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Abstract: With growing awareness of the environmental, economic, and social costs associated with
food waste, there is a concerted effort on multiple scales to recover the nutrient value of discarded food.
These developments are positive, but the rapid movement toward alternatives and the complexity of
solving problems located at the intersection of economic, social, and environmental systems also have
the potential to produce unanticipated risks. This paper draws upon long-term stakeholder-engaged
research throughout New England, with a focus on Maine, to develop a transdisciplinary, systems-
based model of the potential social, economic, and environmental risks of food waste nutrient cycling.
Our effort is intended to help inform the creation of safe, functional, and environmentally benign
circular food systems.

Keywords: food waste; nutrient cycling; compost; digestion; risk; trust; safety; transdisciplinary;
systems thinking

1. Introduction

In recent years, there has been a surge of interest in food loss and waste in the United
States, with particular attention to its economic, environmental, and social costs. (According
to the UN’s World Food Program, “food loss” refers to foods that are damaged or destroyed
in the supply chain prior to distribution to the consumer. “Food waste” refers to foods
that are discarded by retailers, food service providers, and consumers. In our conceptual
model, we are concerned with all sources of food that make their way into nutrient cycling
processes, including both food loss and waste. We utilize food waste to refer to both. Most
estimates suggest that each year approximately 30% to 40% of all the food produced for
human consumption in the US is lost or wasted [1–3]. Annual food wastage rates in the US
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exceed those in most other countries, including countries at a similar stage of economic
development [4]. Agriculture in the US is governed by a problematic paradox: “agricultural
productivity and competition through trade keeps prices low, making waste economically
rational for many consumers” [5]. However, this comes at great economic cost, nationally.
Americans spend USD 218 billion each year to plant, grow, process, transport, and then
dispose of food that is never eaten [2].

Not only are wasted nutrients no longer available for human consumption, but the
resources embodied in that food (money, fuel, water, and human labor) are also lost and
result in significant environmental costs. Researchers have estimated that the amount of
energy associated with these losses is equivalent to the “annual petroleum available from
drilling the outer continental shelf” [6]. Further, organic materials decompose anaerobically
in landfills, producing methane, which constitutes 16.4% of all U.S. methane emissions [7],
and creating leachate that can contaminate groundwater [8].

Finally, there are significant social costs associated with food waste. We produce an
abundance of food in the United States, more than 50 million tons each year, yet 11% of
the population is food-insecure, including more than 6 million children [9]. Scientists have
estimated that 25 million Americans could be fed each year by recovering and redistributing
just 15% of food losses annually [10]. Under current agroeconomic conditions, the problem
of food security is exacerbated as significant proportions of nutrients are lost through food
waste. With a rapidly growing global population, sustainable agriculture depends on food
waste reduction and nutrient recovery [11]. Landfilled food may also increase the expo-
sure of nearby communities to noxious odors, waste traffic particulates, or groundwater
contamination. These burdens disproportionately affect minority communities [12].

The states of New England have set some of the most ambitious goals for reducing
food waste in the US [13], in the interest of moving toward more circular food systems that
eliminate waste and are regenerative by design [14]. States in the region have undertaken
environmental education efforts, implemented food waste recycling laws, established food
waste reduction targets, and made significant investments in food redistribution programs,
composting, and digestion technologies [15–20].

In this paper, we draw upon a decade of community-engaged research with a diverse
network of stakeholders (e.g., food waste producers, waste haulers, landfill operators,
composters, digesters, hunger relief organizations, environmental groups, regulators)
throughout New England to focus specifically on efforts to cycle food waste nutrients back
into agricultural soils. Since beginning our work in 2014, we have learned that sometimes
solutions with the best intentions can present new risks. This research was therefore driven
by a primary research question: what are the social, economic, and environmental risks
associated with expanding food waste nutrient cycling in New England?

Our findings make it clear that systems-based and transdisciplinary approaches (that
include the expertise of the people working in the system) are necessary to ensure that risks
are not simply displaced from one part of the system to another or from one group of actors
to another. Clean, nutrient-rich soils, free of contaminants and toxins, are essential for safe
agricultural production and public health. Access to safe and clean soil becomes a matter
of justice [21,22]. It is imperative that any food waste-derived agricultural supplements are
carefully managed to ensure safety, trust, and fair availability.

This paper makes two primary contributions toward this goal. First, our systems-based
approach synthesizes stakeholder perspectives and the existing interdisciplinary academic
research to identify potential risks associated with transitions toward stronger food waste
nutrient cycling systems. While there is a significant amount of scientific research on the
environmental and ecological implications of food waste nutrient cycling, there is very little
research that incorporates the social sciences to gather stakeholder perspectives and even
fewer that also incorporate consideration of the social and economic dimensions of nutrient
cycling. Stakeholders in various positions frequently have contrasting perspectives and
levels of concern about potential risks, complicating decision-making and necessitating
tradeoffs between social, economic, and environmental priorities. It is important to consider
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the perspectives of these experts who are likely to determine the ultimate success of efforts
to expand food waste nutrient cycling. Levels of risk also depend heavily on a whole array
of mediating factors. In order to address the subjective forms of risk experienced by people
throughout the food system, our systems-based approach examines the structure as well
as the interactions, flows, and feedback between—and amongst—the various stages (and
people) in food waste nutrient cycling operations in New England [23]. As Kibler and
colleagues argued in their review of food waste management alternatives, “Characterizing
the complex problem of postdisposal. . .impacts of wasted food, including descriptions of
dynamic feedback behaviors, presents a significant research gap and a priority for future
research” [24]. Our second contribution is, then, to conceptually model the potential risks
associated with food waste nutrient recycling systems specifically in Maine where the
landfilling and incineration of food waste is currently allowed but legislation has been
proposed to require food waste nutrient cycling. We examine risks produced through and at
the intersections of (1) the food waste generation source; (2) sorting; (3) collection methods;
and (4) processing technologies. We argue that this systems-based and stakeholder-engaged
approach is important to collaboratively anticipate, prevent, and plan for a full range
of potential risks. These risks must be identified and mitigated to ensure that rapidly
developing circular food systems are safe, fair, and sustainable.

