Food from Equids—Commercial Fermented Mare’s Milk (Koumiss) Products: Protective Effects against Alcohol Intoxication
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Samples
2.2. Establishment of Mouse Alcohol Intoxication Model
2.3. Determination of the Optimal Dose of Fermented Mare’s Milk for Gavage in Mice
2.4. Mouse Drunk Sleep Test
2.5. Testing of Blood Indicators
2.6. Preparation of Paraffin Sections and H.E. Staining of Various Tissues of Mice
2.7. Detection of Antioxidant Indicators (SOD, GSH) and Inflammatory Factors (IL-1β, TNF-I, IL-6α)
2.8. Measurement of Sperm Viability and Related Motility Indexes in Mice
2.9. RNA Transcriptome Sequencing (RNA-Seq)
2.10. Differential Gene Screening
2.11. RNA Extraction and Reverse Transcription
2.12. Real-Time Quantitative PCR
2.13. Statistical Analysis of Data
3. Results
3.1. Determination of the Optimal Level of Intoxication for Liquor
3.2. Determination of the Optimal Koumiss Dose
3.3. Effect of Koumiss on Behavioral Indices in Intoxicated Mice
3.4. Effect of Koumiss on the Blood of Intoxicated Mice
3.5. Effect of Koumiss on the Liver of Intoxicated Mice
3.6. Effect of Koumiss on the Gastric Tissue of Intoxicated Mice
3.7. Effect of Koumiss on the Gastric Tissue of Intoxicated Mice
3.8. Effects of Koumiss on Testicular Morphology in Intoxicated Mice
3.9. Effects of Koumiss on Sperm Motility and Related Motility Indexes in Intoxicated Mice
3.10. Effect of Koumiss on Testicular Differential Genes in Intoxicated Mice
3.11. Differential Gene GO, KEGG Analysis
3.12. Differential Gene GSEA Analysis
3.13. Validation of Real-Time Fluorescent Quantitative PCR
4. Discussion
4.1. Protective Effects of Koumiss against Alcohol-Induced Toxicity in Mice: Focus on Blood Indices, Organ Damage, and Inflammatory Responses
4.2. Koumiss Mitigates Alcohol-Induced Toxicity in Mouse Testes by Modulating Mitochondrial and Ribosomal Functions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vena, A.A.; Zandy, S.L.; Cofresí, R.U.; Gonzales, R.A. Behavioral, neurobiological, and neurochemical mechanisms of ethanol self-administration: A translational review. Pharmacol. Ther. 2020, 212, 107573. [Google Scholar] [CrossRef] [PubMed]
- Le Daré, B.; Lagente, V.; Gicquel, T. Ethanol and its metabolites: Update on toxicity, benefits, and focus on immunomodulatory effects. Drug Metab. Rev. 2019, 51, 545–561. [Google Scholar] [CrossRef]
- Le Daré, B.; Gicquel, T. Therapeutic Applications of Ethanol: A Review. J. Pharm. Pharm. Sci. 2019, 22, 525–535. [Google Scholar] [CrossRef]
- White, A.M.; Matthews, D.B.; Best, P.J. Ethanol, memory, and hippocampal function: A review of recent findings. Hippocampus 2000, 10, 88–93. [Google Scholar] [CrossRef]
- Butts, M.; Sundaram, V.L.; Murughiyan, U.; Borthakur, A.; Singh, S. The Influence of Alcohol Consumption on Intestinal Nutrient Absorption: A Comprehensive Review. Nutrients 2023, 15, 1571. [Google Scholar] [CrossRef] [PubMed]
- Chin, V.S.; Van Skike, C.E.; Matthews, D.B. Effects of ethanol on hippocampal function during adolescence: A look at the past and thoughts on the future. Alcohol 2010, 44, 3–14. [Google Scholar] [CrossRef]
- Becker, H.C.; Diaz-Granados, J.L.; Randall, C.L. Teratogenic actions of ethanol in the mouse: A minireview. Pharmacol. Biochem. Behav. 1996, 55, 501–513. [Google Scholar] [CrossRef]
