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Abstract: Vibrio spp. is a Gram-negative bacteria known for its ability to cause foodborne infection in
association with eating raw or undercooked seafood. The majority of these foodborne illnesses are
caused by mollusks, especially bivalves. Thus, the prevalence of Vibrio spp. in blood clams (Tegillarca
granosa), baby clams (Paphia undulata), and Asian green mussels (Perna viridis) from South Thailand
was determined. A total of 649 Vibrio spp. isolates were subjected to pathogenicity analysis on blood
agar plates, among which 21 isolates from blood clams (15 isolates), baby clams (2 isolates), and
green mussels (4 isolates) showed positive β–hemolysis. Based on the biofilm formation index (BFI)
of β–hemolysis-positive Vibrio strains, nine isolates exhibited a strong biofilm formation capacity,
with a BFI in the range of 1.37 to 10.13. Among the 21 isolates, 6 isolates (BL18, BL82, BL84, BL85,
BL90, and BL92) were tlh-positive, while trh and tdh genes were not detected in all strains. Out
of 21 strains, 5 strains showed multidrug resistance (MDR) against amoxicillin/clavulanic acid,
ampicillin/sulbactam, cefotaxime, cefuroxime, meropenem, and trimethoprim/sulfamethoxazole.
A phylogenetic analysis of MDR Vibrio was performed based on 16s rDNA sequences using the
neighbor-joining method. The five MDR isolates were identified to be Vibrio neocaledonicus (one
isolate), Vibrio fluvialis (one isolate) and, Vibrio cidicii (three isolates). In addition, the antimicrobial
activity of chitooligosaccharide–epigallocatechin gallate (COS-EGCG) conjugate against MDR Vibrio
strains was determined. The minimum inhibitory concentration (MIC) and minimum bactericidal
concentration (MBC) of COS-EGCG conjugate were in the range of 64–128 µg/mL. The antimicrobial
activity of the conjugate was advocated by the cell lysis of MDR Vibrio strains, as elucidated by
scanning electron microscopic images. Vibrio spp. isolated from blood clams, baby clams, and Asian
green mussels were highly pathogenic, exhibiting the ability to produce biofilm and being resistant
to antibiotics. However, the COS-EGCG conjugate could be used as a potential antimicrobial agent
for controlling Vibrio in mollusks.

Keywords: Vibrio spp.; bivalve mollusks; β–hemolysis; biofilm formation; multidrug resistance;
chitooligosaccharide

1. Introduction

Food contamination with pathogenic bacteria, viruses, parasites, or poison is the lead-
ing cause of foodborne diseases [1]. Foodborne illness continues to be a severe public health
issue worldwide, including in Thailand. Outbreaks of illness caused by eating contaminated
seafood have been frequently reported in Thailand. The consumption of contaminated
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seafood can lead to hospitalization and mortality, particularly in underdeveloped and poor
countries [2]. Each year, 600 million cases of foodborne illness and 420,000 fatalities occur
worldwide due to contaminated foods. Currently, 7.8 billion people live on the globe, and
56 million pass away each year and among them approximately 7.5% of global mortality
results from foodborne illness [3]. Foodborne infection caused by one or more species of the
Gram-negative Vibrio genus of bacteria, which has a curved-rod form, is typically linked
to consuming undercooked seafood [4]. Environmental waterbodies that are brackish,
and estuaries, frequently harbor pathogenic species from the genus Vibrio. Therefore, the
public health implications of seafoods contaminated with these species are significant [5].
According to a survey carried out by the Centers for Disease Control and Prevention (CDC),
it was found that every year in the United States, out of 80,000 cases, 52,000 cases are of
vibriosis, which is caused by eating food contaminated by Vibrio species [6]. The CDC
also mentioned that pathogenic Vibrio species may cause outbreaks and infections such as
watery diarrhea, abdominal cramps, nausea, vomiting, fever, and chills. In some cases, this
causes wound infections, bacteremia, and sepsis, which are the biological risks that seafood
may harbor. Three species of Vibrio are responsible for foodborne diseases in seafood,
and those species include Vibrio parahaemolyticus, Vibrio vulnificus, and Vibrio cholera [7].
Thus, the identification of foodborne bacteria in seafood, especially in mollusks, which can
accumulate bacteria to a large extent due to their filter-feeding habits, is required.

In Thailand, mollusks, namely, blood clams (Tegillarca granosa), baby clams (Paphia
undulata), and Asian green mussels (Perna viridis), are consumed widely. Blood clams are
widely distributed in the Indo-Pacific and are associated with the Arcidae family of the
Mollusca phylum. Fresh raw blood clams are nutritious and contain 19.48% protein, 2.50%
fat, 74.3% water, and 2.24% ash. These clams are known to be filter feeders, which makes
them susceptible to microbial contamination and to causing foodborne diseases [8]. Baby
clams belong to the Veneridae family found in the Indo-West Pacific on the nearshore
shallow sandy substrate. With a crude protein content of around 68.77%, baby clams are a
good source of protein [9]. Asian green mussel (Perna viridis) is known to be a fast-growing
bivalve widely distributed in the tropical, subtropical coastal and estuarine areas of the
Asian–Pacific regions. Asian green mussels belonging to the Mytilidae family are known
to be filter feeders and can filter organic particles, plant plankton, animal plankton, and
microorganisms. With a protein content of 36.15%, mussel is considered to be a cheap
source of protein for coastal livelihood [10]. The Vibrio species is the leading marine
bacterium that causes infection in economically significant baby clams. The crucial element
for pathogenesis is host resistance [11]. Thongchan et al. [12] observed a high population
of Vibrio strains in blood clams and mussels. Due to disease outbreaks and environmental
contamination, clam aquaculture is encountering severe issues [13]. Antibiotic therapy is a
predominant treatment for bacterial infection, but the rising global concern is antibiotic-
resistant bacteria. Multidrug-resistant isolates exhibit hemolysis-associated genes, specific
virulence traits, and biofilm potential. The biofilm potential of an isolate enables it to
adhere to surfaces and spread out, resulting in the formation of multicellular consortia. The
three-dimensional structure of the biofilm can shield the cells under extreme environmental
stress [14]. As mentioned by the Centers for Disease Control and Prevention, antibiotics,
antibodies, and disinfectants are less effective against bacterial biofilms [15]. Thus, the
necessary action should be taken to control various pathogenic bacteria via thermal or
non-thermal processing and the application of natural antimicrobial agents.

