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Abstract: The geographical origin of foods greatly influences their quality and price, leading to
adulteration between high-priced and low-priced regions in the market. The rapid detection of such
adulteration is crucial for food safety and fair competition. To detect the adulteration of Polygonati
Rhizoma from different regions, we proposed LIBS-VNIR fusion based on the deep learning network
(LVDLNet), which combines laser-induced breakdown spectroscopy (LIBS) containing element
information with visible and near-infrared spectroscopy (VNIR) containing molecular information.
The LVDLNet model achieved accuracy of 98.75%, macro-F measure of 98.50%, macro-precision of
98.78%, and macro-recall of 98.75%. The model, which increased these metrics from about 87% for
LIBS and about 93% for VNIR to more than 98%, significantly improved the identification ability.
Furthermore, tests on different adulterated source samples confirmed the model’s robustness, with
all metrics improving from about 87% for LIBS and 86% for VNIR to above 96%. Compared to
conventional machine learning algorithms, LVDLNet also demonstrated its superior performance.
The results indicated that the LVDLNet model can effectively integrate element information and
molecular information to identify the adulterated Polygonati Rhizoma. This work shows that the
scheme is a potent tool for food identification applications.

Keywords: LIBS; VNIR; Polygonati Rhizoma; deep learning; adulteration

1. Introduction

Polygonati Rhizoma (PR), which is called Huangjing in China, is the rhizome of a
liliaceous plant from the genus Polygonatum Mill and has been used in traditional food
and medicine in China for centuries [1]. PR contains a range of essential compounds such
as sugars, lipids, proteins, carotenoids, vitamins, amino acids, and trace elements, which
can resist hidden hunger and makes it a potential high-quality crop [2,3]. Rich in com-
pounds like polysaccharides and flavonoids, it offers numerous health benefits, including
anti-aging, anti-diabetic, anti-fatigue, and anti-cancer effects [4–7]. PR has traditionally
been used in clinical practices to treat age-related diseases, diabetes, lung diseases, fatigue,
feebleness, and indigestion in China, India, Pakistan, Iran, and Japan [4,8]. The wide range
of medicinal benefits and the increasing demand for PR in various therapeutic applications
underscore the importance of ensuring its authenticity and quality. PR is cultivated in
various geographical regions, with China being the main producer. However, the geo-
graphical origin of PR affects the quality, drug effect, and price [9,10]. Products certified
as protected geographical indications (PGIs) are more popular with consumers and have
higher prices. Consequently, unscrupulous traders often mislabel the origins or adulterate
PGI products with inferior products or products from other regions to increase profits,
causing both healthy and wealthy losses to consumers [9]. In the market, consumers are
concerned about whether the product is pure, adulterated, or pure counterfeit. Therefore,
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the accurate identification of adulterated PR from different geographical origins is essential
to protect consumer health and maintain fair trade practices.

Current identification methods for the geographical origin of foods and medicinal
materials primarily include manual identification, chromatography, mass spectrometry, and
DNA molecular identification [11–15]. However, manual identification requires extensive
professional knowledge and is unsuitable for processing products (dry whole root, slice,
powder). Chromatography, mass spectrometry, and DNA molecular identification are time-
consuming, expensive, environmentally unfriendly, and complicated to operate [15–17].
Also, the adulteration of powder samples from different geographical origins has created
challenges in these technologies. Therefore, there is an urgent need for a real-time, rapid,
direct, efficient, and high-precision method to identify adulterated foods or medicinal
materials from different regions.

Currently, some researchers use laser-induced breakdown spectroscopy (LIBS) and
near-infrared spectroscopy (NIR) LIBS to identify geographical origin and adulterated
foods or medicinal materials products, due to their advantages such as fast and in situ
analysis [18–21]. For instance, Nie et al. employed visible and near-infrared spectroscopy
(VNIR) for the quantitative analysis of the adulteration of Sophora flavescens powder or
corn flour in Notoginseng powder, yielding a predictive R-squared value within the range
of 0.86 to 0.94 [22]. Zhao et al. demonstrated the utility of LIBS in analyzing Chinese
yam adulterated with cassava and the rhizome of winged yam, with R-squared values
reaching 0.9570 [23]. Akin et al. employed LIBS in the analysis of corn and sorghum
flour mixtures, achieving a good R-squared result of 0.965 [24]. Some researchers have
also fused LIBS and VNIR to achieve better identification results [25]. For example, Zhao
et al. used the fusion of LIBS and hyperspectral imaging (400–1000 nm) data to improve
ginseng samples’ geographical origin identification accuracy from 96.9% and 94.75% to
98.8% [26]. Collectively, these studies described above verified the potential of LIBS and
NIR techniques in the identification of adulterated samples, especially the fusion of LIBS
and VNIR, which has a better effect. Combining the elemental and molecular information
obtained from these two techniques makes it possible to achieve a more comprehensive and
accurate identification of adulterated materials. The subtle chemical and morphological
changes between these materials of the same species but with different geographical origins
pose a significant challenge for adulteration identification, and single-modal analysis makes
it difficult to achieve a high level of identification accuracy. However, there is no report on
the identification of adulterated PR from different geographical origins. For food quality
identification, the research on the fusion method of LIBS and VNIR at the atomic and
molecular levels is rarely studied.