- Quertemont, E.; Tambour, S.; Tirelli, E. The role of acetaldehyde in the neurobehavioral effects of ethanol: A comprehensive review of animal studies. Prog. Neurobiol. 2005, 75, 247–274. [Google Scholar] [CrossRef]
- Trujillo, V.; Macchione, A.F.; Albrecht, P.A.; Virgolini, M.B.; Molina, J.C. Learning experiences comprising central ethanol exposure in rat neonates: Impact upon respiratory plasticity and the activity of brain catalase. Alcohol 2020, 88, 11–27. [Google Scholar] [CrossRef]
- Giannoni-Guzmán, M.A.; Giray, T.; Agosto-Rivera, J.L.; Stevison, B.K.; Freeman, B.; Ricci, P.; Brown, E.A.; Abramson, C.I. Ethanol-induced effects on sting extension response and punishment learning in the western honey bee (Apis mellifera). PLoS ONE 2014, 9, e100894. [Google Scholar] [CrossRef]
- Ganzorig, K.; Urashima, T.; Fukuda, K. Exploring Potential Bioactive Peptides in Fermented Bactrian Camel’s Milk and Mare’s Milk Made by Mongolian Nomads. Foods 2020, 9, 1817. [Google Scholar] [CrossRef] [PubMed]
- Akishev, Z.; Aktayeva, S.; Kiribayeva, A.; Abdullayeva, A.; Baltin, K.; Mussakhmetov, A.; Tursunbekova, A.; Ramankulov, Y.; Khassenov, B. Obtaining of Recombinant Camel Chymosin and Testing Its Milk-Clotting Activity on Cow’s, Goat’s, Ewes’, Camel’s and Mare’s Milk. Biology 2022, 11, 1545. [Google Scholar] [CrossRef] [PubMed]
- Teichert, J.; Cais-Sokolińska, D.; Danków, R.; Pikul, J.; Chudy, S.; Bierzuńska, P.; Kaczyński, Ł.K. Color Stability of Fermented Mare’s Milk and a Fermented Beverage from Cow’s Milk Adapted to Mare’s Milk Composition. Foods 2020, 9, 217. [Google Scholar] [CrossRef]
- Zhang, M.; Dang, N.; Ren, D.; Zhao, F.; Lv, R.; Ma, T.; Bao, Q.; Menghe, B.; Liu, W. Comparison of Bacterial Microbiota in Raw Mare’s Milk and Koumiss Using PacBio Single Molecule Real-Time Sequencing Technology. Front. Microbiol. 2020, 11, 581610. [Google Scholar] [CrossRef] [PubMed]
- Aryantini, N.P.; Yamasaki, E.; Kurazono, H.; Sujaya, I.N.; Urashima, T.; Fukuda, K. In vitro safety assessments and antimicrobial activities of Lactobacillus rhamnosus strains isolated from a fermented mare’s milk. Anim. Sci. J. 2017, 88, 517–525. [Google Scholar] [CrossRef] [PubMed]
- China Inner Mongolia Autonomous Region Health Commission Announcement No. 12. 2019. Available online: http://wjw.nmg.gov.cn/zfxxgk/fdzzgknr/wjzt/202106/t20210615_1620013.html (accessed on 20 July 2024).
- Chen, X.; Cai, F.; Guo, S.; Ding, F.; He, Y.; Wu, J.; Liu, C. Protective effect of Flos puerariae extract following acute alcohol intoxication in mice. Alcohol. Clin. Exp. Res. 2014, 38, 1839–1846. [Google Scholar] [CrossRef] [PubMed]
- Xie, L.; Huang, W.; Li, J.; Chen, G.; Xiao, Q.; Zhang, Y.; He, H.; Wang, Q.; He, J. The protective effects and mechanisms of modified Lvdou Gancao decoction on acute alcohol intoxication in mice. J. Ethnopharmacol. 2022, 282, 114593. [Google Scholar] [CrossRef] [PubMed]
- Asorey, L.G.; Carbone, S.; Gonzalez, B.J.; Cutrera, R.A. Behavioral effects of the combined use of alcohol and energy drinks on alcohol hangover in an experimental mice model. Neurosci. Lett. 2018, 670, 1–7. [Google Scholar] [CrossRef]
- Roederer, M. Parsimonious Determination of the Optimal Infectious Dose of a Pathogen for Nonhuman Primate Models. PLoS Pathog. 2015, 11, e1005100. [Google Scholar] [CrossRef]