Among those natural antimicrobial agents, marine chitooligosaccharides (COSs) have
been known for their broad antibacterial, antifungal, and antiviral activities. In general,
COSs with a low molecular weight (<10 kDa) can bind to negatively charged bacterial cell
walls, causing cell damage and nutrient leakage. They can also penetrate bacterial cells
and inhibit DNA replication [16]. Furthermore, their activities have been enhanced via
conjugation with phenolic compounds, among which the COS–epigallocatechin gallate
(EGCG) conjugate showed excellent antimicrobial activity, in which, synergistically, EGCG
could interact with bacterial cell walls and proteins, causing nutrient leakage and inhibiting
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peptide transport [17]. For example, Buatong et al. [18] reported that COS-EGCG conju-
gate effectively inhibited spoilage bacteria and foodborne pathogens such as Pseudomonas
aeruginosa and Escherichia coli, respectively.

Thus, the present study aimed to isolate, characterize, and identify Vibrio species
from blood clams, baby clams, and Asian green mussels in the fresh market of Hat Yai,
Songkhla Province, Thailand. A hemolysis test was conducted to detect the pathogenicity
of Vibrio spp. associated with antibiotic susceptibility and biofilm formation. Moreover, the
antimicrobial activity of COS-EGCG conjugate against Vibrio strains was also determined.

2. Materials and Methods
2.1. Chemical and Microbial Media

Microbial media, including thiosulfate citrate bile salt sucrose (TCBS) agar, alkaline
peptone water (APW), Wagatsuma agar base medium, tryptone soy broth (TSB), and tryp-
tone soy agar (TSA), were procured from Oxoid (Thermo Fischer Scientific, Waltham, MA,
USA), except HiCromeTM Vibrio agar, which was bought from HIMEDIA (Himedia labora-
tories, Maharashtra, India). Ethanol was acquired from RBI Labscan™ (Bangkok, Thailand).

2.2. Sample Collection and Vibrio Isolation

Blood clams (Tegillarca granosa) (Figure 1A), baby clams (Paphia undulata) (Figure 1B),
and Asian green mussel (Perna viridis) (Figure 1C) were randomly selected. The samples
were taken two times in only one month, and the second sampling was performed 15 days
after the first sampling from the fresh market of the Hat Yai district, Songkhla Province,
Thailand. In less than an hour, all the samples, in plastic bags under iced conditions,
were carried to the seafood microbiology laboratory, PSU, Hat Yai, Thailand. The samples
were rinsed in sterilized distilled water. The meat from the blood clams (BLs), baby clams
(BBs), and Asian green mussels (Ms) was removed using an aseptic technique. Twenty-five
grams of each sample was homogenized with 225 mL of alkaline peptone water (APW)
(polypeptone, 10 g/L; NaCl, 20 g/L; pH 8.6) with the aid of a stomacher (Stomacher 400
Seaward Medicals, Worthing, UK) at 230 rpm for 1 min. APW is considered to be a good
selective media. Two mixtures were prepared, out of which, one was utilized as a pre-
incubated sample and the other was incubated for 6–8 h at 35 ± 2 ◦C for enrichment [14].
The culture from the pre-incubated sample was diluted from 10−1 to 10−4, and the APW-
enriched culture was diluted from 10−1 to 10−7. Afterward, 100 µL of the diluted samples
was dispersed on a thiosulfate citrate bile salt sucrose (TCBS) agar plate and incubated
at 37 ◦C for 24 h. The green and yellow-colored colonies were selected and stored in 20%
glycerol (v/v) in TSB with 3% NaCl (w/v) medium (TSB-3N). All Vibrio spp. were kept at
−80 ◦C till further study.

2.3. Classification and Identification of Vibrio

The green and yellow colonies of Vibrio on TCBS agar were further cultured on an
HiCromeTM Vibrio agar plate, which was incubated under the same condition as TCBS
agar plates. Based on the colony characteristics, all the isolates with similar characteristics
on each media were grouped.

2.4. Pathogenicity Detection of Vibrio Isolates

A hemolytic test on a blood agar medium was used for the pathogenicity detec-
tion of Vibrio isolates [19]. A hemolysis assay was carried out using Wagatsuma agar
base medium containing 5% human erythrocyte. Erythrocytes were washed with cold
phosphate-buffered saline (PBS) solution three times and centrifuged at 4000× g at 4 ◦C
for 5 min. The erythrocyte pellet was resuspended in PBS before use. Vibrio cultures in
TSB-3N medium were adjusted to a 0.5 McFarland standard (~108 CFU/mL) with NSS after
24 h of incubation at 37 ◦C. Thereafter, 2 µL of the culture was inoculated on Wagatsuma
blood agar (WBA) plates and then subjected to incubation at 37 ◦C for 24 h [20]. The
β-hemolysis-positive Vibrio strains were selected for identification using Matrix-Assisted
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Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS) (MALDI-
Biotyper® system, microflex LT; Bruker Daltonik GmbH, Bremen, Germany) as described
previously by Moussa et al. [21].
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2.5. Biofilm Formation

