Biocontrol Strategy of Listeria monocytogenes in Ready-to-Eat Pork Cooked Ham Using Peptic Hydrolysates of Porcine Hemoglobin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Production of Hb-P and Porcine Cruor Hydrolysates
2.2.1. Hb-P Hydrolysate
2.2.2. Porcine Cruor Hydrolysate
2.3. Determination of the Degree of Hydrolysis
2.4. Characterization of Hydrolysates by Using RP-UPLC-MS/MS and Bioinformatic Tools
2.4.1. Peptide Profiles of Hydrolysates
2.4.2. Identification of Potential Antimicrobial Peptides
2.5. Protein Content of Hydrolysates
2.6. Evaluation of In Vitro Antilisterial Activity of Hydrolysates
2.6.1. Agar Well Diffusion Method
2.6.2. Determination of Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC)
2.7. L. monocytogenes In Situ Challenge Test on Refrigerated Pork Cooked Ham
2.7.1. Preparation of L. monocytogenes Inoculum
2.7.2. Inoculation and Storage of Pork Cooked Ham
2.7.3. Enumeration of L. monocytogenes
2.8. Color Parameters
2.9. Statistical Analysis
3. Results and Discussion
3.1. Degree of Hydrolysis of Hydrolysates
3.2. Characterization of Hydrolysates by Using RP-UPLC-MS/MS and Bioinformatic Tools
3.2.1. Peptide Profiles of Hydrolysates
3.2.2. Identification of Potential Antimicrobial Peptides
3.3. In Vitro Antilisterial Activity of Hydrolysates
3.4. L. monocytogenes Challenge Test of Refrigerated Pork Cooked Ham
3.5. Impact of Hydrolysates on the Color Properties of Ham
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dos Santos, L.R.; Alía, A.; Martin, I.; Gottardo, F.M.; Rodrigues, L.B.; Borges, K.A.; Furian, T.Q.; Córdoba, J.J. Antimicrobial activity of essential oils and natural plant extracts against Listeria monocytogenes in a dry-cured ham-based model. J. Sci. Food Agric. 2022, 102, 1729–1735. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Xie, Y.; Liu, H.; Jin, J.; Duan, H.; Zhang, H. Effects of Two Application Methods of Plantaricin BM-1 on Control of Listeria monocytogenes and Background Spoilage Bacteria in Sliced Vacuum-Packaged Cooked Ham Stored at 4 °C. J. Food Prot. 2015, 78, 1835–1841. [Google Scholar] [CrossRef] [PubMed]
- Figueiredo, A.C.L.; Almeida, R.C.C. Antibacterial efficacy of nisin, bacteriophage P100 and sodium lactate against Listeria monocytogenes in ready-to-eat sliced pork ham. Braz. J. Microbiol. 2017, 48, 724–729. [Google Scholar] [CrossRef] [PubMed]
- Hernandez-Milian, A.; Payeras-Cifre, A. What Is New in Listeriosis? BioMed Res. Int. 2014, 2014, 358051. [Google Scholar] [CrossRef] [PubMed]
- Maertens, C.; Devleesschauwer, B.; Angulo, F.J.; Verbeke, G.; Haagsma, J.; Kirk, M.; Havelaar, A.; Speybroeck, N. The global burden of listeriosis: A systematic review and meta-analysis. Lancet Infect. Dis. 2014, 14, 1073–1082. [Google Scholar] [CrossRef]
- Resendiz-Moctezuma, C.; Rezac, S.D.; Miller, M.J.; Stasiewicz, M.J. Enabling Cost-Effective Screening for Antimicrobials against Listeria monocytogenes in Ham. J. Food Prot. 2020, 84, 802–810. [Google Scholar] [CrossRef] [PubMed]
- Jibo, G.G.; Raji, Y.E.; Salawudeen, A.; Amin-Nordin, S.; Mansor, R.; Jamaluddin, T.Z.M.T. A systematic review and meta-analysis of the prevalence of Listeria monocytogenes in South-East Asia; a one-health approach of human-animal-food-environment. One Health 2022, 15, 100417. [Google Scholar] [CrossRef] [PubMed]