Since foods or herbal medicines are rich in elemental and molecular information, based
on the complementary advantages of LIBS in elemental analysis and VNIR in molecular
analysis, together, they can provide a comprehensive assessment of the authenticity of PR.
Therefore, the purpose of this study is to propose a deep learning model that effectively
combines LIBS and VNIR to improve the accuracy of adulteration identification. We
proposed an LIBS-VNIR fusion based on a deep learning network (LVDLNet) to detect
adulteration in PR sourced from different regions in this study. The model was explained
and verified from different aspects. Finally, the study confirmed that the fusion of LIBS
and VNIR was feasible and effective in identifying adulterated PR. This work provides a
powerful solution for the efficient, accurate, precise, and robust detection of adulteration,
which is expected to enhance the integrity and safety of the food supply chain.

2. Samples and Experimental System
2.1. Sample Preparation

The highest quality PR, produced in Jiuhua Mountain and its surrounding areas in
Qingyang County, southern Anhui, is certified as a PGI in China [6,27]. In this experiment,
PR from Qingyang County was adulterated with cheaper PR from Dandong City, Liaoning
Province. To ensure the authenticity of the samples, our staff personally collected the PR
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from their respective regions of origin. After the collection, the samples were cleansed with
deionized water to eliminate surface dust and debris. Subsequently, they were sliced to
a thickness of approximately 2 mm. These slices were then dried to constant weight at
a controlled temperature of 60 ◦C within an electric blast drying oven (101-0B, Shaoxing
Shangcheng Instrument Manufacturing Co., Ltd., Shaoxing, China). The dried samples
were subsequently crushed and ground to a fine powder, passing through an 80-mesh sieve
to ensure uniformity.

In actual market conditions, there are instances where cheaper Polygonati Rhizoma (PR)
is used to completely impersonate more expensive PR from famous origins. There are also
situations where the cheaper PR is mixed into the more expensive PR for sale, and a small
amount of adulteration is insignificant for counterfeiters. To simulate the market adulteration
practices, PR from Dandong City was systematically blended with PR from Qingyang County
in incremental proportions ranging from 0% to 100% in steps of 20% (ω/ω). The adulterated
samples contained 0, 20, 40, 60, 80, and 100% (ω/ω) adulterated levels. Specifically, the
adulteration percentages refer to the weight percentage of PR from Dandong City in the
mixture. For instance, a 0% level indicates pure PR from Qingyang County, while a 100%
level signifies a mixture composed entirely of PR from Dandong City. Intermediate levels
at 20%, 40%, 60%, and 80% represent the respective proportions of the Dandong City PR
in the blend. The resulting mixtures were then compacted into pellets, each weighing two
grams, using an electric tablet press exerting a substantial pressure of 24 tons over one minute.
The pressed pellets, characterized by a thickness of approximately 3 mm and a diameter of
20 mm, were employed for our subsequent analyses. Two replicate samples were made
for each concentration gradient to eliminate individual differences in samples. A total of
12 pressed pellets were prepared for measurement without further treatment. To evaluate the
robustness of our proposed model, we also prepared another batch of samples by blending
PR from Baise City in Guangxi Province with authentic PR from Qingyang County, adhering
to the stringent criteria outlined in our previous methodology.