2. Background, Materials, and Methods
2.1. Food Waste Nutrient Recycling and Policy Momentum in New England

The Environmental Protection Agency’s (EPA) Wasted Food Scale [25] provides an
organizing structure meant to guide food loss and waste reduction efforts. It is designed
to maximize positive social, economic, and environmental outcomes (Figure 1). The scale
prioritizes food waste source reduction, followed by recovery for human consumption
(donate or upcycle), recovery for animal consumption (feed animals or leave unharvested),
and recycling (compost or anaerobic digestion) before landfilling or incineration.
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In this paper, we focus on two segments of that scale—food waste nutrient cycling pro-
cesses, including digestion and composting. Both of these processes produce agricultural
supplements. Our focus on nutrient recycling is motivated by recent policy momentum
generated by state and local governments. While the Wasted Food Scale clearly encourages
source reduction and redistribution ahead of food waste recycling, strategies further to
the right side of the scale (Figure 1) are prioritized in practice [26]. Policies to promote
food waste reduction and recovery through composting and anaerobic digestion have been
considered at the national level [27], but policy uptake and implementation is moving
particularly quickly at municipal and state levels. Cities across the United States have
implemented food waste recycling policies, largely focused on curbside food scrap col-
lection and drop-off programs [28]. In the United States, the number of households with
access to organics collection via curbside pickup, drop-off locations, or both grew from
2.7 million in 2013–2014 to 14.9 million in 2023 [29]. Developments at the state level have
rapidly shifted materials management systems by expanding infrastructural capacity for
nutrient cycling [30]. Since 2011, several New England states—Massachusetts, Vermont,
Connecticut, Rhode Island, and New Hampshire—have enacted policies to ban food waste
from landfills [31].

The investment of resources toward food waste recycling, rather than redistribution, is
related to a number of factors including the maturity of these technologies [32], the logistical
complications stemming from the perishable nature of food [33], potential business donors’
fear of liability [34], and the propensity to favor more convenient and less costly options [35].
These barriers clearly need to be addressed to support the preferred solutions on the
EPA Wasted Food Scale. Composting and anaerobic digestion, while not as beneficial
as waste reduction or food recovery efforts, extract residual nutrient value from food
while seeming to skirt difficult questions related to safety, making them attractive for
risk-averse institutions looking for more immediate, inexpensive, and convenient means to
divert waste.

The rapid expansion of food waste recycling capacity is frequently advanced without
much attention to the potential risks, well documented in the existing literature [36]. For
example, biological contaminants can present a threat to human and animal wellbeing [37].
While the USDA and US Compost Council have developed comprehensive voluntary test-
ing protocols for toxic components such as heavy metals and pathogens [38], most states
do not require extensive testing for composters or digesters, many of which make their
products available for agricultural applications. Moreover, testing for the many different
contaminants that can pose potential risks is highly cost-prohibitive. Further, the costs
of recycling processes and materials relative to virgin nutrients can create market-based
risk [39,40]; and the redistribution of nutrients can affect soil quality and biodiversity
through land degradation, erosion, and acidification [11]. It is also possible that techno-
centric solutions can be counterproductive, actually increasing demand for “water, energy,
and inputs” [41].

The bulk of studies addressing nutrient recycling risks utilize a technological and
material approach [42–44] that neglects the numerous social agents within food production
systems—from farmers, consumers, and corporations to state agents [39]. But processes
of production, packaging, and consumption that constitute food systems are entangled
in a complex network of ecological, economic, and social actors [41,44] that must also
be considered.

The material transformation of food waste into valuable nutrients via processes of
digestion and composting requires parallel conceptual transformations [45]. New Eng-
land’s food waste recycling system consists of both a material food waste hierarchy and
social value regimes [46], necessitating an integrated analytical approach. This paper’s
transdisciplinary framework thus synthesizes stakeholder perspectives and practices with
a systems-based structural focus to conceptualize nutrient recovery risks as an assemblage
of economic, environmental, and social processes [44,45].
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These various risks merit attention, not to forestall innovation or progress for food
waste nutrient cycling, but rather to proceed carefully and with intention. Food waste has
been described as a “wicked problem” given complex connections to overlapping economic,
social, and environmental systems and because solutions that address one aspect of the
problem can have unintended consequences in another [47]. Further, various actors within
systems often develop competing solutions, based on the prioritization of contrasting social,
economic, or environmental goals [26,48].

2.2. Materials and Methods

Research focused on socio-ecological systems makes it abundantly clear that the
management of isolated aspects of fundamentally interconnected systems can result in
unintended systemic consequences [24]. Indeed, complex problems—like food waste—are
difficult to solve [47] because they can produce “emergent risks” that arise “from the
interaction of phenomena in a complex system” [49]. Given the need for solutions that work
at the complex intersection of agriculture, environmental health, food insecurity, waste
management, environmental protection, and food economics, the University of Maine
Materials Management Research Group was established in 2014 to work with community
partners on the creation of more sustainable materials management systems, including the
reduction of food waste and diversion of organic materials from landfills.

Our team—composed of scholars and students in economics, ecology and environmen-
tal sciences, social psychology, environmental engineering, food science, business, nursing,
sociology, and anthropology—has since built a wide network of over 400 stakeholders
throughout New England through a series of workshops, surveys, and interviews. This
group includes town and municipal managers, landfill operators, waste haulers, com-
posters, digesters, state regulators and legislators, regional planners, hunger relief agencies,
and a whole array of food waste producers, retailers, distributors, and large institutions
like colleges, hospitals, and schools. Our collective work, with many of these partners,
has established a wide range of programs to address food waste, ranging from cooking
demonstrations to community sharing programs.

In this paper, we draw on a subset of our work to focus specifically on the potential
risks associated with the rapid movement toward food waste recycling. Our methods
include observations and insights generated through a series of six stakeholder workshops
focused on sustainable materials management; a working meeting of key stakeholders
engaged in a wide range of food waste reduction efforts; a survey of state-certified food
waste recycling facilities in New England; and follow-up interviews with managers at
composting and digestion facilities.

In 2014 and 2015, we organized a series of six workshops drawing together representa-
tives from state government, municipalities, and the waste management industry (N = 130).
Large group and small group discussions were captured by note-takers and synthesized
into workshop reports that were made available for all participants to review and amend.
Participants were asked to envision a more sustainable materials management system and
quickly honed in on the importance of addressing food waste [36]. In August of 2017, we
convened a workshop focused specifically on food waste reduction with stakeholders in
Maine (N = 32), one of the few states in the New England region which, at the time of
publication, had not required food waste recycling. Participants represented a broad range
of interests and perspectives in food waste nutrient cycling systems. While the aim of that
meeting was to discuss and evaluate policies designed to reduce food waste more generally,
stakeholders drew upon their knowledge of neighboring state programs to identify several
barriers, tradeoffs, and risks associated with emerging food waste recovery and nutrient
cycling systems in New England [50].