For the biofilm formation test, the crystal violet (CV) staining method was adopted [22].
Overnight cultures of β-hemolysis-positive Vibrio strains were diluted 50-fold using 200 µL
of TSB-3N medium in a 96-well plate and incubated at 37 ◦C for 48 h. The planktonic cells
were transferred to the new 96-well plate to measure the bacterial cell density at 600 nm
(A600). Thereafter, the culture plate was washed with 200 µL of sterile PBS solution 3 times,
and the adhered bacterial cells were stained with 200 µL of 0.1% CV solution for 15 min.
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The wells were thoroughly washed with 200 µL of sterile distilled water thrice and then
dried under laminar flow for 4 h. To solubilize the bound dye in each well, 200 µL of
ethanol was added to the wells. The absorbance at 570 nm (A570) was read. The relative
biofilm formation index (BFI) was determined by the following equation:

BFI =
AB − CW
GB − GW

where AB is the A570 of CV-stained biofilm forming on the wells after 48 h, CW is the A570
of CV-stained blank wells considered as a control containing only TSB-3N, GB is the A600 of
the bacterial culture in the wells after 48 h, and GW is the A600 of TSB-3N without bacteria.
The degree of biofilm production was characterized as non-biofilm forming (BFI < 0.35),
weak biofilm forming (0.35 ≤ BFI ≤ 0.69), moderate biofilm forming (0.70 ≤ BFI ≤ 1.09),
and strong biofilm forming (BFI ≥ 1.10) [23].

The BFI determines the ability for biofilm formation and their production dynamics
over time, the biofilm quantity, and the level of biofilm dispersal [24].

2.6. Detection of Virulence Genes

Three virulence genes, including thermostable direct hemolysin (tdh), tdh-related
hemolysin (trh), and thermolabile hemolysin (tlh), were selected for detection among all
the β-hemolysis-positive Vibrio isolates using specific primers [25]. A V. parahaemolyticus
HVP2 strain gifted by the Faculty of Medicine, PSU, Hat Yai, was used as a positive control,
and sterile distilled water was used as a negative control for the aforesaid virulence genes.
Bacterial DNA extraction was performed using a DNeasy UltraClean Bacteria kit (Qiagen
DNeasy® UltraClean® Microbial Kit, Germany) according to the manufacturer’s protocol.
The genomic DNA quality was measured using a NanoDrop Lite Plus Spectrophotometer
(Thermo Fisher Scientific, Wilmington, DE, USA). PCR reaction mixture and condition tests
were performed to detect the tdh, trh, and tlh genes described by Palamae et al. [14]. The
specific primers of the virulence genes are shown in Table 1. PCR products were measured
on 2% agarose gel electrophoresis and stained with 1 µg/mL ethidium bromide to measure
the band under UV light.

Table 1. Primers used for the detection of virulence genes and 16s rRNA gene amplification.

Target Genes Primers Sequence (5’-3’) Amplicon Size (bp) References

tdh
tdh-F GTAAAGGTCTCTGACTTTTGGAC

269

Siddique et al. (2021)
[25]

tdh-R TGGAATAGAACCTTCATCTTCACC

tlh
tlh-F AAAGCGGATTATGCAGAAGCACTG

450tlh-R GCTACTTTCTAGCATTTTCTCTGC

trh
trh-F TTGGCTTCGATATTTTCAGTATCT

500trh-R CATAACAAACATATGCCCATTTCCG

16s rRNA
27F AGAGTTTGATCCTGGCTCAG

1400
Palamae et al. (2022)

[14]1429R GGTTACCTTGTTACGACTT

2.7. Antibiotic Susceptibility

The antibiotic susceptibility of all β-hemolysis-positive Vibrio isolates was determined
using the SensititreTM broth microdilution system (Trek Diagnostic Systems, Cleveland, OH,
USA) [26]. Vibrio isolates were cultured on TSA-3N agar and incubated at 37 ◦C overnight.
After incubation, the bacterial cultures were suspended with sterile NSS to obtain turbidity
equal to the 0.5 McFarland standard. Each bacterial suspension (100 µL) was transferred
to cation-adjusted Mueller Hinton broth (MHB) for 10 mL. Then 100 µL of the mixture
was transferred into each well of the CML1FMAR custom MIC plates (Trek Diagnostic
Systems Inc., Cleveland, OH, USA) containing 21 different antibiotics, including amikacin
(AN), amoxicillin/clavulanic acid (AMC), ampicillin (AM), ampicillin/sulbactam (SAM),
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cefepime (FEP), cefotaxime (CTX), cefoxitin (FOX), ceftazidime (CAZ), ceftriaxone (CRO),
cefuroxime (CXM), ciprofloxacin (CIP), colistin (CL), doripenem (DOR), ertapenem (ETP),
gentamicin (GM), imipenem (IPM), levofloxacin (LVX), meropenem (MEM), netilmicin
(NET), piperacillin/tazobactam (TZP), and trimethoprim/sulfamethoxazole (SXT) to obtain
the final concentration of 200 µL. The panels were sealed and incubated at 35 ± 2 ◦C for
18 h [27]. The MIC values were measured after incubation. The MIC value of the antibiotic
was the lowest concentration of antibiotic that inhibits the growth of bacteria. There are
four categories for the interpretation of the antibiotic susceptibility test: susceptible (S),
intermediate (I), resistant (R), or, in some cases, no interpretation (NI). NI indicates that the
MIC could not be determined at the concentrations of the antibiotic used. The results of the
MIC were interpreted using approved clinical resistance breakpoints following the Clinical
and Laboratory Standards Institute (CLSI) document M45 [27]. The bacteria that showed
resistance to two or more antibiotics were defined as multidrug resistance (MDR) strains.