- Magalhães, R.; Mena, C.; Ferreira, V.; Silva, J.; Almeida, G.; Gibbs, P.; Teixeira, P. Bacteria: Listeria monocytogenes. In Encyclopedia of Food Safety; Motarjemi, Y., Ed.; Academic Press: Waltham, MA, USA, 2014; pp. 450–461. [Google Scholar]
- Lee, B.-H.; Cole, S.; Badel-Berchoux, S.; Guillier, L.; Felix, B.; Krezdorn, N.; Hébraud, M.; Bernardi, T.; Sultan, I.; Piveteau, P. Biofilm Formation of Listeria monocytogenes Strains Under Food Processing Environments and Pan-Genome-Wide Association Study. Front. Microbiol. 2019, 10, 2698. [Google Scholar] [CrossRef]
- Colagiorgi, A.; Bruini, I.; Di Ciccio, P.A.; Zanardi, E.; Ghidini, S.; Ianieri, A. Listeria monocytogenes Biofilms in the Wonderland of Food Industry. Pathogens 2017, 6, 41. [Google Scholar] [CrossRef]
- Mazaheri, T.; Cervantes-Huamán, B.R.H.; Bermúdez-Capdevila, M.; Ripolles-Avila, C.; Rodríguez-Jerez, J.J. Listeria monocytogenes Biofilms in the Food Industry: Is the Current Hygiene Program Sufficient to Combat the Persistence of the Pathogen? Microorganisms 2021, 9, 181. [Google Scholar] [CrossRef]
- Thévenot, D.; Dernburg, A.; Vernozy-Rozand, C. An updated review of Listeria monocytogenes in the pork meat industry and its products. J. Appl. Microbiol. 2006, 101, 7–17. [Google Scholar] [CrossRef]
- Cavalcanti, A.A.C.; Limeira, C.H.; Siqueira, I.N.d.; Lima, A.C.d.; Medeiros, F.J.P.d.; Souza, J.G.d.; Medeiros, N.G.d.A.; Oliveira Filho, A.A.d.; Melo, M.A.d. The prevalence of Listeria monocytogenes in meat products in Brazil: A systematic literature review and meta-analysis. Res. Vet. Sci. 2022, 145, 169–176. [Google Scholar] [CrossRef] [PubMed]
- Churchill, K.J.; Sargeant, J.M.; Farber, J.M.; O’connor, A.M. Prevalence of Listeria monocytogenes in Select Ready-to-Eat Foods—Deli Meat, Soft Cheese, and Packaged Salad: A Systematic Review and Meta-Analysis. J. Food Prot. 2019, 82, 344–357. [Google Scholar] [CrossRef] [PubMed]
- Figueroa-López, A.M.; Maldonado-Mendoza, I.E.; López-Cervantes, J.; Verdugo-Fuentes, A.A.; Ruiz-Vega, D.A.; Cantú-Soto, E.U. Prevalence and characterization of Listeria monocytogenes isolated from pork meat and on inert surfaces. Braz. J. Microbiol. 2019, 50, 817–824. [Google Scholar] [CrossRef] [PubMed]
- Kovačević, J.; McIntyre, L.F.; Henderson, S.B.; Kosatsky, T. Occurrence and distribution of listeria species in facilities producing ready-to-eat foods in British Columbia, Canada. J. Food Prot. 2012, 75, 216–224. [Google Scholar] [CrossRef] [PubMed]
- Chaitiemwong, N.; Hazeleger, W.C.; Beumer, R.R.; Zwietering, M.H. Quantification of transfer of Listeria monocytogenes between cooked ham and slicing machine surfaces. Food Control 2014, 44, 177–184. [Google Scholar] [CrossRef]
- Shedleur-Bourguignon, F.; Thériault, W.P.; Longpré, J.; Thibodeau, A.; Fravalo, P. Use of an Ecosystem-Based Approach to Shed Light on the Heterogeneity of the Contamination Pattern of Listeria monocytogenes on Conveyor Belt Surfaces in a Swine Slaughterhouse in the Province of Quebec, Canada. Pathogens 2021, 10, 1368. [Google Scholar] [CrossRef] [PubMed]
- Ren, B.; Wu, W.; Soladoye, O.P.; Bak, K.H.; Fu, Y.; Zhang, Y. Application of biopreservatives in meat preservation: A review. Int. J. Food Sci. Technol. 2021, 56, 6124–6141. [Google Scholar] [CrossRef]
