Nitrogen Gas-Assisted Extrusion for Improving the Physical Quality of Pea Protein-Enriched Corn Puffs with a Wide Range of Protein Contents
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Particle Size Analysis
2.3. Extrusion Process
2.4. Radial Expansion Index, Extrudate Density and Porosity
2.5. Texture and Mechanical Properties
2.6. Statistical Analysis
3. Results and Discussion
3.1. Proximate Composition and the Particle Size Distribution of the Raw Materials
3.2. Extrusion Parameters
3.3. Radial Expansion Index, Extrudate Density and Porosity
3.4. Texture and Mechanical Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gaeini, Z.; Malmir, H.; Mirmiran, P.; Feizy, Z.; Azizi, F. Snack Consumption Patterns and Their Associations with Risk of Incident Metabolic Syndrome: Tehran Lipid and Glucose Study. Nutr. Metab. 2023, 20, 25. [Google Scholar] [CrossRef] [PubMed]
- Grand View Research Healthy Snacks Market Size, Share & Trends Analysis Report by Product (Frozen & Refrigerated, Dairy), by Claim (Gluten-Free, Low/No Fat), by Packaging, by Distribution Channel, by Region, and Segment Forecasts, 2023–2030. Available online: https://www.grandviewresearch.com/industry-analysis/healthy-snack-market (accessed on 5 September 2023).
- Morales, F.E.; Tinsley, G.M.; Gordon, P.M. Acute and Long-Term Impact of High-Protein Diets on Endocrine and Metabolic Function, Body Composition, and Exercise-Induced Adaptations. J. Am. Coll. Nutr. 2017, 36, 295–305. [Google Scholar] [CrossRef] [PubMed]
- Paraman, I.; Supriyadi, S.; Wagner, M.E.; Rizvi, S.S.H. Prebiotic Fibre-Incorporated Whey Protein Crisps Processed by Supercritical Fluid Extrusion. Int. J. Food Sci. Technol. 2013, 48, 2193–2199. [Google Scholar] [CrossRef]
- Philipp, C.; Buckow, R.; Silcock, P.; Oey, I. Instrumental and Sensory Properties of Pea Protein-Fortified Extruded Rice Snacks. Food Res. Int. 2017, 102, 658–665. [Google Scholar] [CrossRef] [PubMed]
- Philipp, C.; Oey, I.; Silcock, P.; Beck, S.M.; Buckow, R. Impact of Protein Content on Physical and Microstructural Properties of Extruded Rice Starch-Pea Protein Snacks. J. Food Eng. 2017, 212, 165–173. [Google Scholar] [CrossRef]
- Luo, S.; Koksel, F. Application of Physical Blowing Agents in Extrusion Cooking of Protein Enriched Snacks: Effects on Product Expansion, Microstructure, and Texture. Trends Food Sci. Technol. 2023, 133, 49–64. [Google Scholar] [CrossRef]
- Cho, K.Y.; Rizvi, S.S.H. The Time-Delayed Expansion Profile of Supercritical Fluid Extrudates. Food Res. Int. 2008, 41, 31–42. [Google Scholar] [CrossRef]
- Luo, S.; Chan, E.; Masatcioglu, M.T.; Erkinbaev, C.; Paliwal, J.; Koksel, F. Effects of Extrusion Conditions and Nitrogen Injection on Physical, Mechanical, and Microstructural Properties of Red Lentil Puffed Snacks. Food Bioprod. Process. 2020, 121, 143–153. [Google Scholar] [CrossRef]