We also developed a survey, specifically focused on observed and perceived risks of
contamination associated with food waste generated by a wide variety of actors—as well
as strategies for mitigation. This survey was disseminated via email to all composting
and digestion facilities licensed to accept food waste in Massachusetts, Vermont, and



Foods 2024, 13, 2374 6 of 23

Maine. According to publicly available lists obtained directly from state environmental
protection agencies in MA, VT, and ME, there are 114 facilities licensed to receive food
waste in these three New England states. We received 32 responses to our survey, for a 28%
response rate [32]. Data were analyzed using descriptive statistics in Excel, given the small
sample size.

Finally, we reached out to all survey participants to request a follow-up interview.
Six facilities volunteered to participate in a 30 to 60 min interview focused on observations
and perceptions of potential risks as well as current and potential mitigation strategies [51].
All qualitative data including interview transcripts and workshop notes were analyzed
using manual inductive thematic coding.

3. Results: Potential Risks

In the sections below, we draw on both existing research and our stakeholders’ perspectives
to outline three forms of potential risks—economic, environmental, and social—associated with
the movement toward stronger food waste recycling systems (Table 1).

Table 1. Potential Economic, Social, and Environmental Risks to be Mitigated.

Type of Risk Description

Section 3.1 Economic

Section 3.1.1 Investment risks Concerns about whether investments in food waste nutrient cycling will
yield adequate returns.

Section 3.1.2 Market risks Risks associated with the supply of food waste inputs (participation) and
demand for finished products (market strength/consumer trust).

Section 3.2 Social

Section 3.2.1 Subverted incentives with social impacts Risks associated with undermining the Wasted Food Scale (e.g., diverting
attention and investment in reduction and redistribution).

Section 3.2.2 Environmental injustice Risks associated with an uneven distribution of the costs and benefits of
more circular food systems.

Section 3.3 Environmental

Section 3.3.1 Physical contaminants Physical objects: microplastics, glass, and trash that enter composting
and AD systems, and have the potential to disrupt agricultural systems.

Section 3.3.2 Trace contaminants Unseen environmental risks to food waste recycling.

Section 3.3.2a Biological agents Pathogens and antibiotic resistance genes can cause harm to processors
as well as end-users of soil amendments.

Section 3.3.2b Process inhibitors Materials that have negative impacts on the operation of composting and
digestion processes.

Section 3.3.2c Heavy metals
Toxic trace metals (e.g., Zn, Cu, Cd) may be taken up from the soil, or
contaminate food products from packaging materials or during
processing or handling.

Section 3.3.2d Toxicants Pesticides, herbicides, and other toxic organics (e.g., PFAS) that can pose
risks for soil amendments produced from wasted food.

3.1. Economic Risks

Workshop participants in Maine were more likely to mention the potential economic
risks associated with food waste nutrient cycling than concerns about environmental
or social risks. Historic dependence on landfilling and incineration has created a “lock-
in” effect that can make investments in a more circular food system seem economically
risky, particularly given how cheap it is to landfill [52]. However, the historically higher
landfilling costs in New England compared to the Midwest/Central/Southern parts of the
United States [53] may contribute to the drive to divert more food waste in the region.
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3.1.1. Infrastructure Investments and Economic Incentives

Different stakeholder groups have different economic incentives that can make invest-
ments in food waste recycling more or less risky. Waste generators often associate these
shifts with higher taxes and fees to dispose of food wastes. Waste managers anticipate extra
expenses associated with building the infrastructure necessary to collect, sort, and process
an additional waste stream, since the overwhelming majority of food waste is still incin-
erated or landfilled. Many waste managers spoke about the tradeoffs between the higher
value of clean, separated materials necessary for operationalizing more circular systems
and the costs associated with separate food waste collection and processing mechanisms
for food wastes.

The scalable flexibility of composting requires a smaller initial investment compared
to digestion technologies, but both depend on having adequate feedstock and markets for
residuals. One processor described the economic risks that new composting facilities face:

“. . .it’s actually a tougher business to get into than you think. You can do it with a bucket
[. . .] on a tractor, but if you’re trying to make really high-end compost you need a turner
and you need a screen and those are two very expensive pieces of equipment. And you
can’t buy equipment like that and then only compost 1000 yards a year. It does
not work like that. You have to be moving some volume to support that equipment
[. . .] Some people do a good job with a bucket, but just to give you an idea, a small trommel
screen—used—is in excess of $200,000. If you want to make really good compost
and have that as the output you’ve got to be serious about it and you have to
have real steady flow on the inbound side and the process to make it all equal on
the outbound side and a good sale price”. (Interview, 2018 [emphasis ours])

Smaller municipalities that centralize collection and pay by the ton have a distinct set
of tradeoffs. There is a potential for immediate cost savings if the cost of diverting food
scraps is less than the costs to haul and landfill food waste with the rest of the trash. The
fees are easy to assess when an entire truck that arrives at a disposal facility is weighed and
that cost is directly attributed to the municipality. Larger municipalities are more likely to
be in a long-term contract that offers curbside collection to their residents. In these cases, the
collection of an additional waste stream adds costs rarely offset by reduced landfill tipping
fees (which are currently the cheapest option). Further, some private waste processing
facilities require municipalities to sign contracts guaranteeing the tonnage that will arrive
at the landfill, essentially preventing municipalities from adopting more aggressive food
waste recycling campaigns for fear of violating “flow control” requirements [54].

Waste from businesses and institutions, such as restaurants or hospitals, is typically
collected with waste from other customers on a route designed for efficiency. Hauling and
disposal contracts are privately negotiated and typically depend on the size of the dumpster
and frequency of collection, not the mass of waste generated. Thus, a restaurant opting to
divert food scraps may not obtain any immediate cost savings, nor are they guaranteed to
be able to negotiate a lower hauling fee over time.

Many different types of stakeholders note that, without mandatory food waste recy-
cling, there is insufficient incentive to participate since landfill tipping fees are currently
the cheapest option for food waste disposal. Many of the policies for mandatory diversion
are on the West Coast and in New England where disposal costs are relatively high [53].