- Gill, K.; Deitrich, R.A. Acute tolerance to the ataxic effects of ethanol in short-sleep (SS) and long-sleep (LS) mice. Psychopharmacology 1998, 136, 91–98. [Google Scholar] [CrossRef]
- Hoekstra, L.T.; de Graaf, W.; Nibourg, G.A.; Heger, M.; Bennink, R.J.; Stieger, B.; van Gulik, T.M. Physiological and biochemical basis of clinical liver function tests: A review. Ann. Surg. 2013, 257, 27–36. [Google Scholar] [CrossRef]
- Liu, Y.; Du, M.; Zhang, L.; Wang, N.; He, Q.; Cao, J.; Zhao, B.; Li, X.; Li, B.; Bou, G.; et al. Comparative Analysis of mRNA and lncRNA Expression Profiles in Testicular Tissue of Sexually Immature and Sexually Mature Mongolian Horses. Animals 2024, 14, 1717. [Google Scholar] [CrossRef]
- Liu, Y.; Du, M.; Li, X.; Zhang, L.; Zhao, B.; Wang, N.; Dugarjaviin, M. Single-Cell Transcriptome Sequencing Reveals Molecular Expression Differences and Marker Genes in Testes during the Sexual Maturation of Mongolian Horses. Animals 2024, 14, 1258. [Google Scholar] [CrossRef] [PubMed]
- Wen, F.; Tan, Z.G.; Xiang, J. Cu-Zn SOD suppresses epilepsy in pilocarpine-treated rats and alters SCN2A/Nrf2/HO-1 expression. Epileptic Disord. 2022, 24, 647–656. [Google Scholar] [CrossRef] [PubMed]
- Georgiou-Siafis, S.K.; Tsiftsoglou, A.S. The Key Role of GSH in Keeping the Redox Balance in Mammalian Cells: Mechanisms and Significance of GSH in Detoxification via Formation of Conjugates. Antioxidants 2023, 12, 1953. [Google Scholar] [CrossRef]
- Siersbæk, R.; Scabia, V.; Nagarajan, S.; Chernukhin, I.; Papachristou, E.K.; Broome, R.; Johnston, S.J.; Joosten, S.E.P.; Green, A.R.; Kumar, S.; et al. IL6/STAT3 Signaling Hijacks Estrogen Receptor α Enhancers to Drive Breast Cancer Metastasis. Cancer Cell 2020, 38, 412–423.e9. [Google Scholar] [CrossRef]
- Zuchowicz, N.; Daly, J.; Bouwmeester, J.; Lager, C.; Henley, E.M.; Nuñez Lendo, C.I.; Hagedorn, M. Assessing coral sperm motility. Sci. Rep. 2021, 11, 61. [Google Scholar] [CrossRef]
- Zhao, L.; Zhang, X.; Qiu, Z.; Huang, Y. De Novo Assembly and Characterization of the Xenocatantops brachycerus Transcriptome. Int. J. Mol. Sci. 2018, 19, 520. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, S.; Mukherjee, A.; Jasrotia, R.S.; Jaiswal, S.; Iquebal, M.A.; Longkumer, I.; Mech, M.; Vüpru, K.; Khate, K.; Rajkhowa, C.; et al. Muscle transcriptome signature and gene regulatory network analysis in two divergent lines of a hilly bovine species Mithun (Bos frontalis). Genomics 2020, 112, 252–262. [Google Scholar] [CrossRef]
- Herman, A.B.; Tsitsipatis, D.; Gorospe, M. Integrated lncRNA function upon genomic and epigenomic regulation. Mol. Cell 2022, 82, 2252–2266. [Google Scholar] [CrossRef]
- Huang, Y. The novel regulatory role of lncRNA-miRNA-mRNA axis in cardiovascular diseases. J. Cell. Mol. Med. 2018, 22, 5768–5775. [Google Scholar] [CrossRef] [PubMed]
- Altman, M.C.; Segnitz, R.M.; Larson, D.; Jayavelu, N.D.; Smith, M.T.; Patel, S.; Scadding, G.W.; Qin, T.; Sanda, S.; Steveling, E.; et al. Nasal and blood transcriptomic pathways underpinning the clinical response to grass pollen immunotherapy. J. Allergy Clin. Immunol. 2023, 152, 1247–1260. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; He, X.; Zhao, Y.; Bai, D.; Li, D.; Zhou, Z.; Manglai, D. Analysis of the miRNA transcriptome during testicular development and spermatogenesis of the Mongolian horse. Reprod. Fertil. Dev. 2020, 32, 582–593. [Google Scholar] [CrossRef]