- Chan, E.; Masatcioglu, T.M.; Koksel, F. Effects of Different Blowing Agents on Physical Properties of Extruded Puffed Snacks Made from Yellow Pea and Red Lentil Flours. J. Food Process Eng. 2019, 42, e12989. [Google Scholar] [CrossRef]
- Koksel, F.; Masatcioglu, M.T. Physical Properties of Puffed Yellow Pea Snacks Produced by Nitrogen Gas Assisted Extrusion Cooking. LWT–Food Sci. Technol. 2018, 93, 592–598. [Google Scholar] [CrossRef]
- Robin, F.; Engmann, J.; Pineau, N.; Chanvrier, H.; Bovet, N.; Valle, G.D. Extrusion, Structure and Mechanical Properties of Complex Starchy Foams. J. Food Eng. 2010, 98, 19–27. [Google Scholar] [CrossRef]
- Alaoui, A.H.; Woignier, T.; Scherer, G.W.; Phalippou, J. Comparison between Flexural and Uniaxial Compression Tests to Measure the Elastic Modulus of Silica Aerogel. J. Non-Cryst. Solids 2008, 354, 4556–4561. [Google Scholar] [CrossRef]
- Temenoff, J.S.; Mikos, A.G.; Temenoff, J.S. Biomaterials: The Intersection of Biology and Materials Science; Pearson Prentice Hall bioengineering; International ed.; Pearson Education, Inc. [u.a.]: Upper Saddle River, NJ, USA, 2008; ISBN 978-0-13-009710-1. [Google Scholar]
- Thakur, S.; Scanlon, M.G.; Tyler, R.T.; Milani, A.; Paliwal, J. Pulse Flour Characteristics from a Wheat Flour Miller’s Perspective: A Comprehensive Review. Compr. Rev. Food Sci. Food Safe 2019, 18, 775–797. [Google Scholar] [CrossRef]
- Chanvrier, H.; Valle, G.D.; Lourdin, D. Mechanical Behaviour of Corn Flour and Starch-Zein Based Materials in the Glassy State: A Matrix-Particle Interpretation. Carbohydr. Polym. 2006, 65, 346–356. [Google Scholar] [CrossRef]
- Zhu, L.J.; Shukri, R.; de Mesa-Stonestreet, N.J.; Alavi, S.; Dogan, H.; Shi, Y.-C. Mechanical and Microstructural Properties of Soy Protein—High Amylose Corn Starch Extrudates in Relation to Physiochemical Changes of Starch during Extrusion. J. Food Eng. 2010, 100, 232–238. [Google Scholar] [CrossRef]
- Granato, D.; de Araújo Calado, V.Ô.M.; Jarvis, B. Observations on the Use of Statistical Methods in Food Science and Technology. Food Res. Int. 2014, 55, 137–149. [Google Scholar] [CrossRef]
- Han, X.; Koelling, K.W.; Tomasko, D.L.; Lee, L.J. Continuous Microcellular Polystyrene Foam Extrusion with Supercritical CO2. Polym. Eng. Sci. 2002, 42, 2094–2106. [Google Scholar] [CrossRef]
- Akdogan, H. Pressure, Torque, and Energy Responses of a Twin Screw Extruder at High Moisture Contents. Food Res. Int. 1996, 29, 423–429. [Google Scholar] [CrossRef]
- Masatcioglu, M.T.; Yalcin, E.; Kim, M.; Ryu, G.-H.; Celik, S.; Köksel, H. Physical and Chemical Properties of Tomato, Green Tea, and Ginseng-Supplemented Corn Extrudates Produced by Conventional Extrusion and CO2 Injection Process. Eur. Food Res. Technol. 2013, 237, 801–809. [Google Scholar] [CrossRef]