2.2. Setup and Measurement

The schematic diagram of the experimental setup used in this work is shown in
Figure 1. This experimental setup mainly consisted of two parts: one was the VNIR ac-
quisition setup, and the other was the LIBS acquisition setup. The VNIR spectra of the
samples were collected first. All VNIR spectra were collected using a VNIR spectrometer
(QE65pro, spectral ranges: 350–1100 nm; Ocean Optics, Inc., Dunedin, USA) equipped with
a Halogen lamp light source (Avalight-HAL-Mini, Avantes B.V., Apeldoom, Netherlands).
The samples were placed on an X-Y-Z motion platform (DZY110TA-3Z, Beijing Jiangyun
Juli Technology Co., Ltd., Beijing, China) to enable spectral collection at different positions.
For the spectral collection process, a precision optical fiber probe was positioned perpen-
dicularly above each sample, thereby enabling the acquisition of the diffuse reflectance
spectra. The integration time for each scan was 10 milliseconds, and each spectrum was
obtained by averaging ten consecutive scans at each spatial point. In total, 100 distinct
spectra per pellet sample were collected at 100 different spatial points. Consequently, for
each proportion (adulteration level) of the adulterated samples, we amassed 200 spectra,
culminating in a comprehensive dataset comprising 1200 VNIR spectra for six adulteration
levels. Each VNIR spectrum had a dimension of 1 × 997.

After the VNIR acquisition, the samples were moved to the LIBS acquisition setup
through the displacement platform. For the LIBS acquisition setup, a Q-switched Nd: YAG
laser (Beamtech Optronics, Nimma-400; pulse duration: 8 ns; flattened Gaussian beam;
Beamtech Optronics Co., Ltd., Beijing, China) operating at 532 nm, 1 Hz, and 130 mJ was
used as the ablation source. The laser beam was reflected by a 45◦ mirror and focused by a
quartz lens (focal length: 150 mm) onto the sample surface to generate plasmas. The plasma
emission was collected by a collector and transmitted by fiber to a six-channel spectrometer
(AvaSpec-ULS4096CL-EVO; spectral ranges: 196–874 nm; minimum gate width: 9 µs;
Avantes B.V., Apeldoom, Netherlands). The gate delay and width were set to 2 µs, and
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9 µs, respectively. A digital delay generator (LDG 3.0, Wuhan NRD Laser Engineering
Co., Ltd., Wuhan, China) synchronized the laser and spectrograph. The experiment was
conducted in the air atmosphere. For each pellet sample, 400 spectra were obtained and
then averaged to 100 spectra to improve the stability of spectral intensity. Thus, 200 spectra
for each proportion and 1200 spectra in total were obtained. Each LIBS spectrum had a
dimension of 1 × 24,564.
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3. Method
3.1. The Framework of LVDLNet

To realize the identification of adulteration, we propose the LVDLNet framework
shown in Figure 2. The proposed LVDLNet includes three main parts: DL-LIBS, which
extracts element information; DL-VNIR, which extracts molecular information; and the
information fusion part.
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3.2. Element Information Extraction by DL-LIBS

The LIBS spectrum can provide element information. The LIBS spectrum lines of PR
from two different origins are shown in Figure 3. It can be seen that the LIBS spectral lines
of PR from different origins are similar and contain the same elements, with variations
primarily in intensity. Distinguishing the origin based solely on individual elemental
spectral lines poses challenges, particularly when PR from different sources is mixed.
Hence, employing chemometrics becomes essential for discerning these differences.
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The characteristic dimension of LIBS full spectrum is 24,564, which contains much in-
valid information. To reduce background and noise interference, researchers usually select
the spectral peak of the element spectral line for analysis [28,29]. Only a few researchers
selected the spectral interval (the interval of spectral line profile), which contains the charac-
teristics of spectral wing and the Full Width at Half Maximum (FWHM) [30]. Selecting only
the spectral peak will lead the loss of some effective information. Therefore, the selection of
a spectral line profile interval is considered in this study. Specifically, for the analysis of PR,
we have identified 18 elemental spectral lines with robust signal quality. These lines, with
varying numbers of data points across their waveform intervals, are detailed in Table 1.
It is observed that each spectral line is characterized by a unique distribution of points,
with an average of approximately 14 points. Figure 4 illustrates the waveform intervals
for two typical elemental lines: (a) Si I 288.17 nm, which comprises 7 points; and (b) Ca
II 396.79 nm, which includes 22 points. Notably, the central 14 points of Ca II 396.79 nm
can contain almost the entire waveform of the spectral line, exceeding the FWHM while
retaining the critical information for analysis.
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Table 1. The LIBS elements’ spectral interval and number of points.