3.1.2. Market Risks: Aligning Supply and Demand

Beyond concerns about the costs and risks associated with investing in food waste
recycling infrastructure, many stakeholders were concerned about market risks, specifically
the possibility of a mismatch between supply and demand. Figure 2 illustrates the approxi-
mate current annual generation of food loss and waste in Maine, which exceeds recovery
capacity. The current and future recovery capacity is dominated by anaerobic digestion;
additional capacity is planned beyond the 180,000 tons depicted. Digestion is followed by
food banks, with relatively limited composting [55].
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Figure 2. Maine annual food loss and waste generation and recovery capacity.

Some waste managers were concerned, for example, that waste generators would not
participate and thus there would not be adequate feed stock to fuel investments in com-
posting and digestion technologies. Some of our stakeholders noted that existing disposal
contracts for municipalities ensure a predictable flow of waste and revenue to a facility,
but these contractual entanglements can prevent towns and individuals from separating
food scraps from other waste [50]. Without adequate incentives and policy support, private
and public investments in food waste processing technologies are perceived as too risky.
These concerns are less of an issue in states with stronger policy guidance (e.g., MA, VT)
that guarantee a stock of inputs than in states without clear policy guidance (e.g., ME).

Other stakeholders identified the risk of bottlenecks in operations if adequate capacity
does not exist at one phase in the process or in a particular geography. They argued that
enacting policy to support or require food waste recycling without sufficient infrastructure
can create bottlenecks and system failures if food waste inputs overtake infrastructural
capacity [50]. Composting and digestion capacity are important, but so are other processes
including transportation, storage, and pre-processing technologies. One stakeholder noted
that when Massachusetts implemented their commercial food waste landfill ban, they
provided incentives for compost and AD technologies, but no incentives for pre-processing
(e.g., grinding, de-packaging). This oversight led to an initial bottleneck that could have
been avoided with greater understanding of existing capacity. The economic risks at play
create a thorny double-bind, where uncertainty about potential participation makes it
difficult to invest in food waste processing facilities, while uncertainty about processing
capacity relative to waste generation and participation makes it difficult to create transfor-
mative policies that assure sufficient participation. Finally, some expressed concern about
the risk that there may not be an adequate market for finished products. Many of these risks
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vary depending on the business model adopted for collection (drop-off, subscription pick
up, municipal pick up) and end use (compost sales, community-utilized, farm-utilized).

Pilot food waste collection programs in Maine have observed fluctuating participation
rates, ranging from a low mean weekly set-out rate of 29.5% to a high mean weekly set-out
rate of 43.7% [50]. Being able to anticipate the volume of food waste inputs is important for
planning and investing in food waste recycling. The EPA estimates that approximately 15%
of the US waste stream is food scraps [53]. However, many waste generators may not be
willing or able to participate. Farrell and Jones [56] suggest that individuals may choose
not to participate in food recycling programs because they lack trust in the system and have
overall negative attitudes concerning waste management. Participation is also likely to vary
geographically, making it hard to estimate the volume of food waste to be processed. Yet, if
processors concerned about adequate volume take more risky materials like slurry from
de-packaged foods or post-consumer food waste streams, they also run risks associated
with the contamination of feedstocks, both in terms of physical (visible) contaminants
and trace contaminants. Critically, these risks interact with each other. Focusing on
increasing infrastructural capacity, then, is not likely to improve overall outcomes in food
waste diversion without attention to the other risk factors that may impact the decisions
of processors.

3.2. Social Risks

In order to ensure the success of nutrient cycling systems for food waste, public partic-
ipation and support are essential. Waste generators must follow separation protocols to
reduce contamination, while potential customers, gardeners, and farmers must trust that
the nutrients recovered from food waste are safe and healthy to use for food production.
Communities need to trust that nuisances and odors will be managed and that programs
will be implemented in just and fair ways that minimize social risks in host communities.
Indeed, the project of developing a more circular food system through the land application
of food waste nutrients is “incomplete unless the earning of public trust in the practices
is included” [57]. Without the support of the local community, facilities can face issues
with odor, traffic, and nuisance complaints. One interviewee discussed this risk explicitly,
describing a company that had invested hundreds of thousands of dollars in a facility only
to shut down when “the neighbors went cuckoo” (Interview, 2018). Indeed, without significant
community engagement and support, many facilities around the country have been forced
to close [58–60]. Engaging with the public and earning trust must not occur “as an af-
terthought”, but instead in the early stages of research, planning, and implementation [57].
Research on a wide array of sustainability programming has demonstrated how, without
parallel attention to social sustainability, programming can reproduce inequalities and even
exacerbate unsustainable practices [61]. Stakeholders participating in our research rarely
mentioned social risks but those who did expressed two concerns, detailed below.

3.2.1. Subverting the Food Waste Scale, Undermining Hunger Relief and Waste Reduction

First, several stakeholders expressed concern that, without alternative incentive struc-
tures, large investments in nutrient cycling might divert attention away from food waste
reduction efforts or discourage the redistribution of still edible foods to those experiencing
hunger [26]. This effect may be heightened by the tendency among institutions like uni-
versities, schools, or municipalities to “keep quiet” about food insecurity since they have
limited means to address the problem [62]. In contrast, composting and other food recycling
strategies are useful for establishing a green identity or brand. When coupled with concerns
about liability issues, food waste generators may prioritize recycling over redistribution,
which can exacerbate existing food insecurity. Once contracts are signed, generators are
often held responsible for delivering certain quantities of feedstock, potentially creating
lock-in effects and encouraging food waste generators like grocers, restaurants, and large
institutions to generate food waste for nutrient cycling rather than redistribute still edible
foods. A strong focus on nutrient cycling might also distract attention from important
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conversations about preventing waste in the first place—essentially subverting the Wasted
Food Scale and avoiding some of the most important and systemic drivers of food waste.

Research suggests that “pro-environmental behaviors” (like composting) can have,
in some circumstances, unintended negative effects (like diverting attention away from
more substantial changes) [63,64]. For example, if a household is confident that they are
taking great strides to compost their waste, they may be less inclined to worry about
reducing food waste through more sustainable shopping (negative spillover). Likewise,
if a grocer is recycling food waste, they may be less inclined to invest time and effort
to donate to hunger relief organizations. Conversely, if a food waste generator becomes
more aware of the need to reduce waste as a result of composting and begins more careful
food procurement planning (positive spillover), these effects can have environmental,
economic, and social benefits. While there are few studies of food waste recycling spillover
effects, one study found no significant spillover from composting behavior to food waste
prevention behaviors, positive or negative [65]. The empirical documentation of the effects
of Vermont’s universal recycling law suggests that the requirement for waste generators
to divert food waste from landfills resulted in an unanticipated 40% growth in donations
to hunger relief organizations, with significant positive social benefits [66]. More recently,
research participants representing hunger relief organizations in Maine told us that many
of the donations they are receiving are marginally or not edible. While food generators can
receive tax benefits for donating unsellable foods, all too often hunger relief organizations
cannot distribute the food and these organizations with small budgets are forced to bear
the cost of disposal.