- Altan, A.; McCarthy, K.L.; Maskan, M. Effect of Screw Configuration and Raw Material on Some Properties of Barley Extrudates. J. Food Eng. 2009, 92, 377–382. [Google Scholar] [CrossRef]
- Roudaut, G.; Dacremont, C.; Vallès Pàmies, B.; Colas, B.; Le Meste, M. Crispness: A Critical Review on Sensory and Material Science Approaches. Trends Food Sci. Technol. 2002, 13, 217–227. [Google Scholar] [CrossRef]
- Philipp, C.; Emin, M.A.; Buckow, R.; Silcock, P.; Oey, I. Pea Protein-Fortified Extruded Snacks: Linking Melt Viscosity and Glass Transition Temperature with Expansion Behaviour. J. Food Eng. 2018, 217, 93–100. [Google Scholar] [CrossRef]
- Chaiyakul, S.; Jangchud, K.; Jangchud, A.; Wuttijumnong, P.; Winger, R. Effect of Extrusion Conditions on Physical and Chemical Properties of High Protein Glutinous Rice-Based Snack. LWT–Food Sci. Technol. 2009, 42, 781–787. [Google Scholar] [CrossRef]
- Gogoi, B.K.; Alavi, S.H.; Rizvi, S.S.H. Mechanical Properties of Protein-stabilized Starch-based Supercritical Fluid Extrudates. Int. J. Food Prop. 2000, 3, 37–58. [Google Scholar] [CrossRef]
- Alavi, S.H.; Gogoi, B.K.; Khan, M.; Bowman, B.J.; Rizvi, S.S.H. Structural Properties of Protein-Stabilized Starch-Based Supercritical Fluid Extrudates. Food Res. Int. 1999, 32, 107–118. [Google Scholar] [CrossRef]
- Luo, S.; Koksel, F. Physical and Technofunctional Properties of Yellow Pea Flour and Bread Crumb Mixtures Processed with Low Moisture Extrusion Cooking. J. Food Sci. 2020, 85, 2688–2698. [Google Scholar] [CrossRef]
- Li, X.; Masatcioglu, M.T.; Koksel, F. Physical and Functional Properties of Wheat Flour Extrudates Produced by Nitrogen Injection Assisted Extrusion Cooking. J. Cereal Sci. 2019, 89, 102811. [Google Scholar] [CrossRef]
- Sauceau, M.; Fages, J.; Common, A.; Nikitine, C.; Rodier, E. New Challenges in Polymer Foaming: A Review of Extrusion Processes Assisted by Supercritical Carbon Dioxide. Prog. Polym. Sci. 2011, 36, 749–766. [Google Scholar] [CrossRef]
- Lee, C.H.; Lee, K.J.; Jeong, H.G.; Kim, S.W. Growth of Gas Bubbles in the Foam Extrusion Process. Adv. Polym. Technol. 2000, 19, 97–112. [Google Scholar] [CrossRef]
- Zhou, R.; Mitra, P.; Melnychenko, A.; Rizvi, S.S.H. Quality Attributes and Rheological Properties of Novel High Milk Protein-Based Extrudates Made by Supercritical Fluid Extrusion. Int. J. Food Sci. Technol. 2021, 56, 3866–3875. [Google Scholar] [CrossRef]
- Chen, K.H.; Rizvi, S.S.H. Rheology and Expansion of Starch-Water-CO2 Mixtures with Controlled Gelatinization by Supercritical Fluid Extrusion. Int. J. Food Prop. 2006, 9, 863–876. [Google Scholar] [CrossRef]