- Bao, T.; Han, H.; Li, B.; Zhao, Y.; Bou, G.; Zhang, X.; Du, M.; Zhao, R.; Mongke, T.; Ding, W.; et al. The distinct transcriptomes of fast-twitch and slow-twitch muscles in Mongolian horses. Comp. Biochem. Physiol. Part. D Genom. Proteom. 2020, 33, 100649. [Google Scholar] [CrossRef]
- Wang, X.; Bou, G.; Zhang, X.; Tao, L.; Shen, Y.; Na, R.; Liu, G.; Ren, H.; Ren, X.; Song, L.; et al. A Fast PCR Test for the Simultaneous Identification of Species and Gender in Horses, Donkeys, Mules and Hinnies. J. Equine Vet. Sci. 2021, 102, 103458. [Google Scholar] [CrossRef]
- Han, H.; McGivney, B.A.; Allen, L.; Bai, D.; Corduff, L.R.; Davaakhuu, G.; Davaasambuu, J.; Dorjgotov, D.; Hall, T.J.; Hemmings, A.J.; et al. Common protein-coding variants influence the racing phenotype in galloping racehorse breeds. Commun. Biol. 2022, 5, 1320. [Google Scholar] [CrossRef]
- Ren, X.; Liu, Y.; Zhao, Y.; Li, B.; Bai, D.; Bou, G.; Zhang, X.; Du, M.; Wang, X.; Bou, T.; et al. Analysis of the Whole-Genome Sequences from an Equus Parent-Offspring Trio Provides Insight into the Genomic Incompatibilities in the Hybrid Mule. Genes 2022, 13, 2188. [Google Scholar] [CrossRef] [PubMed]
- Sengottuvelan, A.; Balasubramanian, P.; Will, J.; Boccaccini, A.R. Bioactivation of titanium dioxide scaffolds by ALP-functionalization. Bioact. Mater. 2017, 2, 108–115. [Google Scholar] [CrossRef]
- Rosoff, D.B.; Bell, A.S.; Wagner, J.; Mavromatis, L.A.; Hamandi, A.; Park, L.; Jung, J.; Lohoff, F.W. Assessing the Impact of PCSK9 and HMGCR Inhibition on Liver Function: Drug-Target Mendelian Randomization Analyses in Four Ancestries. Cell. Mol. Gastroenterol. Hepatol. 2024, 17, 29–40. [Google Scholar] [CrossRef] [PubMed]
- Tang, P.; Liao, Q.; Tang, Y.; Yao, X.; Du, C.; Wang, Y.; Song, F.; Deng, S.; Wang, Y.; Qiu, X.; et al. Independent and combined associations of urinary metals exposure with markers of liver injury: Results from the NHANES 2013–2016. Chemosphere 2023, 338, 139455. [Google Scholar] [CrossRef]
- Aggarwal, B.B.; Gupta, S.C.; Kim, J.H. Historical perspectives on tumor necrosis factor and its superfamily: 25 years later, a golden journey. Blood 2012, 119, 651–665. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Zhang, Y.Y.; Pan, Y.Q.; Zheng, X.J.; Liao, K.; Mo, H.Y.; Sheng, H.; Wu, Q.N.; Liu, Z.X.; Zeng, Z.L.; et al. IL-1β-associated NNT acetylation orchestrates iron-sulfur cluster maintenance and cancer immunotherapy resistance. Mol. Cell 2023, 83, 1887–1902.e8. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, T.; Narazaki, M.; Kishimoto, T. IL-6 in inflammation, immunity, and disease. Cold Spring Harb. Perspect. Biol. 2014, 6, a016295. [Google Scholar] [CrossRef] [PubMed]
- Casswell, S. Alcohol harm—The urgent need for a global response. Addiction 2011, 106, 1205–1207. [Google Scholar] [CrossRef] [PubMed]
- Iranpour, A.; Nakhaee, N. A Review of Alcohol-Related Harms: A Recent Update. Addict. Health 2019, 11, 129–137. [Google Scholar] [PubMed]
- Bloomfield, K. Understanding the alcohol-harm paradox: What next? Lancet Public Health 2020, 5, e300–e301. [Google Scholar] [CrossRef] [PubMed]