3.2.2. Unequal Distribution of the Environmental Costs and Benefits of Food
Waste Recycling

Secondly, some stakeholders expressed a concern that public investments in nutrient
cycling could be unfair particularly if they are large and centralized. As surplus food
becomes increasingly commoditized, there are risks that smaller players may be squeezed
out of opportunities to obtain and process wasted food [26]. Others identified the risk that
rural municipalities would not receive as many benefits given that they would have to pay
considerable sums to haul food waste for processing or invest in their own infrastructure
while larger, more populated urban areas are more likely to benefit from centralized public
investments due to population density and transportation efficiencies. Research suggests
that there is a higher potential for urban waste operations to be sited in low-income or
minority neighborhoods or to contribute to their devaluation after siting [67,68], potentially
leading to social, economic, and environmental justice issues like increased traffic, pollution,
and nuisance odors. Despite these risks, several studies have recently found that distributed
community composting programs, if designed carefully and with intention, can be both
financially feasible and result in other positive social and community benefits [69,70].

3.3. Environmental Risks

Research related to the risks associated with food waste recycling for agricultural appli-
cations is rapidly emerging [71,72]. Our own work has demonstrated contamination from
PFAS and antibiotic resistance genes in food waste destined for field application [73,74].
As Gillett wrote nearly 30 years ago, “The more MSW composting is accepted as a waste
disposal option (in contrast to the somewhat more limited production of a useful soil
amendment), the more serious becomes the issue of whether total risk has been broadened
excessively” [75].

Our workshops and interviews with stakeholders suggest that research participants
overwhelmingly viewed the environmental dimensions of food waste recycling in a positive
light—as a drastic improvement compared to the environmental impacts of landfilling food
waste [51]. However, this disjuncture between stakeholders’ perceived risks and levels of
contamination reported by scientific research merits attention. Here, we outline potential
environmental risks and contaminants.
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3.3.1. Physical Contaminants

Food waste processors receiving municipal food scraps are particularly concerned
about the risks of “the big three”—plastic, glass, and produce stickers. Produce stickers
create a very strong reaction among food waste recyclers. Because they do not break
down in the composting process they act as “colorful contamination flags in the finished
compost” [76]. Plastics may be ground finely in soil amendments but become increasingly
visible as the soil is “washed” by precipitation, raising concerns about contamination and
eroding trust in food waste-derived soil amendments.

Results from our survey of food waste processors support these findings (N= 32). In
an open-ended question about the contamination risks associated with accepting food
waste, trash—including plastics, straws, utensils, and fruit stickers—was identified most
frequently. Trash presents economic risks to processors, whose outputs may be difficult
to market if they are visibly contaminated. Some respondents also noted the high cost
of screening contaminants from finished compost, particularly straws and fruit stickers.
Processors also mentioned more than economic risks associated with plastic contaminants.
One interviewee discussed the potential environmental and health risks associated with
plastic contaminants:

“There is a certain type of plastic I haven’t nailed it down, it’s either number 5 or like
number 3 or something that tends to fragment in the compost piles and gets to be these
really small flecks of plastic. If it was micro leaching or something, that would be a
problem. And I don’t know about that”. (Interview, 2018)

This response highlights how materials received by processors are often unknown.
Some processors actively reject loads with plastic contaminants to avoid loss of value
for their products [77]. The increased use of “de-packaging” machines could lead to an
increased level of microplastic contamination. Though identified as extremely difficult to
measure, researchers have begun to tackle this topic. While recent studies have shown that
nearly 50% of samples had some form of microplastic contamination, the varying methods
of detection and measurement do not allow for these outcomes to help inform policy [78].

Similarly, glass fragments present a significant liability. Even one shard of glass “ruins
the batch” (Stakeholder Survey, 2018), and can lay waste to an entire season of work.
When end-products contain shards of glass, they become not only economically risky but
processors noted that broken glass presents health risks to their employees and to end-users,
while other materials, like steel wool, can kill livestock. Survey respondents commented
that there is “no solution” for decontaminating materials once glass has been introduced
(Stakeholder Survey, 2018).

Some physical contaminants are riskier for digesters, which require predictable and
consistent feedstocks to protect their process and equipment. Our survey of processors
suggests that while composters are more concerned about contaminants that are visible in
the end-product, digesters tend to be more concerned with physical contaminants that can
damage equipment such as stringy or fibrous waste that can bind machinery or grease and
grit that can block pumps and nozzles.

3.3.2. Trace Contaminants

The existing literature also suggests that a number of non-visible contaminants can
present significant economic, environmental, and social risks to food waste processors and
end-users. These contaminants include pathogens, heavy metals, pesticides, and anaerobic
digestion process inhibitors, like ammonia or salt.

Pathogens and antibiotic-resistant microbes pose health and economic risks to food
waste processors, although these risks were mentioned less frequently than physical con-
taminants by survey participants. One processor commented on the uncertainty sur-
rounding pathogens, writing that “you cannot see them, we do not test for them and
they likely present the highest liability issue however remote that might be” (Stakeholder
Survey, 2018).
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The literature suggests a range of human health risks associated with pathogens. While
a United Kingdom study found no increased risk of disease for individuals living closer
to composting facilities compared to those living further away [79], pathogens can affect
those who come into direct contact with the food waste as it decomposes. Microbes, such
as Legionella (a bacterial pathogen), have been found to cause pathology after exposure to
composted material [80]. There are approximately 50 species of Legionella, but infections are
most commonly caused by L. pneumophila, which causes pulmonary infections [81]. How-
ever, other strains are found in composted material produced under increased temperature
and humidity conditions [82]. Legionella longbeachae has caused cellulitis in immunocom-
promised patients after exposure to composted potting soil [83]. Another microbe that
is present in the high-temperature phase of the compost cycle, and is an opportunistic
pathogen of humans, is Aspergillus fumigatus [84]. One interviewee noted that composting
regulators see the high-heat processes of composting and digestion as “their ultimate
end-all, be-all for, I’ll call it bad stuff, say, like GMOs or pathogens or whatever” (Interview,
2018), yet while composting may kill many microbes, other micro-contaminants can persist.

