] [CrossRef]
- Diedrich, C.; da Silva, L.D.; Sari, R.; de Cristo Borges, G.C.; Muniz, H.S.; de Lima, V.A.; Oldoni, T.L.C.; Carpes, S.T. Bioactive compounds extraction of Croton lechleri barks from Amazon forest using chemometrics tools. J. King Saud. Univ. Sci. 2021, 33, 101416. [Google Scholar] [CrossRef]
- Council of Europe. European Pharmacopoeia, 5th ed.; Council of Europe: Strasbourg, France, 2004; Volume I, p. 217. [Google Scholar]
- El, S.N.; Karagozlu, N.; Karakaya, S.; Sahın, S. Antioxidant and Antimicrobial Activities of Essential Oils Extracted from Laurus nobilis L. Leaves by Using Solvent-Free Microwave and Hydrodistillation. Food Nutr. Sci. 2014, 05, 97–106. [Google Scholar] [CrossRef]
- Sparkman, O.D. Identification of essential oil components by gas chromatography/quadrupole mass spectroscopy. J. Am. Soc. Mass. Spectrom. 2005, 16, 1902–1903. [Google Scholar] [CrossRef]
- Van Den Dool, H.; Kratz, P.D. A generalization of the retention index system including linear temperature programmed gas—Liquid partition chromatography. J. Chromatogr. A 1963, 11, 463–471. [Google Scholar] [CrossRef]
- Kováts, E. Gas chromatographic characterization of organic substances in the retention index system. Advan Chromatogr. 1965, 1, 229–247. [Google Scholar]
- McLafferty, F.W. Wiley Registry of Mass Spectral Data, with NIST Spectral Data CD Rom, 7th ed.; John Wiley & Sons: New York, NY, USA, 2000. [Google Scholar]
- NIST; EPA; NIH. Mass Spectral Library; National Institute of Standard and Technology: Gaithersburg, MD, USA, 2005. [Google Scholar]
- Grob, R.L.; Kaiser, M.A. Qualitative and Quantitative Analysis by Gas Chromatography. In Modern Practice of Gas Chromatography; Grob, R.L., Barry, E.F., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2004; pp. 403–460. [Google Scholar]
- Ruiz-Perez, D.; Guan, H.; Madhivanan, P.; Mathee, K.; Narasimhan, G. So you think you can PLS-DA? BMC Bioinformatics 2020, 21, 2. [Google Scholar] [CrossRef]
- Want, E.; Masson, P. Processing and Analysis of GC/LC-MS-Based Metabolomics Data BT—Metabolic Profiling: Methods and Protocols. In Metabolic Profiling; Metz, T.O., Ed.; Humana Press: Totowa, NJ, USA, 2011; pp. 277–298. [Google Scholar]
- Michiu, D.; Socaciu, M.I.; Fogarasi, M.; Jimborean, A.M.; Ranga, F.; Mureşan, V.; Semeniuc, C.A. Implementation of an Analytical Method for Spectrophotometric Evaluation of Total Phenolic Content in Essential Oils. Molecules 2022, 27, 1345. [Google Scholar] [CrossRef]
- Wei, A.; Shibamoto, T. Antioxidant/Lipoxygenase Inhibitory Activities and Chemical Compositions of Selected Essential Oils. J. Agric. Food Chem. 2010, 58, 7218–7225. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef]
- Amano, Y.; Tanabe, E.; Yamaguchi, T. Identification of N-ethylmethylamine as a novel scaffold for inhibitors of soluble epoxide hydrolase by crystallographic fragment screening. Bioorg Med. Chem. 2015, 23, 2310–2317. [Google Scholar] [CrossRef]
- Schrödinger Release 2021-1: Protein Preparation Wizard; Epik, Schrödinger, LLC, New York, NY, 2021; Impact, Schrödinger, LLC, New York, NY; Prime, Schrödinger, LLC, New York, NY, 2021. Available online: https://www.schrodinger.com/citations/ (accessed on 14 July 2024).