2.8. Bacterial Identification

The β-hemolysis-positive and multidrug-resistant Vibrio isolates were selected for
identification using 16s rRNA gene sequencing. The PCR reaction was performed in an
Eppendorf™ Mastercycler™ Nexus Thermal Cycler (Eppendorf, Hamburg, Germany)
using a universal primer specific to the 16s rRNA gene (Table 1). The genomic DNA was
diluted to 50 ng/µL to be subject to PCR reaction. The conditions for the amplification
of the 16s rRNA gene were considered, following Pascual et al. [28]. The PCR products
were further purified using a PureLinkTM Quick PCR Purification Kit (Invitrogen, Thermo
Fischer Scientific, Baltics, NA, USA). The purified PCR products were sequenced directly by
Macrogen Inc., Korea, using universal primers. The consensus sequences were compared
to the sequences of type strains of the bacteria in the EzBioCloud database using a 16s-
based ID feature for searching the most similar species based on 16s rDNA sequences.
The multiple alignment of sequences was analyzed using the ClustalW of the MEGA
version 11 software package [29]. A phylogenetic tree was constructed using the distance
neighbor-joining (NJ) method with 1000 bootstrap replicants.

2.9. Effect of COS-EGCG Conjugate on Inhibition of MDR Vibrio Strains
2.9.1. Preparation of COS-EGCG Conjugate

COS–EGCG was prepared using the AsA/H2O2 redox pair method as mentioned by
Mittal et al. [16].

2.9.2. Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration
(MBC)

The MIC and MBC of the COS-EGCG conjugate against five MDR Vibrio strains (BL99,
BL105, BL186, M34, and M105) were determined in a 96-well plate using a colorimetric
broth microdilution [18]. The COS-EGCG conjugate powder was dissolved with 0.01%
acetic acid and sterilized by filtration using a 0.22 µm Millipore filter. The COS-EGCG
conjugate solution was diluted with Mueller Hilton broth (MHB) (DifcoTM, Baltimore,
MD, USA) containing 3% NaCl (w/v), using a two-fold serial dilution method in a 96-well
plate in triplicate to obtain ten various concentrations (50 µL/well). All five isolates
were cultured in TSB with 3% NaCl and incubated at 37 ◦C for 18 h. The inoculum was
prepared with 0.85% NSS to obtain a bacterial turbidity to equal the 0.5 McFarland standard
(~1.5 × 108 CFU/mL) and then diluted with TSB-3N to obtain 1.5 × 106 CFU/mL. The
inoculum was added to each well with 50 µL. The final concentrations of COS-EGCG
conjugate were in a range of 4–2048 µg/mL. The 96-well plate was incubated for 15 h, and
then 20 µL of 0.18% resazurin dye solution was added to each well. The 96-well plate was
incubated for 3 h according to the same conditions. The lowest concentration of COS-EGCG
conjugate with a blue/purple color in the wells was recorded as the MIC value. All the
blue/purple-color wells were selected to determine the MBC value on Mueller Hilton agar
(MHA) (DifcoTM, Baltimore, MD, USA) added with 3% NaCl (w/v) by drop plate method
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with 2 µL. After incubation at 37 ◦C for 18 h, the lowest concentration of COS-EGCG
conjugate in which Vibrio colony was not detected on the MHA with a 3% NaCl plate was
recorded as the MBC value. Positive and negative controls were prepared using 0.01%
acetic acid in MHA containing 3% NaCl with and without bacteria, respectively.

2.9.3. Scanning Electron Microscopy (SEM)

The effect of the COS-EGCG conjugate on the morphology of the five MDR Vibrio
spp. was visualized using an FEI quanta 400 scanning electron microscope (FEI, Brno,
Czech Republic). The inoculum of these isolates was prepared with 0.85% NSS to obtain
106 CFU/mL after incubation in TSB with 3% NaCl at 37 ◦C for 18 h. Thereafter, the
inoculum was treated with COS-EGCG conjugate at the final concentration of 4× MIC,
followed by incubation at 37 ◦C for 18 h. The inoculum without any treatment was
considered as a control. The treated culture was further centrifuged at 3000× g for 5 min,
and the obtained cell pellet was then resuspended with 0.1 M phosphate buffer (pH 7.2).
Furthermore, fixation and dehydration were carried out as mentioned by Buatong et al. [18].

2.10. Statistical Analysis

A completely randomized design (CRD) was used throughout the investigation. The
analysis was replicated three times (n = 3).