Elements Wavelength
(nm) Interval (nm) Points Operation Points after

Operation

C 247.86 247.72–248.04 11 Zero Padding 14
Mg 280.28 280.16–280.46 11 Zero Padding 14
Mg 285.23 285.08–285.37 11 Zero Padding 14
Si 288.17 288.09–288.26 7 Zero Padding 14
Al 309.29 309.23–309.36 10 Zero Padding 14
Ca 315.89 315.79–315.98 14 Retention 14
Ca 317.93 317.83–318.08 18 Interception 14
Ca 393.34 393.12–393.51 17 Interception 14
Ca 396.79 396.65–396.94 22 Interception 14
Ca 422.64 422.49–422.75 11 Zero Padding 14
Na 588.99 588.90–589.11 14 Retention 14
Na 589.59 589.52–598.71 14 Retention 14
N 742.53 742.30–742.75 9 Zero Padding 14
N 744.35 744.07–744.79 14 Retention 14
N 746.89 746.66–747.38 14 Retention 14
K 766.55 766.23–766.92 14 Retention 14
K 769.89 769.62–770.31 14 Retention 14
O 844.64 844.38–844.96 14 Retention 14

To extract elemental information from the LIBS spectrum effectively, we introduce a
deep learning model, as illustrated in Figure 5, termed DL-LIBS. This model initiates the
extraction process by performing a convolution operation on the elemental spectral interval
to capture the waveform information inherent to each line. To simplify this operation, we
standardized the size of the convolution kernel to ensure that it encompassed the complete
waveform of each spectral line. Given that 14 data points can contain almost the entire
waveform of the vast majority of spectral lines, we set 14 as the convolution kernel size.
This selection ensured that the kernel width was sufficient to cover the spectral line’s
FWHM, thereby providing a robust basis for the convolution operation.
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To standardize the data to a consistent set of 14 points, we employed a triad of strate-
gies tailored to varying spectral profiles: (a) Zero Padding: When the spectral interval
comprised fewer than 14 data points, we increased the interval with zero values at both
sides, thereby expanding the point total to 14; (b) Retention: For intervals that naturally
aligned with the 14-point criterion, we maintained the existing data points without al-
teration; (c) Interception: When the spectral interval exceeded 14 points, we selectively
extracted a central subset of 14 points, while ensuring that this selection spanned beyond
the FWHM to preserve the most representative segment of the spectral line. The treatment
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of each spectral line interval is also shown in Table 1. These standardization strategies
allow for a uniform input into the subsequent stages of the model. After the convolution
operation, the 18 result values obtained from the 18 spectral lines were fed into the bidirec-
tional long short-term memory (Bi-LSTM) network. The network can identify the nonlinear
relationship between spectral lines, improving the accuracy of element information extrac-
tion. Next, the extracted LIBS element information was input into the fully connected layer
to achieve preliminary classification.

3.3. Molecular Information Extraction by DL-VNIR

Given the challenges in distinguishing mixed adulterated PR using elemental informa-
tion alone, this study introduces the utilization of VNIR molecular information to augment
the identification analysis. The VNIR spectra of PR with different adulteration concentra-
tions are shown in Figure 6. The VNIR spectra of PR elucidate the presence of multiple
absorption bands, with the band situated at approximately 670 nm corresponding to the
characteristic chlorophyll absorption band [31]. Additionally, the band observed near 920
nm is associated with the second overtone of the O-H stretching vibration, while the band
at 970 nm corresponds to the second overtone of another O-H stretching mode [32]. It can
be seen that the VNIR spectra with different adulteration degrees have higher similarity
and slightly different intensities.
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To extract effective molecular information from the VNIR spectra, we present the
framework for the DL-VNIR model in Figure 7. The complexity of near-infrared spectra,
characterized by significant overlap and discontinuity, poses a challenge to the direct
extraction of component-related information and the subsequent provision of spectral
analysis. Unlike discrete points, near-infrared spectra are often manifested as broad bands,
a consequence of the myriad vibrational and rotational modes through which molecules
interact with light, leading to an extensive array of absorption features. Conventional
approaches to feature selection in near-infrared spectroscopy, such as peak and trough
detection, have focused on isolated points within these spectral features, often overlooking
the information contained within the complete waveform [33,34]. Unlike these traditional
methods, our strategy involved an initial selection of the waveband data encompassing
both peaks and troughs. The selected intervals of VNIR are shown in Table 2. This selection
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process targeted five specific wavebands, each representing a significant peak or trough.
By employing this refined approach, we effectively condensed the original VNIR data
dimensionality from 1044 to 375, retaining valid information while reducing the complexity
of the dataset.
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Table 2. The selected intervals of VNIR.