- Madhavi Sastry, G.; Adzhigirey, M.; Day, T.; Annabhimoju, R.; Sherman, W. Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments. J. Comput. Aided Mol. Des. 2013, 27, 221–234. [Google Scholar] [CrossRef]
- Schrödinger, LLC. LigPrep; Schrödinger Release 2021-1; Schrödinger, LLC: New York, NY, USA, 2021. [Google Scholar]
- Friesner, R.A.; Murphy, R.B.; Repasky, M.P.; Frye, L.L.; Greenwood, J.R.; Halgren, T.A.; Sanschagrin, P.C.; Mainz, D.T. Extra Precision Glide: Docking and Scoring Incorporating a Model of Hydrophobic Enclosure for Protein−Ligand Complexes. J. Med. Chem. 2006, 49, 6177–6196. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Yao, K.; Repasky, M.P.; Leswing, K.; Abel, R.; Shoichet, B.K.; Jerome, S. V Efficient Exploration of Chemical Space with Docking and Deep Learning. J. Chem. Theory Comput. 2021, 17, 7106–7119. [Google Scholar] [CrossRef] [PubMed]
- Halgren, T.A.; Murphy, R.B.; Friesner, R.A.; Beard, H.S.; Frye, L.L.; Pollard, W.T.; Banks, J.L. Glide: A New Approach for Rapid, Accurate Docking and Scoring. 2. Enrichment Factors in Database Screening. J. Med. Chem. 2004, 47, 1750–1759. [Google Scholar] [CrossRef]
- Friesner, R.A.; Banks, J.L.; Murphy, R.B.; Halgren, T.A.; Klicic, J.J.; Mainz, D.T.; Repasky, M.P.; Knoll, E.H.; Shelley, M.; Perry, J.K.; et al. Glide: A New Approach for Rapid, Accurate Docking and Scoring. 1. Method and Assessment of Docking Accuracy. J. Med. Chem. 2004, 47, 1739–1749. [Google Scholar] [CrossRef]
- Schrödinger, LLC. Glide; Schrödinger Release 2021-1; Schrödinger, LLC: New York, NY, USA, 2021. [Google Scholar]
- Amin, G.; Sourmaghi, M.S.; Jaafari, S.; Hadjagaee, R.; Yazdinezhad, A. Influence of Phenological Stages and Method of Distillation on Iranian Cultivated Bay Leaves Volatile Oil. Pak. J. Biol. Sci. 2007, 17, 2895–2899. [Google Scholar] [CrossRef]
- Rodilla, J.M.; Tinoco, M.T.; Morais, J.C.; Gimenez, C.; Cabrera, R.; Martín-Benito, D.; Castillo, L.; Gonzalez-Coloma, A. Laurus novocanariensis essential oil: Seasonal variation and valorization. Biochem. Syst. Ecol. 2008, 36, 167–176. [Google Scholar] [CrossRef]
- Burt, S. Essential oils: Their antibacterial properties and potential applications in foods—A review. Int. J. Food Microbiol. 2004, 94, 223–253. [Google Scholar] [CrossRef] [PubMed]
- Ovidi, E.; Masci, V.L.; Zambelli, M.; Tiezzi, A.; Vitalini, S.; Garzoli, S. Laurus nobilis, Salvia sclarea and Salvia officinalis essential oils and hydrolates: Evaluation of liquid and vapor phase chemical composition and biological activities. Plants 2021, 10, 707. [Google Scholar] [CrossRef]
- Nabila, B.; Piras, A.; Fouzia, B.; Falconieri, D.; Kheira, G.; Fedoul, F.F.; Majda, S.R. Chemical composition and antibacterial activity of the essential oil of Laurus nobilis leaves. Nat. Prod. Res. 2022, 36, 989–993. [Google Scholar] [CrossRef] [PubMed]
