Ultrafiltration of Rapeseed Protein Concentrate: Effect of Pectinase Treatment on Membrane Fouling
Abstract
:1. Introduction
2. Experimental Methods
2.1. Protein Extraction
2.2. Ultrafiltration
2.3. Compositional Analysis
2.4. FTIR
2.5. Statistics
3. Results and Discussion
3.1. Rejection and Permeation of Components during Filtration
3.2. Filtration Performance
3.3. Fouling Behavior
3.4. Chemical Characterization of Irreversible Foulants
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CIP | Cleaning-in-place |
CP | Concentration polarization |
IEP | Isoelectric precipitation |
MF | Microfiltration |
MWCO | Molecular weight cut-off |
PES | Polyethersulfone |
PS | Polysulfone |
PCA | Principal component analysis |
TMP | Transmembrane pressure |
UF | Ultrafiltration |
References
- Alonso-Miravalles, L.; Jeske, S.; Bez, J.; Detzel, A.; Busch, M.; Krueger, M.; Wriessnegger, C.L.; O’Mahony, J.A.; Zannini, E.; Arendt, E.K. Membrane Filtration and Isoelectric Precipitation Technological Approaches for the Preparation of Novel, Functional and Sustainable Protein Isolate from Lentils. Eur. Food Res. Technol. 2019, 245, 1855–1869. [Google Scholar] [CrossRef]
- Fetzer, A.; Herfellner, T.; Eisner, P. Rapeseed Protein Concentrates for Non-Food Applications Prepared from Pre-Pressed and Cold-Pressed Press Cake via Acidic Precipitation and Ultrafiltration. Ind. Crops Prod. 2019, 132, 396–406. [Google Scholar] [CrossRef]
- Pelgrom, P.J.M.; Boom, R.M.; Schutyser, M.A.I. Functional Analysis of Mildly Refined Fractions from Yellow Pea. Food Hydrocoll. 2015, 44, 12–22. [Google Scholar] [CrossRef]
- Ntone, E.; Bitter, J.H.; Nikiforidis, C.V. Not Sequentially but Simultaneously: Facile Extraction of Proteins and Oleosomes from Oilseeds. Food Hydrocoll. 2020, 102, 105598. [Google Scholar] [CrossRef]
- Deeslie, W.D.; Cheryan, M. Fractionation of Soy Protein Hydrolysates Using Ultrafiltration Membranes. J. Food Sci. 1992, 57, 411–413. [Google Scholar] [CrossRef]
- Ntone, E.; van Wesel, T.; Sagis, L.M.C.; Meinders, M.; Bitter, J.H.; Nikiforidis, C.V. Adsorption of Rapeseed Proteins at Oil/Water Interfaces. Janus-like Napins Dominate the Interface. J. Colloid Interface Sci. 2021, 583, 459–469. [Google Scholar] [CrossRef] [PubMed]
- Papalamprou, E.M.; Doxastakis, G.I.; Kiosseoglou, V. Chickpea Protein Isolates Obtained by Wet Extraction as Emulsifying Agents: Chickpea Protein Isolates Obtained by Wet Extraction as Emulsifying Agents. J. Sci. Food Agric. 2010, 90, 304–313. [Google Scholar] [CrossRef]
- Yoshie-Stark, Y.; Wada, Y.; Wäsche, A. Chemical Composition, Functional Properties, and Bioactivities of Rapeseed Protein Isolates. Food Chem. 2008, 107, 32–39. [Google Scholar] [CrossRef]