- Amiri, S.; Motalebi Moghanjougi, Z.; Rezazadeh Bari, M.; Mousavi Khaneghah, A. Natural protective agents and their applications as bio-preservatives in the food industry an overview of current and future applications. Ital. J. Food Sci. 2021, 33, 55–68. [Google Scholar] [CrossRef]
- Przybylski, R.; Firdaous, L.; Châtaigné, G.; Dhulster, P.; Nedjar, N. Production of an antimicrobial peptide derived from slaughterhouse by-product and its potential application on meat as preservative. Food Chem. 2016, 211, 306–313. [Google Scholar] [CrossRef]
- Hedhili, K.; Vauchel, P.; Dimitrov, K.; Kriaa, K.; Chataigné, G.; Hani, K.; Dhulster, P.; Nedjar-Arroume, N. Mechanism and kinetics modeling of the enzymatic hydrolysis of α1–32 antibacterial peptide. Bioprocess Biosyst. Eng. 2014, 37, 1315–1323. [Google Scholar] [CrossRef] [PubMed]
- Catiau, L.; Traisnel, J.; Chihib, N.-E.; Le Flem, G.; Blanpain, A.; Melnyk, O.; Guillochon, D.; Nedjar-Arroume, N. RYH: A minimal peptidic sequence obtained from beta-chain hemoglobin exhibiting an antimicrobial activity. Peptides 2011, 32, 1463–1468. [Google Scholar] [CrossRef] [PubMed]
- Catiau, L.; Traisnel, J.; Delval-Dubois, V.; Chihib, N.-E.; Guillochon, D.; Nedjar-Arroume, N. Minimal antimicrobial peptidic sequence from hemoglobin alpha-chain: KYR. Peptides 2011, 32, 633–638. [Google Scholar] [CrossRef]
- Adje, E.Y.; Balti, R.; Kouach, M.; Dhulster, P.; Guillochon, D.; Nedjar-Arroume, N. Obtaining antimicrobial peptides by controlled peptic hydrolysis of bovine hemoglobin. Int. J. Biol. Macromol. 2011, 49, 143–153. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Xu, M.; Hang, B.; Wang, L.; Wang, Q.; Chen, J.; Song, T.; Fu, D.; Wang, Z.; Wang, S.; et al. Isolation and characterization of an antimicrobial peptide from bovine hemoglobin α-subunit. World J. Microbiol. Biotechnol. 2011, 27, 767–771. [Google Scholar] [CrossRef]
- Adje, E.Y.; Balti, R.; Kouach, M.; Guillochon, D.; Nedjar-Arroume, N. α 67–106 of bovine hemoglobin: A new family of antimicrobial and angiotensin I-converting enzyme inhibitory peptides. Eur. Food Res. Technol. 2011, 232, 637–646. [Google Scholar] [CrossRef]
- Sanchez-Reinoso, Z.; Cournoyer, A.; Thibodeau, J.; Said, L.B.; Fliss, I.; Bazinet, L.; Mikhaylin, S. Effect of pH on the antimicrobial activity and peptide population of pepsin hydrolysates derived from bovine and porcine hemoglobins. ACS Food Sci. Technol. 2021, 1, 1687–1701. [Google Scholar] [CrossRef]
- Zouari, O.; Przybylski, R.; Hannioui, M.; Sion, L.; Dhulster, P.; Nedjar-Arroume, N. High added-value co-product: The porcine cruor is an attractive source of active peptides. J. Nutr. Health Food Sci. 2020, 7, 1–9. [Google Scholar] [CrossRef]
- Abou-Diab, M.; Thibodeau, J.; Deracinois, B.; Flahaut, C.; Fliss, I.; Dhulster, P.; Bazinet, L.; Nedjar, N. Bovine hemoglobin enzymatic hydrolysis by a new eco-efficient process -part II: Production of bioactive peptides. Membranes 2020, 10, 268. [Google Scholar] [CrossRef]
- Bah, C.S.; Bekhit, A.E.; Carne, A.; McConnell, M.A. Slaughterhouse blood: An emerging source of bioactive compounds. Compr. Rev. Food Sci. Food Saf. 2013, 12, 314–331. [Google Scholar] [CrossRef]
- Health Canada. Determination of the pH of Foods Including Foods in Hermetically Sealed Containers; Health Canada: Ottawa, ON, Canada, 2012.