- Fantasma, F.; Samukha, V.; Saviano, G.; Chini, M.G.; Iorizzi, M.; Caprari, C. Nutraceutical Aspects of Selected Wild Edible Plants of the Italian Central Apennines. Nutraceuticals 2024, 4, 190–231. [Google Scholar] [CrossRef]
- Yılmaz, B.; Deniz, İ. The Effects of Cultivation Area and Altitude Variation on the Composition of Essential Oil of Laurus nobilis L. Grown in Eastern, Western and Central Karadeniz Region. Int. J. Second. Metab. 2017, 4, 187–195. [Google Scholar] [CrossRef]
- Chen, X.; Shang, S.; Yan, F.; Jiang, H.; Zhao, G.; Tian, S.; Chen, R.; Chen, D.; Dang, Y. Antioxidant Activities of Essential Oils and Their Major Components in Scavenging Free Radicals, Inhibiting Lipid Oxidation and Reducing Cellular Oxidative Stress. Molecules 2023, 28, 4559. [Google Scholar] [CrossRef] [PubMed]
- Kotha, R.R.; Tareq, F.S.; Yildiz, E.; Luthria, D.L. Oxidative Stress and Antioxidants—A Critical Review on In Vitro Antioxidant Assays. Antioxidants 2022, 11, 187–194. [Google Scholar] [CrossRef] [PubMed]
- Heimler, D.; Vignolini, P.; Dini, M.G.; Romani, A. Rapid Tests to Assess the Antioxidant Activity of Phaseolus vulgaris L. Dry Beans. J. Agric. Food Chem. 2005, 53, 3053–3056. [Google Scholar] [CrossRef]
- Hsouna, A.B.; Halima, N.B.; Abdelkafi, S.; Hamdi, N. Essential Oil from Artemisia phaeolepis: Chemical Composition and Antimicrobial Activities. J. Oleo Sci. 2013, 62, 973–980. [Google Scholar] [CrossRef]
- Nenadis, N.; Papapostolou, M.; Tsimidou, M.Z. Suggestions on the contribution of methyl eugenol and eugenol to bay laurel (Laurus nobilis L.) essential oil preservative activity through radical scavenging. Molecules 2021, 26, 2342. [Google Scholar] [CrossRef]
- Schmelzer, K.R.; Kubala, L.; Newman, J.W.; Kim, I.-H.; Eiserich, J.P.; Hammock, B.D. Soluble epoxide hydrolase is a therapeutic target for acute inflammation. Proc. Natl. Acad. Sci. USA 2005, 12, 9772–9777. [Google Scholar] [CrossRef]
- Wagner, K.M.; McReynolds, C.B.; Schmidt, W.K.; Hammock, B.D. Soluble epoxide hydrolase as a therapeutic target for pain, inflammatory and neurodegenerative diseases. Pharmacol. Ther. 2017, 180, 62–76. [Google Scholar] [CrossRef]
- Morisseau, C.; Goodrow, M.H.; Newman, J.W.; Wheelock, C.E.; Dowdy, D.L.; Hammock, B.D. Structural refinement of inhibitors of urea-based soluble epoxide hydrolases. Biochem. Pharmacol. 2002, 63, 1599–1608. [Google Scholar] [CrossRef]
- Gomez, G.A.; Morisseau, C.; Hammock, B.D.; Christianson, D.W. Structure of Human Epoxide Hydrolase Reveals Mechanistic Inferences on Bifunctional Catalysis in Epoxide and Phosphate Ester Hydrolysis. Biochemistry 2004, 43, 4716–4723. [Google Scholar] [CrossRef]
- Lee, G.H.; Oh, S.J.; Lee, S.Y.; Lee, J.Y.; Ma, J.Y.; Kim, Y.H.; Kim, S.K. Discovery of soluble epoxide hydrolase inhibitors from natural products. Food Chem. Toxicol. 2014, 64, 225–230. [Google Scholar] [CrossRef] [PubMed]