- Jia, W.; Rodriguez-Alonso, E.; Bianeis, M.; Keppler, J.K.; van der Goot, A.J. Assessing Functional Properties of Rapeseed Protein Concentrate versus Isolate for Food Applications. Innov. Food Sci. Emerg. Technol. 2021, 68, 102636. [Google Scholar] [CrossRef]
- Yang, J.; Guo, J.; Yang, X.-Q.; Wu, N.-N.; Zhang, J.-B.; Hou, J.-J.; Zhang, Y.-Y.; Xiao, W.-K. A Novel Soy Protein Isolate Prepared from Soy Protein Concentrate Using Jet-Cooking Combined with Enzyme-Assisted Ultra-Filtration. J. Food Eng. 2014, 143, 25–32. [Google Scholar] [CrossRef]
- Song, L. Flux Decline in Crossflow Microfiltration and Ultrafiltration: Mechanisms and Modeling of Membrane Fouling. J. Membr. Sci. 1998, 139, 183–200. [Google Scholar] [CrossRef]
- Gul, A.; Hruza, J.; Yalcinkaya, F. Fouling and Chemical Cleaning of Microfiltration Membranes: A Mini-Review. Polymers 2021, 13, 846. [Google Scholar] [CrossRef] [PubMed]
- Rajendran, S.R.C.K.; Mason, B.; Doucette, A.A. Review of Membrane Separation Models and Technologies: Processing Complex Food-Based Biomolecular Fractions. Food Bioprocess Technol. 2021, 14, 415–428. [Google Scholar] [CrossRef]
- Jensen, J.K.; Ottosen, N.; Engelsen, S.B.; Van Den Berg, F. Investigation of UF and MF Membrane Residual Fouling in Full-Scale Dairy Production Using FT-IR to Quantify Protein and Fat. Int. J. Food Eng. 2015, 11, 1–15. [Google Scholar] [CrossRef]
- D’Alvise, N.; Lesueur-Lambert, C.; Fertin, B.; Dhulster, P.; Guillochon, D. Removal of Polyphenols and Recovery of Proteins from Alfalfa White Protein Concentrate by Ultrafiltration and Adsorbent Resin Separations. Sep. Sci. Technol. 2000, 35, 2453–2472. [Google Scholar] [CrossRef]
- Pownall, T.L.; Udenigwe, C.C.; Aluko, R.E. Amino Acid Composition and Antioxidant Properties of Pea Seed (Pisum sativum L.) Enzymatic Protein Hydrolysate Fractions. J. Agric. Food Chem. 2010, 58, 4712–4718. [Google Scholar] [CrossRef] [PubMed]
- Berg, T.H.A.; Knudsen, J.C.; Ipsen, R.; Van Den Berg, F.; Holst, H.H.; Tolkach, A. Investigation of Consecutive Fouling and Cleaning Cycles of Ultrafiltration Membranes Used for Whey Processing. Int. J. Food Eng. 2014, 10, 367–381. [Google Scholar] [CrossRef]
- Rudolph, G.; Schagerlöf, H.; Morkeberg Krogh, K.; Jönsson, A.-S.; Lipnizki, F. Investigations of Alkaline and Enzymatic Membrane Cleaning of Ultrafiltration Membranes Fouled by Thermomechanical Pulping Process Water. Membranes 2018, 8, 91. [Google Scholar] [CrossRef] [PubMed]
- Echavarría, A.P.; Torras, C.; Pagán, J.; Ibarz, A. Fruit Juice Processing and Membrane Technology Application. Food Eng. Rev. 2011, 3, 136–158. [Google Scholar] [CrossRef]
- Roda-Serrat, M.C.; Lundsfryd, C.; Rasmussen, S.; El-Houri, R.; Lund, P.B.; Christensen, K.V. Enzyme-Assisted Extraction and Ultrafiltration of Value-Added Compounds from Sour Cherry Wine Pomace. Chem. Eng. Trans. 2019, 74, 811–816. [Google Scholar] [CrossRef]