3. Results and Discussion
3.1. Morphological Identification of Vibrio spp. Colonies

All samples, including blood clams (n = 2), baby clams (n = 2), and Asian green
mussels (n = 2), were used for Vibrio isolation. Six hundred and forty-nine Vibrio isolates
were obtained from the aforesaid samples on TCBS agar (Table 2). The colony colors on the
TCBS agar included green colonies (237 isolates) and yellow colonies (412 isolates). Based
on the colony color from the HiCromeTM Vibrio agar, the Vibrio isolates were classified
into five groups, including creamy white, fluorescent green, dark green, green, and purple
(Table 2). The group representative isolates of these six groups were randomly selected
to be identified by MALDI Biotyper® analysis. The identification of Vibrio isolated from
mollusks using the MALDI-TOF-MS tool has been reported [21,30]. Isolates from blood
clams, baby clams, and Asian green mussels having green-colored colonies on TCBS and
with creamy white, dark green, and purple-colored colonies on HiCromeTM Vibrio agar
were identified as V. harveyi, V. parahaemolyiticus, and V. vulnificus, respectively, while the
yellow-colored colonies on TCBS with creamy white, fluorescent green, and light green-
colored colonies on HiCromeTM Vibrio agar were identified as V. navarrensis, V. fluvialis,
and V. alginolyticus, respectively (Table 2). Both colored colonies were round in shape, with
a diameter of 2–3 mm. The dominant species of Vibrio in blood clams and baby clams were
V. alginolyticus, V. navarrensis, and V. parahaemolyiticus. The dominant species, including
V. diabolicus, V. alginolyticus, V. parahaemolyticus, and V. harveyi, have been reported [31].
Furthermore, V. parahaemolyiticus, V. fluvialis, and V. navarrensis were the dominant species
in Asian green mussels (Table 2). Compared to other previous reports of Vibrio species in
Asian green mussels (Perna viridis), V. alginolyticus was the most abundant species, followed
by V. parahaemolyticus and V. cholerae, respectively [32]. However, the dominant species of
Vibrio in baby clams has never been reported; this study could be the first report of Vibrio
spp. in baby clams.
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Table 2. Color characteristics of Vibrio colonies on TCBS and HiCromeTM Vibrio agar and identifica-
tion of Vibrio using MALDI Biotyper® analysis.

TCBS HiCromeTM Vibrio MALDI Biotyper® Analysis BL BB M Total of Each Character

Yellow
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3.2. Hemolysis

Normally, hemolysin is a type of exotoxin capable of rupturing cell membranes, re-
sulting in the erythrocyte membrane lysis with the liberation of hemoglobin known as
hemolysis [33]. There are three different varieties of hemolysis, including α-hemolysis
(some blood cells are seen in the hemolysis zone), β-hemolysis (a clear zone is observed
around the expanding colonies, resulting in hemolysis), and γ-hemolysis (no clear zone
or blood hemolysis is visible) [8]. The majority of the isolates (n = 371; 57.20%) showed γ-
hemolysis, indicating the absence of hemolysis, followed by α-hemolysis (n = 257; 39.60%),
in which hemoglobin in red blood cells was oxidized to methemoglobin. Moreover, 21 iso-
lates (3.2%) showed β-hemolysis (Figure 2), indicating true hemolysis [34]. The highest
number of β-hemolysis-positive isolates was found in blood clams, followed by Asian
green mussels and baby clams. Based on the colony characteristics obtained on TCBS
agar and HiCromeTM Vibrio agar plates, all 21 isolates were identified, followed by con-
firmation by MALDI Biotyper® analysis (Table 3). The result suggested the abundance of
V. alginolyticus in blood clams and baby clams, whereas Asian green mussels showed an
abundance of V. parahaemolyticus, considered to be a major cause of pathogen infection in
seafood products. It is usually associated with cases of diarrhea and is opportunistically
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infective to humans, causing wound infections in patients through soft tissue, ear, and skin
lesions debased by seawater [35]. According to Hikmawati et al. [32], V. parahaemolyticus
showed the Kanagawa phenomenon (β–hemolysis) in 57% of cases, indicating that the
isolates were capable of hemolyzing human erythrocytes and providing a risk to those
who ingest raw or uncooked mollusks. In comparison to bacteria without β-hemolysis,
those with β–hemolysis might multiply more quickly in the gastrointestinal system. This
ability plays a crucial role in determining the virulence of a particular Vibrio species. The
pathogenicity can be determined by the generation of enterotoxin during both β–hemolysis
and α-hemolysis. The strain that has β–hemolysis can persist longer than that without
β–hemolysis [32].
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incubation at 37 ◦C for 24 h. The labels on the plates represent the strains of Vibrio spp., NSS was
used as negative control (N), and the clinical strain of V. parahaemolyticus strain HVP2 was used as
positive control (P). BL, BB, and M: Vibrio strains from blood clams, baby clams, and Asian green
mussels, respectively.

Table 3. Species identification of 21 positive β-hemolysis Vibrio isolates using MALDI Biotyper®

analysis.

Vibrio Strains Species

BL2, BL48, BL56, BL87, BL95, BL99, BB73, BB103, M69, BL133 Vibrio alginolyticus
BL105, M34, M68, M105 Vibrio navarrensis

BL186 Vibrio fluvialis
BL18, BL82, BL84, BL85, BL90, BL92 Vibrio parahaemolyticus

For the captions, see Figure 2.

3.3. Presence of Virulence Gene

For further confirmation of the 21 β-hemolysis-positive isolates, the virulence genes
encoding the tdh, tlh, and trh genes were observed by DNA extraction of the isolates, fol-
lowed by PCR amplification. Gel electrophoresis for the final PCR products was performed,
to confirm the presence of the genes encoding tdh, tlh, and trh (Figure 3). The trh gene is a
heat-labile toxin, which is immunologically related to tdh, and both of these genes have
a similar homology (70%). The tdh gene is a pore-forming toxin that can produce pores
in erythrocyte membranes. Water and ions could easily pass due to their relatively high
pores [36]. The tlh genes can encode the Vibrio enterotoxin called thermoliable hemolysin
(tlh), which can lyse the blood cells. All the clinical and environmental strains of V. para-
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haemolyticus carry the tlh gene, so it is markedly more common in situations and responsible
for intestine infection [37]. Based on this observation, six isolates (BL18, BL82, BL84, BL85,
BL90, and BL92) isolated from blood clams among the 21 β-hemolysis-positive isolates were
confirmed to be V. parahaemolyticus, as indicated by a positive response (tlh+), whereas all
the other Vibrio spp. isolates from baby clams and Asian green mussels indicated a negative
response (tlh-), indicating them as non-V. parahaemolyticus isolates (Figure 3). Malcolm
et al. [38] reported thatthe blood clams purchased from retailers in Malaysia were stated
to have a high incidence of pathogenic V. parahaemolyticus, which may be an important
microbiological hazard linked to the consumption of raw or undercooked products. V.
parahaemolyticus has been identified by PCR using the tlh, tdh, and trh genes in the Middle
Black Sea Coast of Turkey. Similarly, a species-specific gene called tlh was used to detect
complete V. parahaemolyticus, and the hemolysin genes tdh and trh were used to identify the
virulent strains [39]. It was also discovered that the majority of V. parahaemolyticus strains
recovered from seafood samples lack the tdh and trh genes. However, V. parahaemolyticus
has a complicated and interacting pathogenicity [39].