- Rokkonen, T.; Willberg-Keyriläinen, P.; Ropponen, J.; Malm, T. Foamability of Cellulose Palmitate Using Various Physical Blowing Agents in the Extrusion Process. Polymers 2021, 13, 2416. [Google Scholar] [CrossRef]
- de Mesa, N.J.E.; Alavi, S.; Singh, N.; Shi, Y.-C.; Dogan, H.; Sang, Y. Soy Protein-Fortified Expanded Extrudates: Baseline Study Using Normal Corn Starch. J. Food Eng. 2009, 90, 262–270. [Google Scholar] [CrossRef]
- Alvarez-Martinez, L.; Kondury, K.P.; Harper, J.M. A General Model for Expansion of Extruded Products. J. Food Sci. 1988, 53, 609–615. [Google Scholar] [CrossRef]
- Van Vliet, T.; Primo-Martín, C. Interplay between Product Characteristics, Oral Physiology and Texture Perception of Cellular Brittle Foods. J. Texture Stud. 2011, 42, 82–94. [Google Scholar] [CrossRef]
- Li, S.-Q.; Zhang, H.Q.; Jin, Z.T.; Hsieh, F.-H. Textural Modification of Soya Bean/Corn Extrudates as Affected by Moisture Content, Screw Speed and Soya Bean Concentration. Int. J. Food Sci. Technol. 2005, 40, 731–741. [Google Scholar] [CrossRef]
- Gibson, L.J.; Ashby, M.F. Cellular Solids; Cambridge University Press: Cambridge, UK, 1997; ISBN 978-0-521-49911-8. [Google Scholar]
- Luyten, H.; Plijter, J.J.; Vliet, T.V. Crispy/Crunchy Crusts of Cellular Solid Foods: A Literature Review with Discussion. J. Texture Stud. 2004, 35, 445–492. [Google Scholar] [CrossRef]
- Jebalia, I.; Maigret, J.-E.; Réguerre, A.-L.; Novales, B.; Guessasma, S.; Lourdin, D.; Della Valle, G.; Kristiawan, M. Morphology and Mechanical Behaviour of Pea-Based Starch-Protein Composites Obtained by Extrusion. Carbohydr. Polym. 2019, 223, 115086. [Google Scholar] [CrossRef]
- Yu, L.; Ramaswamy, H.S.; Boye, J. Protein Rich Extruded Products Prepared from Soy Protein Isolate-Corn Flour Blends. LWT–Food Sci. Technol. 2013, 50, 279–289. [Google Scholar] [CrossRef]
- Cho, K.Y.; Rizvi, S.S.H. 3D Microstructure of Supercritical Fluid Extrudates. II: Cell Anisotropy and the Mechanical Properties. Food Res. Int. 2009, 42, 603–611. [Google Scholar] [CrossRef]
- Barrett, A.H.; Cardello, A.V.; Lesher, L.L.; Taub, I.A. Cellularity, Mechanical Failure, and Textural Perception of Corn Meal Extrudates. J. Texture Stud. 1994, 25, 77–95. [Google Scholar] [CrossRef]
- Robin, F.; Dubois, C.; Curti, D.; Schuchmann, H.P.; Palzer, S. Effect of Wheat Bran on the Mechanical Properties of Extruded Starchy Foams. Food Res. Int. 2011, 44, 2880–2888. [Google Scholar] [CrossRef]
- Ryu, G.H.; Ng, P.K.W. Effects of Selected Process Parameters on Expansion and Mechanical Properties of Wheat Flour and Whole Cornmeal Extrudates. Starch/Stärke 2001, 53, 147–154. [Google Scholar] [CrossRef]
Feed Protein Content (%, d.b.) | Nitrogen Gas Pressure (kPa) | Die Pressure (kPa) | Torque (%) | SME (Wh/kg) |
---|---|---|---|---|