- Alpiger, S.B.; Corredig, M. Changes in the Physicochemical Properties of Rapeseed-derived Protein Complexes during Enzyme-Assisted Wet Milling. Sustainable Food Proteins 2023, 1, 16–29. [Google Scholar] [CrossRef]
- D’Souza, N.M.; Mawson, A.J. Membrane Cleaning in the Dairy Industry: A Review. Crit. Rev. Food Sci. Nutr. 2005, 45, 125–134. [Google Scholar] [CrossRef] [PubMed]
- Malczewska, B.; Żak, A. Structural Changes and Operational Deterioration of the Uf Polyethersulfone (Pes) Membrane Due to Chemical Cleaning. Sci. Rep. 2019, 9, 422. [Google Scholar] [CrossRef] [PubMed]
- DuBois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric Method for Determination of Sugars and Related Substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Rommi, K.; Hakala, T.K.; Holopainen, U.; Nordlund, E.; Poutanen, K.; Lantto, R. Effect of Enzyme-Aided Cell Wall Disintegration on Protein Extractability from Intact and Dehulled Rapeseed (Brassica rapa L. and Brassica napus L.) Press Cakes. J. Agric. Food Chem. 2014, 62, 7989–7997. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.-J.; Liao, P.-C.; Yang, H.-H.; Tzen, J.T.C. Determination and Analyses of the N-Termini of Oil-Body Proteins, Steroleosin, Caleosin and Oleosin. Plant Physiol. Biochem. 2005, 43, 770–776. [Google Scholar] [CrossRef] [PubMed]
- Wanasundara, J.P.D.; Abeysekara, S.J.; McIntosh, T.C.; Falk, K.C. Solubility Differences of Major Storage Proteins of Brassicaceae Oilseeds. J. Am. Oil Chem. Soc. 2012, 89, 869–881. [Google Scholar] [CrossRef]
- Huang, J.; Zhang, K.; Wang, K.; Xie, Z.; Ladewig, B.; Wang, H. Fabrication of Polyethersulfone-Mesoporous Silica Nanocomposite Ultrafiltration Membranes with Antifouling Properties. J. Membr. Sci. 2012, 423–424, 362–370. [Google Scholar] [CrossRef]
- Hadnađev, M.; Dapčević-Hadnađev, T.; Lazaridou, A.; Moschakis, T.; Michaelidou, A.-M.; Popović, S.; Biliaderis, C.G. Hempseed Meal Protein Isolates Prepared by Different Isolation Techniques. Part I. Physicochemical Properties. Food Hydrocoll. 2018, 79, 526–533. [Google Scholar] [CrossRef]
- Perera, S.P.; McIntosh, T.C.; Wanasundara, J.P.D. Structural Properties of Cruciferin and Napin of Brassica napus (Canola) Show Distinct Responses to Changes in pH and Temperature. Plants 2016, 5, 36. [Google Scholar] [CrossRef]
- Amine, C.; Boire, A.; Kermarrec, A.; Renard, D. Associative Properties of Rapeseed Napin and Pectin: Competition between Liquid-Liquid and Liquid-Solid Phase Separation. Food Hydrocoll. 2019, 92, 94–103. [Google Scholar] [CrossRef]
Feed | Concentration Factor | Retentate | Permeate | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Dry Matter (g/100 g) | Protein (g/100 g dm) | Carbohydrates (g/100 g dm) | Dry Matter Conc. Ratio | Carbohydrates Conc. Ratio | Dry Matter Recovery (%) | ||||||