- Church, F.C.; Swaisgood, H.E.; Porter, D.H.; Catignani, G.L. Spectrophotometric assay using o-phthaldialdehyde for determination of proteolysis in milk and isolated milk proteins. J. Dairy Sci. 1983, 66, 1219–1227. [Google Scholar] [CrossRef]
- Sanchez-Reinoso, Z.; Todeschini, S.; Thibodeau, J.; Ben Said, L.; Fliss, I.; Bazinet, L.; Mikhaylin, S. Impact of pulsed electric fields and pH on enzyme inactivation and bioactivities of peptic hydrolysates produced from bovine and porcine hemoglobin. Foods 2022, 11, 3313. [Google Scholar] [CrossRef]
- Adler-Nissen, J. Enzymic Hydrolysis of Food Proteins; Elsevier Applied Science Publishers: London, UK, 1986. [Google Scholar]
- Kosters, H.A.; Wierenga, P.A.; de Vries, R.; Gruppen, H. Characteristics and effects of specific peptides on heat-induced aggregation of β-lactoglobulin. Biomacromolecules 2011, 12, 2159–2170. [Google Scholar] [CrossRef] [PubMed]
- Kuipers, B.J.H.; Gruppen, H. Prediction of molar extinction coefficients of proteins and peptides using UV absorption of the constituent amino acids at 214 nm to enable quantitative reverse phase high-performance liquid chromatography−mass spectrometry analysis. J. Agric. Food Chem. 2007, 55, 5445–5451. [Google Scholar] [CrossRef]
- Kuipers, B.J.H.; Bakx, E.J.; Gruppen, H. Functional Region Identification in Proteins by Accumulative–Quantitative Peptide Mapping Using RP-HPLC-MS. J. Agric. Food Chem. 2007, 55, 9337–9344. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Li, X.; Wang, Z. APD3: The antimicrobial peptide database as a tool for research and education. Nucleic Acids Res. 2015, 44, D1087–D1093. [Google Scholar] [CrossRef] [PubMed]
- Combet, C.; Blanchet, C.; Geourjon, C.; Deléage, G. NPS@: Network protein sequence analysis. Trends Biochem. Sci. 2000, 25, 147–150. [Google Scholar] [CrossRef]
- NCBI Resource Coordinators. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 2013, 42, D7–D17. [Google Scholar] [CrossRef]
- Simonne, A.H.; Simonne, E.H.; Eitenmiller, R.R.; Mills, H.A.; Cresman, C.P., III. Could the dumas method replace the kjeldahl digestion for nitrogen and crude protein determinations in foods? J. Sci. Food Agric. 1997, 73, 39–45. [Google Scholar] [CrossRef]
- Tahiri, I.; Desbiens, M.; Kheadr, E.; Lacroix, C.; Fliss, I. Comparison of different application strategies of divergicin M35 for inactivation of Listeria monocytogenes in cold-smoked wild salmon. Food Microbiol. 2009, 26, 783–793. [Google Scholar] [CrossRef]
- Pagotto, F.; Trottier, Y.L.; Upham, J.; Iugovaz, I. Enumeration of Listeria monocytogenes in foods. MFLP-74. Compend. Anal. Methods 2011, 3, 1–8. [Google Scholar]
- Gutiérrez, L.-F.; Quiñones-Segura, Y.; Sanchez-Reinoso, Z.; Díaz, D.L.; Abril, J.I. Physicochemical properties of oils extracted from γ-irradiated Sacha Inchi (Plukenetia volubilis L.) seeds. Food Chem. 2017, 237, 581–587. [Google Scholar] [CrossRef] [PubMed]
- Ryle, A.P. [20] The porcine pepsins and pepsinogens. In Methods in Enzymology; Academic Press: Cambridge, MA, USA, 1970; Volume 19, pp. 316–336. [Google Scholar]
- Nedjar-Arroume, N.; Dubois-Delval, V.; Adje, E.Y.; Traisnel, J.; Krier, F.; Mary, P.; Kouach, M.; Briand, G.; Guillochon, D. Bovine hemoglobin: An attractive source of antibacterial peptides. Peptides 2008, 29, 969–977. [Google Scholar] [CrossRef] [PubMed]
- Cournoyer, A.; Thibodeau, J.; Ben Said, L.; Sanchez-Reinoso, Z.; Mikhaylin, S.; Fliss, I.; Bazinet, L. How Discoloration of Porcine Cruor Hydrolysate Allowed the Identification of New Antifungal Peptides. Foods 2022, 11, 4035. [Google Scholar] [CrossRef] [PubMed]
- Adje, E.Y.; Balti, R.; Lecouturier, D.; Kouach, M.; Dhulster, P.; Guillochon, D.; Nedjar-Arroume, N. Controlled Enzymatic Hydrolysis: A New Strategy for the Discovery of Antimicrobial Peptides. Probiotics Antimicrob. Proteins 2013, 5, 176–186. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.-Q.; Regan, P.; Laksanalamai, P.; Healey, S.; Hu, Z. Prevalence and methodologies for detection, characterization and subtyping of Listeria monocytogenes and L. ivanovii in foods and environmental sources. Food Sci. Hum. Wellness 2017, 6, 97–120. [Google Scholar] [CrossRef]
- Naghmouchi, K.; Belguesmia, Y.; Baah, J.; Teather, R.; Drider, D. Antibacterial activity of class I and IIa bacteriocins combined with polymyxin E against resistant variants of Listeria monocytogenes and Escherichia coli. Res. Microbiol. 2011, 162, 99–107. [Google Scholar] [CrossRef]
- Dong, A.; Malo, A.; Leong, M.; Ho, V.T.T.; Turner, M.S. Control of Listeria monocytogenes on ready-to-eat ham and fresh cut iceberg lettuce using a nisin containing Lactococcus lactis fermentate. Food Control 2021, 119, 107420. [Google Scholar] [CrossRef]
- Health Canada. Policy on Listeria Monocytogenes in Ready-to-Eat Foods; Health Canada: Ottawa, ON, Canada, 2011.