0 | 0 | 1380 ± 20 c | 57.4 ± 0.5 cde | 265.0 ± 2.1 cde |
150 | 1260 ± 20 cde | 58.3 ± 0.2 cde | 269.2 ± 0.9 cde | |
300 | 870 ± 10 hi | 59.4 ± 0.2 c | 274.2 ± 1.1 c | |
10 | 0 | 1060 ± 60 fg | 59.0 ± 0.2 cde | 272.3 ± 1.0 cde |
150 | 880 ± 20 hi | 62.2 ±0.5 b | 286.9 ± 2.5 b | |
300 | 600 ± 30 j | 62.9 ± 0.6 ab | 290.4 ± 2.9 ab | |
20 | 0 | 1140 ± 40 def | 59.0 ± 0.5 cde | 272.3 ± 2.2 cde |
150 | 1060 ± 20 fg | 62.3 ± 0.4 b | 287.7 ± 2.0 b | |
300 | 930 ± 10 ghi | 62.0 ± 0.4 b | 286.2 ± 2.0 b | |
30 | 0 | 920 ± 20 ghi | 59.2 ± 0.4 cd | 273.1 ± 1.7 cd |
150 | 820 ± 10 i | 56.9 ± 0.4 e | 262.7 ±1.7 e | |
300 | 910 ± 10 ghi | 58.1 ± 0.4 cde | 268.1 ± 1.9 cde | |
40 | 0 | 1300 ± 30 cd | 57.2 ± 0.4 de | 263.8 ± 1.9 de |
150 | 1040 ± 20 fgh | 59.2 ± 0.4 cd | 273.1 ± 1.9 cd | |
300 | 1110 ± 20 ef | 58.6 ± 0.2 cde | 270.4 ± 0.9 cde | |
50 | 0 | 2230 ± 60 a | 51.1 ± 0.6 f | 235.8 ± 2.8 f |
150 | 2410 ± 70 a | 52.0 ± 0.5 f | 240.0 ± 2.3 f | |
300 | 1960 ± 50 b | 65.1 ± 0.6 a | 300.4 ± 2.9 a |
Factors | p Value | |||||
---|---|---|---|---|---|---|
Die Pressure, Torque, SME 1, REI 2, Extrudate Density | Hardness, Crispness | Crunchiness | Normalized Crispness | Normalized Crunchiness | Young’s Modulus, Flexural Stress, and Fracture Strain | |
Protein | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
Nitrogen gas injection pressure | <0.0001 | 0.0003 | <0.0001 | 0.72 | 0.03 | <0.0001 |
Protein Nitrogen gas injection pressure | <0.0001 | <0.0001 | <0.0001 | <0.0001 | 0.24 | <0.0001 |
Variable 1 | Variable 2 | Pearson’s r | p-Value |
---|---|---|---|
Motor torque (SME) 1 | Die pressure | 0.99 **,2 | <0.001 |
Porosity | 0.98 ** | <0.001 | |
Density | 0.96 ** | <0.01 | |
Crispness | 0.91 ** | <0.05 | |
Die pressure | Fracture strain | 0.99 ** | <0.001 |
Density | 0.98 ** | <0.001 | |
Porosity | −0.98 ** | <0.001 | |
Crispness | 0.90 ** | <0.05 | |
Young’s modulus | −0.86 ** | <0.05 | |
Radial expansion index | Crunchiness | 0.95 ** | <0.01 |
Hardness | 0.90 ** | <0.05 | |
Normalized crunchiness | 0.85 ** | <0.05 | |
Density | Porosity | −0.99 ** | <0.001 |
Crispness | −0.93 ** | <0.01 | |
Normalized crispness | 0.89 ** | <0.05 | |
Hardness | Crunchiness | 0.94 ** | <0.01 |
Fracture strain | 0.92 ** | <0.01 | |
Normalized crunchiness | 0.90 ** | <0.05 | |
Crispness | Porosity | 0.94 ** | <0.01 |
Young’s modulus | −0.85 ** | <0.05 | |
Crunchiness | Fracture strain | 0.97 ** | <0.01 |
Normalized crunchiness | 0.96 ** | <0.01 | |
Normalized crunchiness | Fracture strain | 0.89 ** | <0.05 |
Young’s modulus | Flexural stress | 0.94 ** | <0.001 |
Fracture strain | −0.86 ** | <0.05 |
Variable 1 | Variable 2 | Pearson’s r | p-Value |
---|---|---|---|
Motor torque (SME) 1 | Die pressure | −0.56 *,2 | <0.05 |
Die pressure | Protein content | 0.60 * | <0.01 |