Foods 2024, 13, x FOR PEER REVIEW 12 of 22 
 

 

Table 3. Species identification of 21 positive β-hemolysis Vibrio isolates using MALDI Biotyper® 
analysis. 

Vibrio Strains Species 

BL2, BL48, BL56, BL87, BL95, BL99, BB73, BB103, 
M69, BL133 

Vibrio alginolyticus  

BL105, M34, M68, M105 Vibrio navarrensis  

BL186 Vibrio fluvialis  

BL18, BL82, BL84, BL85, BL90, BL92 Vibrio parahaemolyticus  
For the captions, see Figure 2. 

3.3. Presence of Virulence Gene 
For further confirmation of the 21 β-hemolysis-positive isolates, the virulence genes 

encoding the tdh, tlh, and trh genes were observed by DNA extraction of the isolates, fol-
lowed by PCR amplification. Gel electrophoresis for the final PCR products was per-
formed, to confirm the presence of the genes encoding tdh, tlh, and trh (Figure 3). The trh 
gene is a heat-labile toxin, which is immunologically related to tdh, and both of these genes 
have a similar homology (70%). The tdh gene is a pore-forming toxin that can produce 
pores in erythrocyte membranes. Water and ions could easily pass due to their relatively 
high pores [36]. The tlh genes can encode the Vibrio enterotoxin called thermoliable hemo-
lysin (tlh), which can lyse the blood cells. All the clinical and environmental strains of V. 
parahaemolyticus carry the tlh gene, so it is markedly more common in situations and re-
sponsible for intestine infection [37]. Based on this observation, six isolates (BL18, BL82, 
BL84, BL85, BL90, and BL92) isolated from blood clams among the 21 β-hemolysis-positive isolates 
were confirmed to be V. parahaemolyticus, as indicated by a positive response (tlh+), whereas all the 
other Vibrio spp. isolates from baby clams and Asian green mussels indicated a negative response 
(tlh-), indicating them as non-V. parahaemolyticus isolates (Figure 3). Malcolm et al. [38] reported 
thatthe blood clams purchased from retailers in Malaysia were stated to have a high incidence of 
pathogenic V. parahaemolyticus, which may be an important microbiological hazard linked to the 
consumption of raw or undercooked products. V. parahaemolyticus has been identified by PCR using 
the tlh, tdh, and trh genes in the Middle Black Sea Coast of Turkey. Similarly, a species-specific gene 
called tlh was used to detect complete V. parahaemolyticus, and the hemolysin genes tdh and trh were 
used to identify the virulent strains [39]. It was also discovered that the majority of V. parahaemolyt-
icus strains recovered from seafood samples lack the tdh and trh genes. However, V. parahaemolyticus 
has a complicated and interacting pathogenicity [39]. 

 

Figure 3. Amplification of tlh gene in β-hemolysis-positive Vibrio spp. using specific primers. Lane P:
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3.4. Biofilm Formation

Out of 21 β-hemolysis-positive Vibrio strains, only nine isolates, out of which eight
were isolated from blood clams (BL2, BL85, BL87, BL90, BL99, BL105, BL133, and BL186)
and one from Asian green mussels (M68), showed a strong biofilm formation as advocated
by the BFI (Figure 4 and Table 2), whereas one isolate from blood clam (BL95) and one
from Asian green mussels (M34) showed a moderate biofilm formation. The remaining
six isolates from blood clams (BL18, BL48, BL56, BL82, BL84, and BL92), two isolates from
baby clams (BB73 and BB103), and two isolates from Asian green mussels (M69 and M105)
showed non-biofilm formation based on the BFI. Amongst all the other isolates, BL186,
corresponding to V. fluvialis, showed a higher biofilm formation ability than the remaining
eight isolates. Biofilm is a major contributor to persistent and recurring infections caused
by clinically significant pathogens globally and resistant to antibiotic therapy. This is
because the development of biofilms and the subsequent encapsulation of bacterial cells in
a complicated matrix might increase bacterial resistance to antimicrobials and sterilizing
treatments, making it challenging to eliminate and manage these organisms [40]. To
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adhere to the surfaces of foods, microorganisms can form biofilms by secreting extracellular
polymers to encapsulate themselves in an extracellular matrix. Reversible attachment,
irreversible adhesion, early biofilm structure development (the formation of tiny colonies),
biofilm maturation, cell separation, and diffusion are the five sequential processes in the
formation of a biofilm [41]. By employing an altered metabolism, gene expression, and
protein production within the biofilm, the bacteria can adjust to environmental anoxia and
nutritional limitations, which can result in a slower metabolic rate and a slower rate of cell
division. Overall, these modifications make the bacteria more resistant to antimicrobial
therapy [42].
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3.5. Antibiotic Resistance of Selected Isolates