- Przybylski, R.; Bazinet, L.; Firdaous, L.; Kouach, M.; Goossens, J.-F.; Dhulster, P.; Nedjar-Arroume, N. Electroseparation of Slaughterhouse By-Product: Antimicrobial Peptide Enrichment by pH Modification. Membranes 2020, 10, 90. [Google Scholar] [CrossRef]
- Otto, C.N. Hemoglobin metabolism. In Rodak’s Hematology, 6th ed.; Keohane, E.M., Otto, C.N., Walenga, J.M., Eds.; Elsevier: St. Louis, MO, USA, 2020; pp. 91–103. [Google Scholar]
- Abou-Diab, M.; Thibodeau, J.; Fliss, I.; Dhulster, P.; Bazinet, L.; Nedjar, N. Production of Demineralized Antibacterial, Antifungal and Antioxidant Peptides from Bovine Hemoglobin Using an Optimized Multiple-Step System: Electrodialysis with Bipolar Membrane. Membranes 2022, 12, 512. [Google Scholar] [CrossRef]
Strain | Serotype | Hb-P Hydrolysate | P-Cru Hydrolysate | ||||||
---|---|---|---|---|---|---|---|---|---|
Inhibition Halo (mm) | MIC (mg/mL) | MBC (mg/mL) | MBC/MIC | Inhibition Halo (mm) | MIC (mg/mL) | MBC (mg/mL) | MBC/MIC | ||
ATCC 19112 | 2 (1/2c) | 12.0 ± 0.0 A,b | 5.00 ± 0.00 A,a | 5.00 ± 0.00 A,b | 1.00 ± 0.00 | 12.0 ± 0.0 A,b | 5.00 ± 0.00 A,a | 5.00 ± 0.00 A,b | 1.00 ± 0.00 |
ATCC 19115 | 4b | 13.7 ± 0.3 A,a | 0.63 ± 0.00 A,c | 2.50± 0.00 B,c | 4.00 ± 0.00 | 13.3 ± 0.3 A,a | 0.63 ± 0.00 A,c | 5.00 ± 0.00 A,b | 8.00 ± 0.00 |
ATCC 15313 | 1/2a | 12.7 ± 0.3 A,ab | 1.25 ± 0.00 B,b | >20.00 ± 0.00 A,a | >16.00 ± 0.00 | 12.3 ± 0.3 A,ab | 2.50 ± 0.00 A,b | >20.00 ± 0.00 A,a | >8.00 ± 0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sanchez-Reinoso, Z.; Todeschini, S.; Thibodeau, J.; Ben Said, L.; Fliss, I.; Bazinet, L.; Mikhaylin, S. Biocontrol Strategy of Listeria monocytogenes in Ready-to-Eat Pork Cooked Ham Using Peptic Hydrolysates of Porcine Hemoglobin. Foods 2024, 13, 2394. https://doi.org/10.3390/foods13152394
Sanchez-Reinoso Z, Todeschini S, Thibodeau J, Ben Said L, Fliss I, Bazinet L, Mikhaylin S. Biocontrol Strategy of Listeria monocytogenes in Ready-to-Eat Pork Cooked Ham Using Peptic Hydrolysates of Porcine Hemoglobin. Foods. 2024; 13(15):2394. https://doi.org/10.3390/foods13152394
Chicago/Turabian StyleSanchez-Reinoso, Zain, Sarah Todeschini, Jacinthe Thibodeau, Laila Ben Said, Ismail Fliss, Laurent Bazinet, and Sergey Mikhaylin. 2024. "Biocontrol Strategy of Listeria monocytogenes in Ready-to-Eat Pork Cooked Ham Using Peptic Hydrolysates of Porcine Hemoglobin" Foods 13, no. 15: 2394. https://doi.org/10.3390/foods13152394
APA StyleSanchez-Reinoso, Z., Todeschini, S., Thibodeau, J., Ben Said, L., Fliss, I., Bazinet, L., & Mikhaylin, S. (2024). Biocontrol Strategy of Listeria monocytogenes in Ready-to-Eat Pork Cooked Ham Using Peptic Hydrolysates of Porcine Hemoglobin. Foods, 13(15), 2394. https://doi.org/10.3390/foods13152394