Porosity | −0.66 * | <0.01 | |
Density | 0.62 * | <0.01 | |
Radial expansion index | Fracture strain | 0.98 ** | <0.0001 |
Crunchiness | 0.88 ** | <0.0001 | |
Young’s modulus | −0.75 * | <0.001 | |
Fracture stress | −0.68 * | <0.01 | |
Hardness | 0.54 * | <0.05 | |
Crispness | 0.56 * | <0.05 | |
Density | Porosity | −0.99 ** | <0.001 |
Flexural stress | 0.83 ** | <0.0001 | |
Crispness | −0.83 ** | <0.001 | |
Young’s modulus | 0.74 * | <0.001 | |
Normalized crispness | −0.73 * | <0.001 | |
Hardness | Normalized crunchiness | 0.90 ** | <0.0001 |
Crunchiness | 0.83 ** | <0.0001 | |
Normalized crispness | 0.74 * | <0.001 | |
Fracture strain | 0.51 * | <0.05 | |
Crispness | Flexural stress | −0.86 ** | <0.0001 |
Young’s modulus | −0.85 ** | <0.0001 | |
Porosity | 0.79 * | <0.001 | |
Normalized crispness | 0.72 * | <0.001 | |
Fracture strain | 0.59 * | <0.05 | |
Crunchiness | Fracture strain | 0.87 ** | <0.0001 |
Normalized crunchiness | 0.80 * | <0.001 | |
Young’s modulus | −0.50 * | <0.05 | |
Flexural stress | −0.49 | <0.05 | |
Normalized crispness | Flexural stress | −0.52 * | <0.05 |
Normalized crunchiness | −0.49 | <0.05 | |
Young’s modulus | Flexural stress | 0.96 ** | <0.0001 |
Fracture strain | −0.76 * | <0.001 | |
Porosity | −0.72 * | <0.001 | |
Flexural stress | Porosity | −0.83 ** | <0.0001 |
Fracture strain | −0.70 * | <0.01 |
Feed Protein Content (%, d.b.) | Nitrogen Gas Pressure (kPa) | Hardness (N) | Crispness | Crunchiness | Normalized Crispness (mm−1) | Normalized Crunchiness (mm−1) | Young’s Modulus (MPa) | Flexural Stress (MPa) | Fracture Strain |
---|---|---|---|---|---|---|---|---|---|
0 | 0 | 37.231 ± 2.946 a | 8.9 ± 0.6 ab | 149.365 ± 11.421 a | 0.0837 ± 0.060 c–f | 12.891 ± 1.071 a | 1.219 ± 0.088 h | 4.037 ± 0259 f | 3.342 ± 0.063 a |
150 | 29.647 ± 2.095 b | 8.2 ± 0.3 ab | 115.353 ± 7.584 b | 0.775 ± 0.026 ef | 10.724 ± 0.590 abc | 2.146 ± 0.201 gh | 5.977 ± 0.534 ef | 2.809 ± 0.071 b | |
300 | 28.464 ± 1.409 b | 5.2 ± 0.3 de | 69.204 ± 3.032 c–h | 0.878 ± 0.054 b–f | 11.828 ± 0.607 ab | 8.530 ± 0.776 b | 11.831 ± 0.958 bc | 1.404 ± 0.022 i | |
10 | 0 | 16.766 ± 0.531 de | 8.2 ± 0.3 ab | 55.219 ± 2.535 fgh | 1.192 ± 0.059 a | 8.044 ± 0.513 de | 5.128 ± 0.495 cde | 8.964 ± 0.633 d | 1.809 ± 0.056 h |
150 | 18.086 ± 0.805 de | 8.1 ± 0.5 abc | 58.230 ± 2.006 d–h | 1.105 ± 0.068 abc | 7.917 ± 0.324 de | 3.801 ± 0.154 efg | 7.210 ± 0.251 de | 1.906 ± 0.023 gh | |
300 | 16.875 ± 0.741 de | 8.5 ± 0.4 ab | 56.501 ± 2.501 e–h | 1.077 ± 0.051 a–d | 7.098 ± 0.309 e | 3.188 ± 0.251 fg | 6.640 ± 0.415 def | 2.139 ± 0.065 ef | |
20 | 0 | 20.980 ± 0.701 cde | 9.8 ± 0.4 a | 75.249 ± 2.746 c–f | 1.069 ± 0.039 a–e | 8.196 ± 0.321 cde | 3.311 ± 0.297 fg | 7.881 ± 0.505 de | 2.445 ± 0.059 c |