- Loche, A.; Simonetti, F.; Lobina, C.; Carai, M.A.; Colombo, G.; Castelli, M.P.; Barone, D.; Cacciaglia, R. Anti-Alcohol and Anxiolytic Properties of a New Chemical Entity, GET73. Front. Psychiatry 2012, 3, 20838. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Gallego, C.; Gueimonde, M.; Salminen, S. The role of yogurt in food-based dietary guidelines. Nutr. Rev. 2018, 76, 29–39. [Google Scholar] [CrossRef] [PubMed]
- Jiang, R.; Lönnerdal, B. Biological roles of milk osteopontin. Curr. Opin. Clin. Nutr. Metab. Care. 2016, 19, 214–219. [Google Scholar] [CrossRef]
- Greig, J.E.; Keast, D.; Palmer, T.N. Osmotic effects of ethanol on lymphocytes. Addict. Biol. 2000, 5, 77–89. [Google Scholar] [CrossRef]
- Zhao, J.L. The Effect of Yogurt on Immune Regulation in Wistar Rats. Master’s Thesis, Inner Mongolia Agricultural University, Hohhot, China, 2017. [Google Scholar]
- Domon, H.; Terao, Y. The Role of Neutrophils and Neutrophil Elastase in Pneumococcal Pneumonia. Front. Cell. Infect. Microbiol. 2021, 11, 615959. [Google Scholar] [CrossRef] [PubMed]
- Handtke, S.; Steil, L.; Palankar, R.; Conrad, J.; Cauhan, S.; Kraus, L.; Ferrara, M.; Dhople, V.; Wesche, J.; Völker, U.; et al. Role of Platelet Size Revisited-Function and Protein Composition of Large and Small Platelets. Thromb. Haemost. 2019, 119, 407–420. [Google Scholar] [CrossRef] [PubMed]
- Landmann, M.; Wagnerberger, S.; Kanuri, G.; Ziegenhardt, D.; Bergheim, I. Beer Is Less Harmful for the Liver than Plain Ethanol: Studies in Male Mice Using a Binge-Drinking Model. Alcohol Alcohol. 2015, 50, 493–500. [Google Scholar] [CrossRef]
- Lorenzi, R.; Andrades, M.E.; Bortolin, R.C.; Nagai, R.; Dal-Pizzol, F.; Moreira, J.C. Oxidative damage in the liver of rats treated with glycolaldehyde. Int. J. Toxicol. 2011, 30, 253–258. [Google Scholar] [CrossRef] [PubMed]
- Doycheva, I.; Watt, K.D.; Rifai, G.; Abou Mrad, R.; Lopez, R.; Zein, N.N.; Carey, W.D.; Alkhouri, N. Increasing Burden of Chronic Liver Disease among Adolescents and Young Adults in the USA: A Silent Epidemic. Dig. Dis. Sci. 2017, 62, 1373–1380. [Google Scholar] [CrossRef] [PubMed]
- Sharma, U.; Pal, D.; Prasad, R. Alkaline phosphatase: An overview. Indian J. Clin. Biochem. 2014, 29, 269–278. [Google Scholar] [CrossRef] [PubMed]
- Jean, G.; Souberbielle, J.C.; Zaoui, E.; Lorriaux, C.; Mayor, B.; Hurot, J.M.; Deleaval, P.; Chazot, C. Total and bone-specific alkaline phosphatases in haemodialysis patients with chronic liver disease. Clin. Biochem. 2012, 45, 436–439. [Google Scholar] [CrossRef] [PubMed]
- von Felden, J.; Wege, H.; Schulze, K. Elevated Aspartate Aminotransferase to Alanine Aminotransferase Ratio Predicts Poor Outcome in Hepatocellular Carcinoma. Hepatol. Commun. 2020, 4, 1382–1383. [Google Scholar] [CrossRef] [PubMed]
- Crawford, J.M. Histologic findings in alcoholic liver disease. Clin. Liver Dis. 2012, 16, 699–716. [Google Scholar] [CrossRef] [PubMed]
- Albano, E.; Clot, P.; Morimoto, M.; Tomasi, A.; Ingelman-Sundberg, M.; French, S.W. Role of cytochrome P4502E1-dependent formation of hydroxyethyl free radical in the development of liver damage in rats intragastrically fed with ethanol. Hepatology 1996, 23, 155–163. [Google Scholar] [CrossRef]
- Massey, V.L.; Arteel, G.E. Acute alcohol-induced liver injury. Front. Physiol. 2012, 3, 193. [Google Scholar] [CrossRef] [PubMed]
- Koop, D.R.; Morgan, E.T.; Tarr, G.E.; Coon, M.J. Purification and characterization of a unique isozyme of cytochrome P-450 from liver microsomes of ethanol-treated rabbits. J. Biol. Chem. 1982, 257, 8472–8480. [Google Scholar] [CrossRef]