10 kDa | 100 kDa | 10 kDa | 100 kDa | 10 kDa | 100 kDa | 10 kDa | 100 kDa | ||||
Control | 1.6 ± 0.1 | 37.0 ± 1.3 | 52 ± 5 | 1.23 ± 0.01 | 1.33 ± 0.01 | 0.95 ± 0.01 | 1.04 ± 0.00 | 0.98 ± 0.04 | 0.84 ± 0.01 | 2.5 ± 1.5 | 7.9 ± 0.6 |
Pectinase | 1.4 ± 0.1 | 33.7 ± 1.3 | 60 ± 11 | 1.43 ± 0.02 | 1.39 ± 0.02 | 1.04 ± 0.03 | 0.98 ± 0.01 | 0.76 ± 0.08 | 0.73 ± 0.06 | 7.0 ± 2.5 | 9.3 ± 1.5 |
Feed Stream | MWCO (kDa) | Flux Decrease (L/h/m2/min) | Total Fouling (%) | Reversible Fouling (%) | Irreversible Fouling (%) | Flux Recovery (%) | |
---|---|---|---|---|---|---|---|
Stage I | Stage II | ||||||
Control | 10 | 3.93 ± 0.20 | 0.09 ± 0.00 | 96.9 ± 1.3 | 28.4 ± 13.8 | 68.5 ± 15.2 | 31.5 ± 15.2 |
100 | 5.9 | 0.09 | 97.9 ± 0.2 | 24.4 ± 1.9 | 73.5 ± 2.2 | 26.5 ± 2.2 | |
Pectinase | 10 | 3.15 ± 0.39 | 0.06 ± 0.00 | 91.9 ± 0.6 | 51.7 ± 2.1 | 40.2 ± 1.5 | 59.8 ± 1.5 |
100 | 5.51 ± 0.59 | 0.05 ± 0.00 | 95.8 ± 0.1 | 27.8 ± 3.2 | 68.0 ±3.0 | 32.0 ± 3.0 |
Feed Stream | MWCO (kDa) | β-Sheet, Intermolecular | β-Sheet, Intramolecular | Random Coil | α-Helix | β-Turn | β-Sheet, Intermolecular | β-Sheet, Intramolecular | β-Sheet, Intermolecular |
---|---|---|---|---|---|---|---|---|---|
Control | 10 | 7.74 ± 3.42 a | 32.40 ± 7.86 a | 1.19 ± 1.26 a | 30.23 ± 24.90 a | 22.51 ± 18.51 a | 3.48 ± 2.06 a | 6.57 ± 2.19 a | 7.74 ± 3.42 a |
100 | 14.26 ± 8.66 a | 29.56 ± 7.56 a | 39.78 ± 23.00 b | 12.74 ± 21.96 a | 16.24 ± 15.06 a | 3.79 ± 2.42 a | - | 14.26 ± 8.66 a | |
Pectinase | 10 | 13.97 ± 6.34 a | 30.88 ± 15.73 a | 4.43 ± 6.92 a | 12.09 ± 18.62 a | 33.04 ± 18.27 a | 4.74 ± 1.33 a | - | 13.97 ± 6.34 a |
100 | 14.31 ± 6.04 a | 21.89 ± 12.84 a | 31.94 ± 27.17 ab | 32.12 ± 26.82 a | 24.12 ± 22.00 a | 4.81 ± 1.16 a | - | 14.31 ± 6.04 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alpiger, S.B.; Solet, C.; Dang, T.T.; Corredig, M. Ultrafiltration of Rapeseed Protein Concentrate: Effect of Pectinase Treatment on Membrane Fouling. Foods 2024, 13, 2423. https://doi.org/10.3390/foods13152423
Alpiger SB, Solet C, Dang TT, Corredig M. Ultrafiltration of Rapeseed Protein Concentrate: Effect of Pectinase Treatment on Membrane Fouling. Foods. 2024; 13(15):2423. https://doi.org/10.3390/foods13152423
Chicago/Turabian StyleAlpiger, Simone Bleibach, Chloé Solet, Tem Thi Dang, and Milena Corredig. 2024. "Ultrafiltration of Rapeseed Protein Concentrate: Effect of Pectinase Treatment on Membrane Fouling" Foods 13, no. 15: 2423. https://doi.org/10.3390/foods13152423
APA StyleAlpiger, S. B., Solet, C., Dang, T. T., & Corredig, M. (2024). Ultrafiltration of Rapeseed Protein Concentrate: Effect of Pectinase Treatment on Membrane Fouling. Foods, 13(15), 2423. https://doi.org/10.3390/foods13152423