β-hemolysis-positive isolates were analyzed against 21 different antibiotics. There
were noticeable differences in susceptibility toward the 21 antibiotics for these isolates
(Table 4). Out of the 21 isolates, 4 isolates (BL99, BL105, M34, and M105) were resistant
to CTX and CXM. Moreover, the BL186 isolate was resistant to six antibiotics, including
AMC, SAM, CTX, CXM, MEM, and SXT. Antibiotic resistance in Vibrio is getting worse
and is currently one of the main risks to public health and global aquaculture. A danger
to human health could be indicated by the presence of possibly resistant and pathogen-
related taxonomic groupings (Acinetobacter, Arcobacter, and Clostridium) (Huang et al., 2022).
Gxalo et al. [43] observed that Vibrio species exhibited an AMC resistance greater than 85%.
Cefuroxime (CXM), a third-generation antibiotic, likewise showed a resistance of more
than 75% among the Vibrio isolates, and the results were comparable as reported by Gxalo
et al. [43]. Biofilm-forming bacteria are extremely resilient to changing conditions, including
detergents and antibiotics [44]. A high resistance to drugs can be the result of a high ability
to form biofilms. Among strong biofilm-forming isolates, BL99, BL105, and M34 were also
resistant to antibiotics. Other isolates were unable to form biofilms and were consequently
susceptible to antibiotics. A bacterium can create a biofilm to protect itself from harmful
environmental factors, including antibiotics and antimicrobial compounds [45]. Based on
the MDR analysis, Asian green mussels and blood clams possessed MDR strains, whereas
no such strain was found in the baby clams. In Thailand, people prefer consuming bivalve
mollusks, especially blood clams and Asian green mussels. The most MDR strains were
found in Vibrio spp. obtained from blood clams, according to our study. Consequently, an
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emphasis will be placed on investigating the antibiotic susceptibility of Vibrio spp. isolated
from blood clams and Asian green mussels. Obtaining more MDR strains is probable when
there are more samples. Furthermore, further research on the antibiotic resistance genes in
resistant strains will be studied. The selected MDR strains, namely, BL99, BL105, BL186,
M34, and M105, were further identified and treated with the COS-EGCG conjugate.

Table 4. Antibiotic resistance profiles of 21 β-hemolysis-positive Vibrio spp.

Antibiotics
Concentration

(µg/mL)

Vibrio Strains

BL2, BL18, BL48, BL82, BL87, BL90,
BL92, BL95, BL133, M68, M69

BL56, BL84,
BL85, BB103 BB73 BL99 BL105 BL186 M34 M105

AN 8–32 S S S S S S S S
AMC 4/2–16/8 S S S S I R I I
AM 8–16 NI NI NI NI NI NI NI NI

SAM 4/2–16/8 S S S S I R I I
FEP 1–32 S S S S S S I S
CTX 1–32 S S S R R R R R
FOX 4–16 NI NI NI NI NI NI NI NI
CAZ 1–32 S S S S S S S S
CRO 0.5–32 NI NI NI NI NI NI NI NI
CXM 8–16 S I NM R R R R R
CIP 0.06–2 S S S S S S S S
CL 1–8 NI NI NI NI NI NI NI NI

DOR 0.5–16 NI NI NI NI NI NI NI NI
ETP 0.5–4 NI NI NI NI NI NI NI NI
GM 2–8 S S S S S S S S
IPM 0.5–16 S S S S S S S S
LVX 0.06–8 S S S S S S S S

MEM 0.5–16 S S S S S R S S
NET 8–16 NI NI NI NI NI NI NI NI
TZP 8/4–64/4 S S S S S S S S
SXT 1/19–4/76 S S S S S R S S

S: susceptible; I: intermediate; R: resistant; NI: no interpretation; NM: not mentioned. For the captions, see
Figure 2.

3.6. Molecular Identification Using 16s rRNA Gene Sequencing

The five strains of MDR Vibrio were subjected to identification based on partial se-
quences of the 16s rRNA gene. The nucleotide sequences of the MDR Vibrio strains were
compared with the related species of strains from EZBioCloud databases. The phylogenetic
tree was constructed by MEGA 11 using the neighbor-joining method, which showed that
strain BL186 was grouped in the same clade with V. fluvialis and showed a 100% sequence
similarity with V. fluvialis BCZR01000036 (Figure 5). Therefore, the strain BL186 was iden-
tified to be V. fluvialis, which is a newly recognized foodborne pathogen becoming more
prevalent worldwide. Moreover, many countries have reported diarrheal symptoms in
travelers caused by V. fluvialis, mainly consuming fresh seafood [46]. V. fluvialis can produce
various toxins and is important in pathogenesis, including enterotoxin-like substances,
cytotoxin, and hemolysin [47]. The major hemolysin in V. fluvialis is VHF (Vibrio fluvialis
hemolysin). This toxin causes a pore-formation and induces osmotic lysis in the erythro-
cytes of humans [47]. V. fluvialis strain BL186 was isolated from blood clams and showed
resistance to six antibiotics. The resistance genes can be transferred from Gram-negative
bacteria to Vibrio spp. by plasmid, transposons, integrons, and the SXT element [47]. The
SXT element transferred from V. cholerae to V. vunificus has been reported. Therefore, the V.
fluvialis strain BL186 may receive the resistance gene from other Vibrio spp. of the same habi-
tat. The BL99 strain was closely related to V. neocaledonicus JQ934828, with a high bootstrap
value (Figure 5). When considering the nucleotide sequence, the strain BL99 showed the
most similarity to V. neocaledonicus JQ934828, with a 99.78% similarity. Therefore, the strain
BL99 was identified to be V. neocaledonicus. Strains M34, M105, and BL105 belonged to V.
cidicii LOMK01000001, with the sequence similarity between 98.65 and 98.78%. Therefore,
strains M34, M105, and BL105 were identified as V. cidicii. Although strain BL99 was
identified as V. alginolyticus, strains M34, M105, and BL105 were identified as V. navarensis
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using the MALDI-Biotyper®. The sequence similarity results were different. However, the
misidentification of Vibrio spp. from marine mollusks using the MALDI-Biotyper® database
has been reported. V. jasicida has been misidentified as V. harveyi with Bruker’s database,
even though the matching score was higher than 2 [21]. Furthermore, the identification
of Vibrio by MALDI-TOF-MS is dependent on the database in the machine (Moussa et al.,
2021). Even though MALDI-TOF-MS analysis is the rapid method for Vibrio identification,
it can cause some misidentifications for some species. Therefore, molecular identification
based on the 16s rRNA gene sequence or some housekeeping genes (hsp60, gyrB, topA, pyrH,
ldh, mreB, gapA, ftz, dnaJ) is necessary to confirm the species level of some Vibrio [21].
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3.7. Antimicrobial Activity of COS-EGCG Conjugate against Multidrug-Resistant (MDR)
Vibrio Strains