- Borgstahl, G.E.O.; Oberley-Deegan, R.E. Superoxide Dismutases (SODs) and SOD Mimetics. Antioxidants 2018, 7, 156. [Google Scholar] [CrossRef] [PubMed]
- Sykiotis, G.P. Keap1/Nrf2 Signaling Pathway. Antioxidants 2021, 10, 828. [Google Scholar] [CrossRef] [PubMed]
- Vanella, G.; Archibugi, L.; Stigliano, S.; Capurso, G. Alcohol and gastrointestinal cancers. Curr. Opin. Gastroenterol. 2019, 35, 107–113. [Google Scholar] [CrossRef]
- Kim, J.H.; Park, S.H.; Nam, S.W.; Choi, Y.H. Gastroprotective effect of selenium on ethanol-induced gastric damage in rats. Int. J. Mol. Sci. 2012, 13, 5740–5750. [Google Scholar] [CrossRef]
- Park, J.H.; Jung, I.K.; Lee, Y.; Jin, S.; Yun, H.J.; Kim, B.W.; Kwon, H.J. Alcohol stimulates the proliferation of mouse small intestinal epithelial cells via Wnt signaling. Biochem. Biophys. Res. Commun. 2021, 534, 639–645. [Google Scholar] [CrossRef]
- Shirpoor, A.; Barmaki, H.; Khadem Ansari, M.; Lkhanizadeh, B.; Barmaki, H. Protective effect of vitamin E against ethanol-induced small intestine damage in rats. Biomed. Pharmacother. 2016, 78, 150–155. [Google Scholar] [CrossRef]
- Hamdeh, S.; Micic, D.; Hanauer, S. Review article: Drug-induced small bowel injury. Aliment. Pharmacol. Ther. 2021, 54, 1370–1388. [Google Scholar] [CrossRef]
- Lippai, D.; Bala, S.; Catalano, D.; Kodys, K.; Szabo, G. Micro-RNA-155 deficiency prevents alcohol-induced serum endotoxin increase and small bowel inflammation in mice. Alcohol. Clin. Exp. Res. 2014, 38, 2217–2224. [Google Scholar] [CrossRef]
- Broderick, L.; De Nardo, D.; Franklin, B.S.; Hoffman, H.M.; Latz, E. The inflammasomes and autoinflammatory syndromes. Annu. Rev. Pathol. 2015, 10, 395–424. [Google Scholar] [CrossRef] [PubMed]
- Wiens, G.D.; Glenney, G.W. Origin and evolution of TNF and TNF receptor superfamilies. Dev. Comp. Immunol. 2011, 35, 1324–1335. [Google Scholar] [CrossRef] [PubMed]
- Weber, A.; Wasiliew, P.; Kracht, M. Interleukin-1 (IL-1) pathway. Sci. Signal. 2010, 3, cm1. [Google Scholar] [CrossRef] [PubMed]
- Covarrubias, A.J.; Horng, T. IL-6 strikes a balance in metabolic inflammation. Cell Metab. 2014, 19, 898–899. [Google Scholar] [CrossRef] [PubMed]
- Fuchs, F.; Damm, J.; Gerstberger, R.; Roth, J.; Rummel, C. Activation of the inflammatory transcription factor nuclear factor interleukin-6 during inflammatory and psychological stress in the brain. J. Neuroinflamm. 2013, 10, 905. [Google Scholar] [CrossRef] [PubMed]
- Gobello, C. Key aspects of domestic cat spermatogenesis. Reprod. Domest. Anim. 2022, 57, 459–464. [Google Scholar] [CrossRef] [PubMed]
- Dura, M.; Teissandier, A.; Armand, M.; Barau, J.; Lapoujade, C.; Fouchet, P.; Bonneville, L.; Schulz, M.; Weber, M.; Baudrin, L.G.; et al. DNMT3A-dependent DNA methylation is required for spermatogonial stem cells to commit to spermatogenesis. Nat. Genet. 2022, 54, 469–480. [Google Scholar] [CrossRef] [PubMed]
- Gui, J. Animal reproduction and physiology: From basis to application. Sci. China Life Sci. 2010, 53, 399–400. [Google Scholar] [CrossRef] [PubMed]
- Ayodele Oremosu, A.; Nnamso Akang, E.; Chukwumuanya Adigwe, C.; Essien Okoko, I.; Okpara Azu, O. Post-treatment with Telfairia occidentalis seed oil attenuates alcohol-induced testicular damage in Sprague-Dawley rats. Iran. J. Reprod. Med. 2013, 11, 637–646. [Google Scholar]