Interval (nm) Points

350.00–400.02 63
639.88–690.76 67
830.92–930.41 136
940.65–960.35 27

966.90–1026.31 82

Subsequently, we computed the first derivative of the selected intervals, capitalizing
on each waveform’s unique degree of change characteristic. We could quantify the ab-
sorption variation rate across specific wavelength ranges by utilizing the spectrum slope.
This approach effectively mitigated the interference from noise and baseline fluctuations,
thereby enhancing the sensitivity of the analysis to subtle changes in sample concentration,
composition, or structural attributes [31]. Such optimization is instrumental in elevating
the precision of VNIR spectral analysis. The calculated waveform slopes were fed into a
fully connected layer. Ultimately, this facilitated the extraction of molecular information
and enabled VNIR to preliminary classify the samples.

3.4. Information Fusion

In this study, we harnessed the complementary strengths of LIBS and VNIR to per-
form an analysis of the samples. LIBS provides an in-depth elemental fingerprint, while
VNIR offers a detailed molecular profile. Integrating these two modalities is essential
for thoroughly understanding the sample characteristics. In the information fusion part,
we adopted the Add function to amalgamate LIBS and VNIR data, which is an effective
approach in dual-mode data fusion. By combining the data of LIBS and VNIR, this method
maintains the integrity and unique attributes of element and molecular information and
avoids the possibility of excessive information mixing. The flexibility of the Add function
makes it suitable for processing input data of different dimensions and effectively avoids
the loss of information [35]. After the operation of the Add function, the Add feature vector
was sent to the classification layer to obtain the final results. This final step was crucial as it
translated the integrated information into a definitive classification outcome.

3.5. Implementation Details

Both LIBS and VNIR obtained 1200 spectra. The dataset was randomly divided into
a training set, validation set, and test set according to the ratio of 7:1:2. Thus, the dataset
had 840 pairs for training, 120 for validating, and 240 for testing. The training set was
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used to train the model to establish a prediction model. The validation set was a set of
samples left separately during the model training process, which was used to evaluate the
performance of the model during the training process and to adjust the parameters and
select the model. During the training process, by evaluating the performance of the model
on the validation set, the overfitting or underfitting of the model could be found in time,
and the hyperparameters of the model could be adjusted according to the results of the
validation set. The test set was used to evaluate the final performance and generalization
ability of the model. It was a dataset used to simulate the performance of the model in real
scenes. All the results presented in this study are test set results. To avoid overfitting, we
used data enhancement technology in the training set. Specifically, by adding white noise
to the spectral data, and then combining the original spectral data with the spectrum after
adding noise, the data expansion of the training set sample was realized. In addition, in the
model design, batch normalization and a Dropout layer were added to reduce the risk of
overfitting of the model.

In this work, the macro-average evaluation criteria was used to evaluate the model
performance. The accuracy (Acc), macro-precision (Mac_P), macro-recall (Mac_R), and
macro-F measure (Mac_F) were applied as evaluation metrics [36]. Acc is the ratio of
the number of correctly classified samples to the total number of samples. Mac_P is the
arithmetic mean of the precision of each category, where the precision is the proportion of
the actual positive samples in the predicted positive samples. Mac_R is the arithmetic mean
of the recall of each category, where the recall is the proportion of the actual positive sample
and the predicted positive sample. Mac_F is the weighted harmonic average of precision
and recall, providing a single score that balances both the precision and recall of the model.
These metrics offer a comprehensive assessment of the model’s predictive capabilities
and are essential for understanding the reliability of our results. The data processing was
carried out on PyTorch 2.0 with a PC of INTEL i7 12700KF CPU (Intel Corporation, Santa
Clara, USA), 32G DDR4 RAM (Kingston Technology Corporation, Fountain Valley, USA),
and an NVIDIA RTX 3060 GPU (NVIDIA Corporation, Santa Clara, USA)). The size of
the GPU was 12 G. The epoch and the batch size were set to 500 and 32, respectively. The
learning rate was all set to 0.0005.