150 | 15.517 ± 0.612 e | 8.2 ± 0.4 ab | 50.788 ± 1.248 gh | 1.154 ± 0.036 ab | 7.190 ± 0.239 de | 4.403 ± 0.299 def | 8.423 ± 0.483 de | 1.937 ± 0.037 fgh | |
300 | 22.154 ± 0.678 cd | 4.1 ± 0.1 e | 47.469 ± 1.277 h | 0.731 ± 0.019 f | 8.540 ± 0.242 cde | 14.993 ± 0.578 a | 20.188 ± 0.711 a | 1.350 ± 0.013 i | |
30 | 0 | 21.379 ± 0.956 cd | 9.8 ± 0.5 a | 82.004 ± 3.930 c | 1.053 ± 0.075 a–e | 9.717 ± 0.520 bcd | 3.084 ± 0.188 fg | 7.380 ± 0.409 de | 2.410 ± 0.040 cd |
150 | 19.665 ± 0.804 de | 10.2 ± 0.5 a | 75.920 ± 3.878 c–f | 1.162 ± 0.05 0 ab | 8.811 ± 0.480 cde | 2.460 ± 0.178 gh | 5.914 ± 0.354 ef | 2.454 ± 0.061 c | |
300 | 21.186 ± 0.517 cde | 9.8 ± 0.5 a | 79.844 ± 2.824 cd | 1.091 ± 0.058 abc | 9.131 ± 0.313 cde | 2.555 ± 0.135 gh | 6.177 ± 0.255 ef | 2.445 ± 0.048 c | |
40 | 0 | 18.805 ± 0.862 de | 9.0 ± 0.6 ab | 70.374 ± 3.976 c–g | 1.209 ± 0.080 a | 9.319 ± 0.676 b–e | 3.736 ± 0.245 efg | 7.569 ± 0.460 de | 2.038 ± 0.027 efg |
150 | 18.410 ± 0.980 de | 9.5 ± 0.7 a | 70.053 ± 3.035 c–g | 1.215 ± 0.083 a | 8.348 ± 0.334 cde | 3.693 ± 0.231 efg | 7.821 ± 0.442 de | 2.130 ± 0.022 efg | |
300 | 19.226 ± 0.786 de | 9.8 ± 0.7 a | 72.334 ± 2.619 c–g | 1.210 ± 0.082 a | 9.208 ± 0.346 cde | 3.530 ± 0.308 efg | 7.519 ± 0.616 de | 2.144 ± 0.022 ef | |
50 | 0 | 26.007 ± 1.075 bc | 5.8 ± 0.4 cde | 72.607 ± 3.333 c–g | 0.721 ± 0.054 f | 8.964 ± 0.485 cde | 5.548 ± 0.342 cd | 12.239 ± 0.691 b | 2.216 ± 0.017 de |
150 | 25.511 ± 0.575 bc | 6.6 ± 0.5 bcd | 77.873 ± 5.769 cde | 0.793 ± 0.053 def | 9.437 ± 0.635 b–e | 6.174 ± 0.390 c | 13.479 ± 0.806 b | 2.195 ± 0.026 de | |
300 | 19.135 ± 0.505 de | 8.1 ± 0.5 abc | 66.397 ± 3.001 c–h | 1.059 ± 0.065 a–e | 8.646 ± 0.360 cde | 4.536 ± 0.269 cdef | 9.175 ± 0.473 cd | 2.039 ± 0.034 efg |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, S.; Paliwal, J.; Koksel, F. Nitrogen Gas-Assisted Extrusion for Improving the Physical Quality of Pea Protein-Enriched Corn Puffs with a Wide Range of Protein Contents. Foods 2024, 13, 2411. https://doi.org/10.3390/foods13152411
Luo S, Paliwal J, Koksel F. Nitrogen Gas-Assisted Extrusion for Improving the Physical Quality of Pea Protein-Enriched Corn Puffs with a Wide Range of Protein Contents. Foods. 2024; 13(15):2411. https://doi.org/10.3390/foods13152411
Chicago/Turabian StyleLuo, Siwen, Jitendra Paliwal, and Filiz Koksel. 2024. "Nitrogen Gas-Assisted Extrusion for Improving the Physical Quality of Pea Protein-Enriched Corn Puffs with a Wide Range of Protein Contents" Foods 13, no. 15: 2411. https://doi.org/10.3390/foods13152411
APA StyleLuo, S., Paliwal, J., & Koksel, F. (2024). Nitrogen Gas-Assisted Extrusion for Improving the Physical Quality of Pea Protein-Enriched Corn Puffs with a Wide Range of Protein Contents. Foods, 13(15), 2411. https://doi.org/10.3390/foods13152411