- Siervo, G.E.; Vieira, H.R.; Ogo, F.M.; Fernandez, C.D.; Gonçalves, G.D.; Mesquita, S.F.; Anselmo-Franci, J.A.; Cecchini, R.; Guarnier, F.A.; Fernandes, G.S. Spermatic and testicular damages in rats exposed to ethanol: Influence of lipid peroxidation but not testosterone. Toxicology 2015, 330, 1–8. [Google Scholar] [CrossRef]
- Wang, G.; Li, Y.; Yang, Q.; Xu, S.; Ma, S.; Yan, R.; Zhang, R.; Jia, G.; Ai, D.; Yang, Q. Gene expression dynamics during the gonocyte to spermatogonia transition and spermatogenesis in the domestic yak. J. Anim. Sci. Biotechnol. 2019, 10, 64. [Google Scholar] [CrossRef] [PubMed]
- Bo, D.; Jiang, X.; Liu, G.; Hu, R.; Chong, Y. RNA-Seq Implies Divergent Regulation Patterns of LincRNA on Spermatogenesis and Testis Growth in Goats. Animals 2021, 11, 625. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Xia, S.; Xiao, W.; Song, Y.; Tang, L.; Cao, M.; Yang, J.; Wang, S.; Li, Z.; Xu, C.; et al. A single-cell transcriptomic landscape of mouse testicular aging. J. Adv. Res. 2023, 53, 219–234. [Google Scholar] [CrossRef] [PubMed]
- Taruno, A. ATP Release Channels. Int. J. Mol. Sci. 2018, 19, 808. [Google Scholar] [CrossRef] [PubMed]
- Nakano, M.; Imamura, H.; Sasaoka, N.; Yamamoto, M.; Uemura, N.; Shudo, T.; Fuchigami, T.; Takahashi, R.; Kakizuka, A. ATP Maintenance via Two Types of ATP Regulators Mitigates Pathological Phenotypes in Mouse Models of Parkinson’s Disease. EBioMedicine 2017, 22, 225–241. [Google Scholar] [CrossRef]
- Toth, A.; Meyrat, A.; Stoldt, S.; Santiago, R.; Wenzel, D.; Jakobs, S.; von Ballmoos, C.; Ott, M. Kinetic coupling of the respiratory chain with ATP synthase, but not proton gradients, drives ATP production in cristae membranes. Proc. Natl. Acad. Sci. USA 2020, 117, 2412–2421. [Google Scholar] [CrossRef] [PubMed]
- Fukuda, T.; Furukawa, K.; Maruyama, T.; Yamashita, S.I.; Noshiro, D.; Song, C.; Ogasawara, Y.; Okuyama, K.; Alam, J.M.; Hayatsu, M.; et al. The mitochondrial intermembrane space protein mitofissin drives mitochondrial fission required for mitophagy. Mol. Cell 2023, 83, 2045–2058.e9. [Google Scholar] [CrossRef] [PubMed]
- Hirata, S.; Hoshi, K.; Shoda, T.; Mabuchi, T. Spermatozoon and mitochondrial DNA. Reprod. Med. Biol. 2002, 1, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Amaral, A.; Lourenço, B.; Marques, M.; Ramalho-Santos, J. Mitochondria functionality and sperm quality. Reproduction 2013, 146, R163–R174. [Google Scholar] [CrossRef]
- Mizrahi, R.; Breitbart, H. Mitochondrial PKA mediates sperm motility. Biochim. Biophys. Acta. 2014, 1840, 3404–3412. [Google Scholar] [CrossRef]
- Barbagallo, F.; La Vignera, S.; Cannarella, R.; Aversa, A.; Calogero, A.E.; Condorelli, R.A. Evaluation of Sperm Mitochondrial Function: A Key Organelle for Sperm Motility. J. Clin. Med. 2020, 9, 363. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Liao, W.J.; Liao, J.M.; Liao, P.; Lu, H. Ribosomal proteins: Functions beyond the ribosome. J. Mol. Cell Biol. 2015, 7, 92–104. [Google Scholar] [CrossRef] [PubMed]
- Amunts, A.; Brown, A.; Toots, J.; Scheres, S.H.W.; Ramakrishnan, V. Ribosome. The structure of the human mitochondrial ribosome. Science 2015, 348, 95–98. [Google Scholar] [CrossRef] [PubMed]