4. Results and Discussion
4.1. Visualization Analysis with t-SNE

To observe the clustering effect of different adulterated samples, the full spectral data
were visually analyzed with t-SNE. Figure 8 shows the visualization result of t-SNE. It can
be seen from the figure that there is a particular clustering effect for different adulterated
samples, indicating the feasibility of classification using both LIBS and VNIR data.
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4.2. Comparison with Different Baseline Models

In LVDLNet, we used DL-LIBS to extract element information and make a preliminary
classification, and DL-VNIR was used to extract molecular information and make a pre-
liminary classification. Then, the two kinds of information were fused to realize the final
classification. Table 3 shows the results of a single modality and dual modalities. The four
evaluation metrics of DL-LIBS and DL-VNIR were less than 88%, and 94%, respectively.
However, the LVDLNet model achieved good results. The Acc, Mac_F, Mac_P, and Mac_R
of the LVDLNet model were 98.75%, 98.50%, 98.78%, and 98.75%, respectively. The four
indicators of the LVDLNet model all exceeded 98%, demonstrating its ability to effectively
synthesize LIBS and VNIR data for the enhanced classification accuracy of adulterated
PR. Additionally, the confusion matrices for the baseline models are depicted in Figure 9,
which facilitates a clear comparison of the classification proficiency between the LVDLNet
model and the individual DL-LIBS and DL-VNIR models. For example, in the case of a 0%
adulteration level, seven spectral lines from the LIBS data were mistakenly identified as
corresponding to a 60% adulteration level, while three spectral lines from the VNIR data
suffered the same error. The predictive accuracy for all these lines was successfully rectified
upon implementing the fusion process. This further shows that the fusion of LIBS element
information and VNIR molecular information can improve classification accuracy.

Table 3. Comparison results of baseline models.

Models Acc Mac_F Mac_P Mac_R

DL-LIBS 0.8708 0.8710 0.8780 0.8708
DL-VNIR 0.9375 0.9373 0.9378 0.9375
LVDLNet 0.9875 0.9850 0.9878 0.9875
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4.3. Effectiveness of Interval Selection

To verify the effectiveness of the selected intervals in this work, the classification
effects of different feature inputs were compared. In the comparison, the LIBS spectral
peak and intervals were selected as the feature inputs, and the VNIR intervals and full
spectra were chosen as the feature inputs. In addition to the DL-LIBS and DL-VNIR models,
Principal Component Analysis (PCA) and Support Vector Machine (SVM) were used for
verification. PCA and SVM are commonly used in spectral analysis for feature extraction
and pattern recognition algorithms, respectively.

The results are shown in Table 4. For DL-LIBS, when the LIBS peak was used as the
input, the result was poor, and the four evaluation metrics were about 50%. However, when
the LIBS interval was used as the input, the metrics increased to over 87%. For DL-VNIR,
the VNIR full-spectra analysis showed slightly higher results than the selected intervals.
However, the difference in this result was considered negligible when considering that
the intervals with fewer features achieved a classification accuracy similar to full spectra.
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When using the PCA-SVM model, the spectral interval could also produce better results for
LIBS and VNIR data. The above results verify the effectiveness of the selected intervals for
the information extraction of LIBS and VNIR in this work. Compared to the LIBS peaks,
the LIBS intervals contain more spectral information. Compared to the VNIR full spectra,
the selected VNIR intervals essentially contain the information of the full spectrum.

Table 4. Comparison of results under different feature inputs.

Models Input Acc Mac_F Mac_P Mac_R

DL-LIBS
LIBS Peaks 0.5042 0.4909 0.4783 0.5042

LIBS
Intervals 0.8708 0.8710 0.8780 0.8708

DL-VNIR
VNIR

Intervals 0.9375 0.9373 0.9378 0.9375

VNIR Full
Spectra 0.9458 0.9452 0.9450 0.9458

PCA-SVM

LIBS Peaks 0.7875 0.7871 0.7873 0.7875
LIBS

Intervals 0.8250 0.8236 0.8233 0.8250

VNIR
Intervals 0.9000 0.9006 0.9014 0.9000

VNIR Full
Spectra 0.8958 0.8928 0.8969 0.8958

4.4. Comparison with Conventional Machine Learning

To evaluate the performance of the model, the result of the deep learning model pro-
posed in this work was compared with the results of conventional machine learning models.
The analysis encompassed four distinct conventional machine learning classifiers: Linear
Discriminant Analysis (LDA), K-Nearest Neighbors (KNN), SVM, and Extreme Learning
Machine (ELM). Similarly, PCA was first used for the feature extraction of selected LIBS
and VNIR intervals. After feature extraction, the features were input into the classification
model for classification. The classification results for the LIBS and VNIR datasets are
presented in Table 5.