Unmetabolized antibiotic substances in food and pharmaceutical products may also
end up in soil and water, and finally in the food chain [85]. The presence of antibiotics
has been reported in municipal sewage, in the effluent of sewage treatment plants, and
in surface water [86,87] as well as in food waste samples. The development of antibiotic-
resistant bacteria in soil is one of the greatest concerns with regards to the residential and
institutional use and overuse of antimicrobials.

Other micro-contaminants, more likely to be identified as risks by digesters than
composters, were process inhibitors such as ammonia, sodium, and sulfur (Stakeholder
Survey, 2018). Positive conditions for bacterial assemblages must be maintained during
anaerobic digestion, and high levels of salt, ammonia, and acidity can disrupt the digestion
process, resulting in the need for time-consuming and expensive fixes to the process.
While anaerobic digestion (AD) technology and expertise is mature, when feedstocks vary
drastically, maintaining equilibrium within digestion systems is an ongoing challenge and
a marked economic risk.

Heavy metals and minerals also present risks to food waste nutrient cycling. The
growth and development of crops may also be altered by the input of water-soluble salts in
agricultural soil due to the application of food waste-derived soil supplements, much of
which is high in salt content (e.g., canned soups, processed foods). Plants fertilized with
compost produced with high-salt foods may be unable to acquire water and nutrients from
the treated soil due to its high salinity and osmotic pressure [88].

There is also a risk that compost- and digestate-produced fertilizers could be con-
taminated with heavy metals. Metals persist through food waste recycling processes, so
repeated application to agricultural land may result in the uptake of metals into crops.
Heavy metals have high reactivity, are toxic to biological systems, and can harm plants
and animals [89]. Human health impacts of heavy metal ingestion include bladder, lung,
and skin cancer; kidney, liver, and bone impairment; and neurotoxicity [90]. While metals
may be immobile in finished compost or digestate, the repeated application of residuals
may result in soil or crop contamination [56]. Once contaminants are introduced into the
environment, plants can take them up through foliar deposition [91]. While heavy metal
transport is dependent on plant species, absorption, retention, plant morphology, and
physiology [92], leafy vegetables, in particular, have higher bioaccumulation factors [93,94].
Sometimes, contamination can make its way far into food systems. Gillett [75] argues that
we must think beyond the direct application of residuals to the soil, and instead consider
the bioaccumulation of metals throughout the food web.

Survey respondents also identified toxins as primary contamination risks associated
with accepting food waste. These included pesticides, herbicides, and other toxins that are
particularly difficult to detect. One interviewee commented on the challenges of detecting
herbicide contamination:
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“you have to specifically ask and pay for each herbicide . . ., and there are infinite numbers so
the best way that I have found to protect us other than controlling your raw materials—where
I can go and chase somebody down—is to do bioassays or grow outs”. (Interview, 2018)

Indeed, several processors we interviewed detailed the tests they order and pay for to
identify individual contaminants, yet “the diversity and range in scale of such chemicals in
municipal solid waste (MSW) practically precludes traditional approaches from establishing
a level of safety for exposure to the total load” [75]. The United States Composting Council
acknowledges the burdens of testing for these contaminants, counseling composters to
voluntarily test and report on their feedstock contamination:

“Composters can test for contamination, but the tests are time intensive if done in-house
and expensive if hired to a laboratory. Guarding against contamination requires a great
deal of new data collection and record keeping. The USCC believes that it is unfair to
place this financial burden on the composter. Compost producers can help us make this
argument by testing your feedstocks and products. If you find contamination, you should
report it to your state agency AND to the USCC”. [95]

This is particularly the case with the recent discovery of per- and polyflouroalkyl
substances (PFAS) in finished digestate and compost [96]. Associated with coatings that
repel oil and water, as found in many food packaging materials, PFAS can be introduced
into these processes through biosolids, industrial residuals, and food scraps containing
packaging with PFAS. Unfortunately, these mobile, persistent, and bioaccumulative sub-
stances are now pervasive in the environment—but there is no known way for processors
to remove them from their products. The only way to avoid them is to refuse to accept
feedstocks that contain PFAS [73,97] or to lobby the federal government and chemical
producers to phase them out [51,98].

Some interviewees lamented, regarding chemicals and pesticides, that “there’s no
regulations for it, so no one gives a hoot” (Interview, 2018). For some processors, the risks
of chemicals and herbicides extend beyond the legal, economic, and environmental to the
moral and personal. An interviewee described their anguish when a farmer unknowingly
contributed glyphosate-laced hay to a composting facility:

“. . .the poor farmer—he doesn’t know. He has no idea, and then he takes this load of
manure and takes it to the composter thinking that he’s doing something great, small
farmer, and it’s laced with glyphosate, it’s laced with whatever persistent herbicides. . ..
and you can’t tell unless you do bioassays on [the] finished product”. (Interview, 2018)

Processors are faced with difficult decisions in the context of micro-contaminants. The
economic costs of testing are significant, and further, the literature suggests that individual
tests are insufficient. Yet, the economic, environmental, and social costs of producing a soil
amendment that can cause human, animal, and environmental harm are also significant.
Processors are well aware that their business depends on public acceptance and trust, and
they are also aware that invisible contaminants present a real threat that goes far beyond
loss of market share or public trust.

3.4. A Conceptual Model of Contamination Risk in Food Waste Nutrient Cycling

There is potential for social, environmental, and economic risks to emerge in all stages
of food waste recovery and nutrient cycling. These risks are highly variable depending
on local conditions and a wide range of factors [57,75]. In this section, we draw upon the
potential risks outlined in the previous sections to organize a conceptual model of potential
risks according to the different stages of food waste recovery and recycling: (A) generation;
(B) separation; (C) collection; and (D) processing. Food waste is heterogenous and can
travel on many different pathways within a circular food system. While it is useful to map
out potential risks according to the flow of materials, it should also be noted that some risks
emerge in multiple stages, and others exist in the spaces in between and in interactions and
feedback. Further, risks may accumulate over time through repeated cycles. What follows
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is necessarily a simplification, in an attempt to model and make these emergent risks more
explicit (Figure 3).
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3.4.1. Risks Associated with Food Waste Generator Type and Waste Profile