- Aravindan, R.G.; Kirn-Safran, C.B.; Smith, M.A.; Martin-DeLeon, P.A. Ultrastructural changes and asthenozoospermia in murine spermatozoa lacking the ribosomal protein L29/HIP gene. Asian. J. Androl. 2014, 16, 925–926. [Google Scholar]
- Li, H.; Huo, Y.; He, X.; Yao, L.; Zhang, H.; Cui, Y.; Xiao, H.; Xie, W.; Zhang, D.; Wang, Y.; et al. A male germ-cell-specific ribosome controls male fertility. Nature 2022, 612, 725–731. [Google Scholar] [CrossRef]
Number | Number of Mice/n | The Amount of Gavage (mL/10 g) | Ebriety Rate/% | Mortality/% |
---|---|---|---|---|
1 | 10 | 0.10 | 60 | 0 |
2 | 10 | 0.15 | 80 | 0 |
3 | 10 | 0.20 | 100 | 40 |
4 | 10 | 0.25 | 100 | 100 |
5 | 10 | 0.30 | 100 | 100 |
Number | Number of Mice/n | The Amount of Gavage (mL/10 g) | Ebriety Rate/% | Mortality/% |
---|---|---|---|---|
1 | 10 | 0.16 | 100 | 0 |
2 | 10 | 0.17 | 100 | 20 |
3 | 10 | 0.18 | 100 | 30 |
4 | 10 | 0.19 | 100 | 30 |
Group | Number of Mice/n | Dosage of Koumiss (mL/10 g) | Mortality/% |
---|---|---|---|
B | 10 | 0.00 | 10 |
L | 10 | 0.00 | 40 |
LL | 10 | 0.05 | 30 |
ML | 10 | 0.10 | 10 |
HL | 10 | 0.15 | 30 |
Group | Numbers/n | Drunk Time/h | Sober-Up Time/h | Mortality/% |
---|---|---|---|---|
B | 10 | — | — | 10 |
L | 10 | 0.31 c ± 0.03 | 6.83 a ± 0.25 | 60 |
LS | 10 | 0.29 c ± 0.06 | 6.73 a ± 0.27 | 40 |
LK | 10 | 0.40 b ± 0.04 | 6.01 b ± 0.20 | 30 |
KL | 10 | 0.51 a ± 0.05 | 5.79 b ± 0.38 | 20 |
Index | Group | ||||
---|---|---|---|---|---|
B (n = 3) | KL (n = 3) | L (n = 3) | LK (n = 3) | LS (n = 3) | |
Sperm motility/% | 73.93 ± 1.86 Aa | 58.75 ± 8.71 ABb | 20.74 ± 7.93 Dd | 41.52 ± 7.98 BCc | 36.55 ± 6.59 CDc |
Linear motion/% | 64.78 ± 5.69 Aa | 51.88 ± 9.14 ABa | 16.43 ± 7.17 Cc | 34.48 ± 8.24 BCb | 31.65 ± 8.53 BCb |
Fast motion/% | 10.03 ± 1.59 Aa | 5.56 ± 1.69 Bb | 2.08 ± 1.16 Cc | 3.74 ± 0.45 BCbc | 3.49 ± 0.53 BCbc |
Slow motion/% | 12.70 ± 7.99 Aab | 18.53 ± 5.50 Aa | 4.45 ± 0.75 Ab | 8.34 ± 4.13 Aab | 12.04 ± 12.24 Aab |
Ring motion/% | 42.04 ± 4.69 Aa | 27.80 ± 5.40 Bb | 9.89 ± 6.43 Cd | 22.39 ± 4.41 BCbc | 16.11 ± 4.71 BCcd |
In-place motion/% | 9.15 ± 4.58 Aa | 6.87 ± 0.89 Aa | 4.31 ± 0.79 Aa | 7.04 ± 1.43 Aa | 8.24 ± 6.94 Aa |
Rest/% | 26.07 ± 1.86 Dd | 41.25 ± 8.71 CDc | 79.26 ± 7.93 Aa | 58.48 ± 7.98 BCb | 63.45 ± 6.58 ABb |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, M.; Liu, Y.; Cao, J.; Li, X.; Wang, N.; He, Q.; Zhang, L.; Zhao, B.; Dugarjaviin, M. Food from Equids—Commercial Fermented Mare’s Milk (Koumiss) Products: Protective Effects against Alcohol Intoxication. Foods 2024, 13, 2344. https://doi.org/10.3390/foods13152344
Du M, Liu Y, Cao J, Li X, Wang N, He Q, Zhang L, Zhao B, Dugarjaviin M. Food from Equids—Commercial Fermented Mare’s Milk (Koumiss) Products: Protective Effects against Alcohol Intoxication. Foods. 2024; 13(15):2344. https://doi.org/10.3390/foods13152344
Chicago/Turabian StyleDu, Ming, Yuanyi Liu, Jialong Cao, Xinyu Li, Na Wang, Qianqian He, Lei Zhang, Bilig Zhao, and Manglai Dugarjaviin. 2024. "Food from Equids—Commercial Fermented Mare’s Milk (Koumiss) Products: Protective Effects against Alcohol Intoxication" Foods 13, no. 15: 2344. https://doi.org/10.3390/foods13152344
APA StyleDu, M., Liu, Y., Cao, J., Li, X., Wang, N., He, Q., Zhang, L., Zhao, B., & Dugarjaviin, M. (2024). Food from Equids—Commercial Fermented Mare’s Milk (Koumiss) Products: Protective Effects against Alcohol Intoxication. Foods, 13(15), 2344. https://doi.org/10.3390/foods13152344