Table 5. Comparison results of conventional machine learning and deep learning.

Models Acc Mac_F Mac_P Mac_R

LIBS VNIR LIBS VNIR LIBS VNIR LIBS VNIR

PCA-LDA 0.6083 0.8750 0.6016 0.8732 0.5976 0.8723 0.6083 0.8750
PCA-KNN 0.7625 0.8708 0.7626 0.8708 0.7643 0.8723 0.7625 0.8708
PCA-SVM 0.8250 0.9000 0.8236 0.9006 0.8233 0.9014 0.8250 0.9000
PCA-ELM 0.7333 0.8792 0.7342 0.8757 0.7406 0.8827 0.7333 0.8792

DL-LIBS 0.8708 - 0.8710 - 0.8780 - 0.8708 -
DL-VNIR - 0.9375 - 0.9373 - 0.9378 - 0.9378
LVDLNet 0.9875 0.9850 0.9878 0.9875

Among the four conventional machine learning models, PCA-SVM achieved the best
results for both LIBS and VNIR data. However, the deep learning model proposed in this
work attained better results. For LIBS data, DL-LIBS improved the results of PCA-SVM
from about 82% to more than 87%. For VNIR data, DL-VNIR improved the results of
PCA-SVM from about 90% to more than 93%. Moreover, by the fusion of LIBS and VNIR,
the LVDLNet model improved the indicators to more than 98%. This demonstrates the
superiority of the proposed deep learning model over conventional machine learning
technology. Deep learning models can better capture nonlinear relationships in data and
adapt to complex and variable data than conventional machine learning.
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4.5. Universal Verification

To establish the broad applicability of our model, additional verification was conducted
using adulterated samples which blended PR from Baise City in Guangxi Province with
the authentic PR from Qingyang County. The results are shown in Table 6. As shown in the
table, the results of LVDLNet were also better than the single-modality results of DL-LIBS
and DL-VNIR. The Acc, Mac_F, Mac_P, and Mac_R of the LVDLNet model were 96.25%,
96.25%, 96.30%, and 96.25%, respectively. LVDLNet raised the evaluation indexes from 87%
of DL-LIBS and 86% of DL-VNIR to over 96%. This verifies that the models proposed in
this study can effectively identify adulterated PR between different geographical origins,
proving the effectiveness and robustness of the proposed models.

Table 6. Results of universal verification.

Models Acc Mac_F Mac_P Mac_R

DL-LIBS 0.8792 0.8776 0.8777 0.8792
DL-VNIR 0.8625 0.8563 0.8607 0.8625
LVDLNet 0.9625 0.9625 0.9630 0.9625

5. Conclusions

Food adulteration identification is essential for protecting consumers’ interests, but
no universal method has been widely adopted, especially in industrial scenarios. This
study presented a novel deep learning framework, LIBS-VNIR fusion based on a deep
learning network (LVDLNet), for identifying adulterated Polygonati Rhizoma (PR). In
the LVDLNet model, an interval point standardization strategy in LIBS and a refined
peak and trough focus in VNIR data processing improved signal clarity and extraction
efficiency. By integrating LIBS elemental information with VNIR molecular information, we
enhanced the accuracy of authentication. The LVDLNet model achieved good results, with
the accuracy (Acc), macro-F measure (Mac_F), macro-precision (Mac_P), and macro-recall
(Mac_R) being 98.75%, 98.50%, 98.78%, and 98.75%, respectively. It significantly enhanced
the classification evaluation metrics, increasing them from approximately 87% for LIBS
and 93% for VNIR to over 98%. Additionally, tests on various adulterated source samples
further confirmed the efficacy of the LVDLNet model, with all four classification metrics
improved from about 87% for LIBS and 86% for VNIR to above 96%. In addition, this work
confirmed the classification effect of the proposed method from different feature inputs
and conventional machine learning models. All in all, this study presented a pioneering
deep learning framework that synergizes LIBS and VNIR to effectively detect adulterated
PR, offering a novel perspective and methodology for identifying food adulteration. Future
work can apply this deep learning framework to a wider range of samples, including more
different origins and different types of foods, which may be affected by adulteration.
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