Food wastes come from a wide variety of generators. From non-salable produce and
expired grocery packages to household leftovers—the generators of food waste are as
diverse as their waste streams. The nature, volume, and location of the waste these entities
produce can affect the likelihood of contamination. Food waste generated by growers
on the farm, for example, tends to be fairly homogenous, typically composed of the non-
salable vegetables or fruits they grow, and is often composted on-site, reducing the risk of
contamination since growers are likely aware of potential contaminants associated with
their inputs or processes. Processors, distributors, and retailers have a more varied waste
stream, but a typical load is likely to be fairly consistent. In contrast, restaurants, catering
firms, and institutions like schools, colleges, and hospitals produce highly variable waste
streams with both pre- and post-consumer wastes and are prone to contamination with
a variety of other materials from packaging to plastic cutlery. These large institutional
generators and restaurants have a very different food waste profile compared to households.
As one food waste processor told us during an interview,

“I think you have to differentiate. Individuals are residential, that pay for it, they have a
tendency to have much lower rates (of contamination). Commercially, in restaurants. . . I
would say even though they’re paying for it, we get a lot of garbage. They’re like trash,
forks, knives, you know, plastic bottles. That’s because you’ve got restaurant workers in
the back versus a resident at home—and they (residents) want to keep that silverware”.
(Interview, 2018)

In general, our stakeholders suggest that generators with more diverse waste streams
introduce a greater chance of physical contamination (see Figure 4). This relationship,
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however, is mediated by a number of other factors we outline in the following section,
including the extent to which waste streams are kept separate, the extent to which the policy
setting demands recovery, and the characteristics of specific organizations and households.
One interviewee told us, for example,

“High schools are awful, elementary schools aren’t much better. Hospitals, I think are
all right. I guess it would depend on how much is pre-consumer and how much is
post-consumer”. (Interview, 2018)
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While data on contamination rates are scarce for institutions, a Minnesota study found
organics with visible contamination in K-12 schools that ranged from 2% to over 20%, with
plastic film and beverage cartons representing the most common types of contaminants
measured [99]. Another study conducted by a member of our team found that 82% of
samples contained non-food waste, some as high as 39% of the sample by mass [100].
Other institutional generators like hospitals have unique properties that result from po-
tential microbial contamination [101], where the contaminants in food could also include
the potential for antimicrobial-resistant bacteria (e.g., methicillin-resistant Staphylococcus
aureus [MRSA], Carbapenem-resistant Enterobacteriaceae) [102]. Most hospital waste, which
includes surplus food from patients with infectious disease, is classified as unregulated,
which may be disposed of in incinerators or landfills, or recycled through composting
or anaerobic digestion [103–105]. Thakali’s study [74] tested 10 samples of hospital food
wastes ready for collection by recyclers, and detected Listeria monocytogenes in 2 out of
10 hospital samples, beta-lactam resistance genes in 8 samples, and tetracycline resistance
genes in all 10 samples.

3.4.2. Risks Associated with Separation

When food waste is source-separated from other forms of waste, it tends to contain
fewer contaminants than when food is mixed with other materials and separated during
recovery [56,106]. When food is co-mingled with other municipal solid waste (MSW), it
encounters contaminants that are difficult to predict and quantify due to the “diversity in
range and in scale” of chemicals [75] and other hazardous materials in mixed waste streams,
due in part to the “poor availability of recycling facilities for hazardous wastes” [56]. For
example, source-separated household wastes typically contain smaller amounts of heavy
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metals than those that were mechanically separated after collection [107–109]. While
programs that require individuals to source-separate food waste are likely to result in less
contamination [56,106], single-stream programs are often favored based on economic and
social considerations due to higher levels of participation and thus recovery rates and
lower transportation and collection costs [110]. Here, we see a prime example of how
some stakeholders might prioritize environmental risk reduction while others prioritize
reducing the risk that high transportation or collection costs make the system economically
unsustainable, or that inconvenience might reduce access and participation and thus
ultimately compromise environmental benefits. Many of these tradeoffs require better data
so that decision-makers can model the potential impacts of waste alternatives.

3.4.3. Risks Associated with Collection

Some studies suggest that opt-in services like subscription-based curbside collection
and drop-off programs tend to have less contamination because participants elect to take
part and are intrinsically motivated [76]. According to this logic, universal curbside col-
lection programs or food waste disposal bans may introduce more contaminants because
participants are less familiar with requirements and have less interest in the program.
Stakeholders noted that participants in mandatory programs might be untrained, uninter-
ested, unaware, or even resentful of their obligation to participate [50]. Research testing
contamination in food waste samples from three New England states, however, failed to
generate support for these assumptions. A recent study conducted by members of our
team found that non-grocer samples from Maine where there is no mandate for recycling
food waste contained similar levels of contamination to samples from regulated states [74].
This is perhaps due to large investments in education and outreach in the regulated states
including, for example, Vermont’s “Let’s Scrap Food Waste” program that included com-
prehensive guidance and outreach for municipalities, businesses, institutions, haulers, and
households [66].

There are also potential social risks associated with the regulatory environment for
food waste recycling. Voluntary programs come with a risk of low participation rates. This
is particularly true for subscription-based programs that can limit accessibility to wealthier
households and institutions. Mandatory programs can ensure higher participation rates,
particularly if publicly supported, to ensure widespread and fair access to recycling services.
Some studies suggest that mandatory collection can also have significant social benefits.
Reports from Vermont, for example, suggest that the implementation of their universal
recycling law was accompanied by a 40% increase in food donations to hunger relief organi-
zations as farmers, food processors, grocers, and caterers chose to donate food rather than
send still edible foods for nutrient recovery [66]. There may also be some economic benefits
for municipalities who are likely to see their landfill tipping fees significantly reduced.

Households generate large quantities of wasted food [1], and may participate in a
range of collection regimes, ranging from food scrap drop-off programs to paid curbside
collection subscription services or municipal curbside collection programs. Factors like
the size and mobility of the collection containers, frequency of pick up, or the hours of
operation at collection facilities can affect participation rates and contamination risk [111].
Karim Ghani and colleagues’ [112] study of household intentions to participate in backyard
composting found that participants, in general, preferred the convenience of curbside
pickup. Two pilot studies in Southern Maine found significant increases in participation
and recycling rates when curbside collection was offered free of charge, but some studies
found that plastic bag contamination was an issue as households used bags to contain what
they refer to as the “ick” factor [50].