The antimicrobial effect of COS-EGCG conjugate against the MDR Vibrio strains was
determined. The lowest inhibitory activity was found in Vibrio spp. strains BL99 and
M105, with a MIC and MBC of 128 µg/mL (Table 5). On the other hand, COS-EGCG
conjugate showed the highest antimicrobial activity against Vibrio spp. strains BL186 and
M105, with a MIC and MBC of 64 µg/mL. The BL105 strain showed a MIC and MBC of
64 and 128 µg/mL, respectively. Thus, COS-EGCG conjugate showed bactericidal effects
(MBC/MIC ratio ≤ 4) on MDR Vibrio strains (Table 5). Singh et al. [17] reported that
EGCG is known to exhibit antimicrobial activity against several Gram-negative and Gram-
positive bacteria, causing membrane breakdown, bacterial DNA gyrase inhibition, and
DNA supercoiling prevention, leading to bacterial cell death. The increasing antimicrobial
action of COS was enhanced by EGCG conjugated with COS. The antimicrobial activity of
COS-EGCG conjugate was supported by the damaged cell structure and morphological
changes of the MDR Vibrio strains (Figure 6A–J). When compared to the untreated cells
or controls having a smooth outer cell surface with an intact membrane, the treated cells
showed cell disruption, with pores and degeneration of the bacterial cell wall. The pores in
the treated cells might lead to the exudation of cell components, resulting in the penetration
of COS-EGCG conjugate into the bacterial cell, thus inhibiting the growth of bacteria. It
was also observed that the treated cells had traces of COS-EGCG conjugate attached to the
cell surface, as well as the outer surface. Moreover, the cell density for each treated sample
was less, as compared to that of the untreated cells or control, depicting the effectiveness
of COS-EGCG conjugate on the cells. That EGCG causes cell death by destroying the
bacterial cell and inhibiting various extracellular and intracellular enzymes produced by
bacteria has been reported [48]. An intracellular enzyme known as AKP is located between
the cell membrane and cell wall in the majority of bacteria. Pei et al. [49] reported that
the activity of AKP was increased by the action of EGCG, which was due to cell wall
integrity disturbance. This resulted in the release of AKP into the external environment.
Moreover, COS penetrates to the cell and blocks DNA and RNA transcription when the
negatively charged bacterial cell binds with the positively charged COS, resulting in the
absorption of COS [50]. Thus, the conjugation of COS and EGCG causes the deformed and
distorted structure of the cells. The pores generated favor the leakage of nutrients, leading
to cell lysis.

Table 5. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of
COS-EGCG conjugate against MDR Vibrio strains.

Vibrio Strains MIC (µg/mL) MBC (µg/mL) MBC/MIC Ratio

Vibrio neocaledonicus BL99 128 128 1
Vibrio cidicii BL105 64 128 2

Vibrio fluvialis BL186 64 64 1
Vibrio cidicii M34 128 128 1
Vibrio cidicii M105 64 64 1

BL and M indicate isolates from blood clam and Asian green mussel, respectively.
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4. Conclusions

Vibrio spp. isolated from blood clams, baby clams, and Asian green mussels were
isolated and identified based on their morphology and molecular characterization. From the
MALDI-TOF-MS profiles, most Vibrio species in blood clams, baby clams, and Asian green
mussels were identified to be V. alginolyticus in abundance, followed by V. parahaemolyticus
and V. navarrensis. Out of 649 isolates, 21 isolates were found to be pathogenic, as they were
β-hemolysis-positive. The majority of these isolates were isolated from blood clams. Isolates
from baby clams were less in number and showed no pathogenicity (MDR strains were not
found) compared to blood clams and Asian green mussels. Six tlh-positive Vibrio isolated
from blood clams were found from the 21 isolates of β-hemolysis-positive but did not
show a positive result for tdh or trh gene detection. The species confirmation of MDR Vibrio
isolates was obtained after analyzing the 16s rRNA gene sequence similarity of these isolates
with the type strains. Three species of Vibrio were β-hemolysis-positive and resistant to
antibiotics, including V. fluvialis, V. neocaledonicus, and V. cidicii. Furthermore, COS-EGCG
conjugate showed strong bactericidal activity against those MDR strains. Although COS-
EGCG conjugate showed the potential to lyse the MDR strains in in-vitro conditions, their
activity in a real system should be determined, especially during the storage of mollusks.
These findings highlighted the potential of various Vibrio spp. to contaminate seafood,
especially clams, causing foodborne illness. Further treatment on inactivation is still
required to ensure the safety of consumers, especially cytotoxicity testing. Moreover, the
effects of COS-EGCG conjugate to reduce the contaminated Vibrio spp. in marine bivalve
mollusk products will be studied.
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