- Cuong, T.; Anh, H.; Thu Hường, T.; Khanh, P.; Ha, V.; Tran, M.H.; Kim, Y.H.; Cuong, N. Identification of Soluble Epoxide Hydrolase Inhibitors from the Seeds of Passiflora edulis Cultivated in Vietnam. Nat. Prod. Sci. 2019, 25, 348. [Google Scholar] [CrossRef]
- Kim, J.H.; Morgan, A.; Tai, B.; Van, D.; Cuong, N.; Kim, Y.H. Inhibition of soluble epoxide hydrolase activity by compounds isolated from the aerial parts of Glycosmis stenocarpa. J. Enzyme Inhib. Med. Chem. 2015, 31, 640–644. [Google Scholar] [CrossRef] [PubMed]
- Colarusso, E.; Potenza, M.; Lauro, G.; Chini, M.G.; Sepe, V.; Zampella, A.; Fischer, K.; Hofstetter, R.K.; Werz, O.; Bifulco, G. Thiazolidin-4-one-based compounds interfere with the eicosanoid biosynthesis pathways by mPGES-1/sEH/5-LO multi-target inhibition. Eur. J. Med. Chem. Rep. 2022, 5, 100046. [Google Scholar] [CrossRef]
Tested Oils | IC50 ± SD (mg/mL) |
---|---|
LNMO5 | 16.5 ± 4.3 |
LNAB | 48.8 ± 2.6 |
LNMO3 | 71.2 ± 3.4 |
LNCA | 125.7 ± 9.4 |
LNMO4 | 421.2 ± 14.6 |
LNMO1 | 4513.0 ± 695.1 |
LNMO2 | 8062.3 ± 580.9 |
AUDA (known inhibitor) | 0.068 ± 0.003 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fantasma, F.; Samukha, V.; Aliberti, M.; Colarusso, E.; Chini, M.G.; Saviano, G.; De Felice, V.; Lauro, G.; Casapullo, A.; Bifulco, G.; et al. Essential Oils of Laurus nobilis L.: From Chemical Analysis to In Silico Investigation of Anti-Inflammatory Activity by Soluble Epoxide Hydrolase (sEH) Inhibition. Foods 2024, 13, 2282. https://doi.org/10.3390/foods13142282
Fantasma F, Samukha V, Aliberti M, Colarusso E, Chini MG, Saviano G, De Felice V, Lauro G, Casapullo A, Bifulco G, et al. Essential Oils of Laurus nobilis L.: From Chemical Analysis to In Silico Investigation of Anti-Inflammatory Activity by Soluble Epoxide Hydrolase (sEH) Inhibition. Foods. 2024; 13(14):2282. https://doi.org/10.3390/foods13142282
Chicago/Turabian StyleFantasma, Francesca, Vadym Samukha, Michela Aliberti, Ester Colarusso, Maria Giovanna Chini, Gabriella Saviano, Vincenzo De Felice, Gianluigi Lauro, Agostino Casapullo, Giuseppe Bifulco, and et al. 2024. "Essential Oils of Laurus nobilis L.: From Chemical Analysis to In Silico Investigation of Anti-Inflammatory Activity by Soluble Epoxide Hydrolase (sEH) Inhibition" Foods 13, no. 14: 2282. https://doi.org/10.3390/foods13142282
APA StyleFantasma, F., Samukha, V., Aliberti, M., Colarusso, E., Chini, M. G., Saviano, G., De Felice, V., Lauro, G., Casapullo, A., Bifulco, G., & Iorizzi, M. (2024). Essential Oils of Laurus nobilis L.: From Chemical Analysis to In Silico Investigation of Anti-Inflammatory Activity by Soluble Epoxide Hydrolase (sEH) Inhibition. Foods, 13(14), 2282. https://doi.org/10.3390/foods13142282