3.4.4. Risks Associated with Processing Technology

There are many emerging strategies to recover value from wasted food, including
mechanical biological treatment/biorefining and advanced thermal processing, among
others [110]. Here, we focus on anaerobic/co-digestion and composting (see Table 2), due
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to the prevalence of these processes and strong growth in policy support. Importantly,
anaerobic/co-digestion and composting have a role in circular food systems: both processes
produce residuals that can be applied in agricultural production. Composting and digestion
systems have similar and unique exposure to emergent risks. These risks range from visible
contaminants to invisible process inhibitors and are shaped in part by the source of food
waste and, in turn, affect the quality and reliability of the output available to end-users.

Table 2. Comparison of processing methods for MSW organics.

Method Process Applicability Risks

Compost

• Relatively simple to set up
and operate

• Able to accept a variety of
material and adaptable to
changes in input materials

• Produces useful soil
amendment

• Can, in some cases, recover
heat energy

• Scale can vary
(100s—10,000+ tons
per year)

• Input composition is
flexible, but length of
treatment and need for
bulking agents may be
affected

• Relatively high volume of
residual to be land
applied—requiring a large
market

• Low start-up costs
• Large land area required

for processing and storage
of bulking agents and final
product

• Lower or no water input
required

• Volatile components may
be transferred to the air

• Some organics may not
biodegrade and remain in
the residual applied to soil

• Most metals and plastics
will remain in the residual

• Economically difficult at a
small scale and difficult to
secure necessary volume
for large-scale rural
operations

• Odor, pest, and traffic
concerns

Anaerobic Digestion

• More complex operation
than composting requiring
skilled operators, but
mature technology

• More highly affected by
input material
composition and mixing

• Long start-up and
recovery times

• Produces compressible
fuel or heat and electricity
and useful soil amendment

• Best applied when input
material is consistent over
time to avoid system
disruption and poor
performance

• Some materials may not be
degraded under anaerobic
conditions (or require
additional pre-hydrolysis)

• Long recovery time
required after system
failure due to high
ammonia, salts, metals, or
other process inhibitors

• Some organics not
degraded. Metals and
recalcitrant organics will
end up in liquid and solid
fractions

• High fixed costs
• Methane is explosive

4. Discussion: Social, Economic, and Environmental Tradeoffs

To meet organics diversion goals, businesses, institutions, and municipalities are
adopting a wide variety of strategies for food waste recycling, which are supported by
regulatory agencies [57]. However, variable waste streams and recovery processes yield
materials that are highly uneven in quality and energy content. Points of waste gener-
ation (institutional vs. residential generators), collection processes (source-separated vs.
commingled), training processes (for people sorting and handling wastes), and treatment
options (composting vs. digestion) all affect the potential quality, cost of management,
social acceptability of outputs, and safety of the material.

Although our analysis focuses on generation, separation, collection, and processing,
it is critical to note that to build a circular food system, residuals from composting and
digestion processes must be applied back to agricultural soil. In order to make sure that
happens, soil amendments must be safe and end-users must trust that they will improve
soil nutrition and health. The perceived risks of end-users are informed by both the
generators of food waste as well as the processing techniques used to create the residual
material. Critically, these perceived risks may not closely track with measured risks [113]
or the perceived risks of other participants in the circular food system. For example,
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while our stakeholders were concerned with contamination from herbicides and pesticides,
Rahmani and colleagues found that compost users in Florida were most concerned about
the presence of weed seeds in finished compost, while “adverse reaction to herbicide
or pesticide residues was the least important barrier from the compost users point of
view” [114]. Understanding the gaps between perceived and measured risks, then, is
critical to building more circular food systems.

Further, because food waste is a complex problem, it is difficult for stakeholders—or
indeed, researchers—to understand the ways in which unseen or unanticipated factors
might disrupt food recovery and recycling systems. Economic considerations tend to be
first and foremost among concerns for municipalities and businesses as they investigate
participating in the circularization of the food system. Research in the social sciences
has demonstrated that individuals base their perceptions of risk on heuristics—cognitive
shortcuts that allow individuals to make decisions in the face of uncertainty or complex-
ity [115]—further rationalizing research that helps to make emergent risks more explicit.

We see this information as essential as New England aspires to and continues to invest
in more circular and localized food systems. The safety of the soil amendments produced
from food waste is crucial for public health and necessary to maintain trust in food waste
recovery processes as well as the resulting agricultural supplements. Research suggests
that perceptions of risk and trust in waste management practices can significantly influence
markets for agricultural supplements produced from waste streams [116–118].

New regulations and organics recovery targets produce new market opportunities
for businesses seeking to recover soil amendments and/or energy from discarded organic
materials. The value and social acceptance of the use of processed residuals will depend
on both (1) the quality of the product, which is related to input material quality as well
as processing of the discarded materials, and (2) the end-users’ trust in the product. It
may be that it will take considerable time and educational effort to transform surplus food
from waste to resources. As Riding and colleagues argue, “This can only be achieved by
well-informed interactions between scientists, regulators and end users, to improve the
spread and speed of innovation with this sector” [118].

5. Conclusions

Our contribution toward efforts to create safe and sustainable circular food systems,
here, has been two-fold. First, we outlined a wide range of the social, economic, and
environmental risks that food waste processors face. Some of these risks are well known to
processors, while others are not and thus are often overlooked in risk mitigation planning.
Similarly, while researchers are often aware of environmental risks, we find that many
academic papers about food waste recycling fail to consider the economic and social risks
that waste managers must also consider. Our hope is that by synthesizing the potential risks
we see in the literature and in stakeholder perspectives, we might inform policy formation
as governments, on multiple scales, attempt to reduce food waste and ensure that wasted
food nutrients are cycled back into food production. The identification of potential risks can
help to stimulate progress toward risk mitigation in organics management policy. Secondly,
this work also synthesized research from multiple disciplines and stakeholder perspectives
to create a conceptual model of potential contamination risks as mediated by differences in
waste generation, sorting, collection, and processing. We hope this contribution will draw
attention to the interconnectedness of food waste systems such that decision-makers can
envision how economic, environmental, and social risks can be amplified or attenuated
in a circular food system. We argue that our stakeholder-informed and transdisciplinary
approach is important given the complex nature of food systems located in interconnected
economic, social, and environmental systems. The geographical and topical limitations
of our study could be remedied by future research, which would broaden the analysis of
potential risks in other geographies, across the scale and for food waste solutions beyond
food waste nutrient cycling.
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