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Abstract: The need to increase food safety and improve human health has led to a worldwide
increase in interest in gamma-aminobutyric acid (GABA), produced by lactic acid bacteria (LABs).
GABA, produced from glutamic acid in a reaction catalyzed by glutamate decarboxylase (GAD),
is a four-carbon, non-protein amino acid that is increasingly used in the food industry to improve
the safety/quality of foods. In addition to the possible positive effects of GABA, called a postbiotic,
on neuroprotection, improving sleep quality, alleviating depression and relieving pain, the various
health benefits of GABA-enriched foods such as antidiabetic, antihypertension, and anti-inflammatory
effects are also being investigated. For all these reasons, it is not surprising that efforts to identify
LAB strains with a high GABA productivity and to increase GABA production from LABs through
genetic engineering to increase GABA yield are accelerating. However, GABA’s contributions to
food safety/quality and human health have not yet been fully discussed in the literature. Therefore,
this current review highlights the synthesis and food applications of GABA produced from LABs,
discusses its health benefits such as, for example, alleviating drug withdrawal syndromes and
regulating obesity and overeating. Still, other potential food and drug interactions (among others)
remain unanswered questions to be elucidated in the future. Hence, this review paves the way
toward further studies.

Keywords: lactic acid bacteria; gamma-aminobutyric acid; food quality; human health

1. Introduction

Humans need safe and nutritious food in their life. However, challenges like popu-
lation growth, urbanization, climate change, and conflicts affect food safety and security,
leading to significant food loss. The short shelf life foods adds to this problem [1]. The
spoilage process makes food unsuitable for consumption. About one-third of the world’s
food is lost due to spoilage or waste, leading to significant environmental and economic
consequences [2]. Unwanted microorganisms can contaminate food throughout the produc-
tion and supply chains (the production, processing, distribution, or preparation stages) [3].
Strategies to control spoilage-causing microorganisms and foodborne pathogens in food
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products involve managing intrinsic factors such as pH, water activity, NaCl content, and
nutrient components, as well as extrinsic factors, including temperature, relative humidity,
and the preservation methods required for microbial growth in the food product. Chemical
compounds—synthetic and natural—and antimicrobials of biological origin can be utilized
to manage pathogens and extend the shelf life of food products [4,5]. Lactic acid bacteria
(LABs), their metabolites, or both, are often used to prevent the growth of undesirable
microorganisms and improve food safety and quality [3]. LABs are a group of bacteria
generally recognized as safe (GRAS), functioning as natural bio-protectants and health
promoters [3,6]. They are known for their role in fermenting food and are being explored
as a way to preserve food naturally [7,8]. They produce antimicrobial substances that can
help prevent spoilage and the growth of foodborne pathogens [9,10]. Most LAB species
including Levilactobacillus brevis, Lacticaseibacillus paracasei, Lactiplantibacillus plantarum, and
Lactococcus lactis produce γ-amino butyric acid (GABA) via α-decarboxylation of gluta-
mate by the enzymatic reaction of glutamate decarboxylase (GAD) [11,12], a pyridoxal
5′-phosphate (PLP-dependent enzyme) [11]. The demand for GABA production suitable
for food applications has risen with its commercial utilization [13]. Although GABA is
widely present in plants, animals, and microorganisms, its concentrations in plants are
generally low [14]. Microorganisms serve as a significant source of GABA, with many
microorganisms, including yeast, fungi, and bacteria, demonstrating the capacity to synthe-
size GABA [15,16]. It has been reported that Lactococci can synthesize significant amounts of
GABA, but the highest-performing GABA producers have been reported among Lactobacilli,
specifically Levilactobacillus brevis, Lactobacillus delbreuckii subsp. bulgaricus, Lentilactobacillus
buchneri, Limosilacobacillus fermentum, Lactobacillus helveticus, Lacticaseibacillus paracasei, and
Lactiplantibacillus plantarum [17]. Microbial fermentation is an effective process for GABA
accumulation. LABs, in particular, are one of the most essential GABA producers due to
their food-available and high GAD activity for GABA production [18].

With LABs being widely accepted as GRAS and having a high potential for application
in the fermentation industry, GABA-producing LABs in the food industry have attracted
great interest in recent years. Many GABA-producing LABs have been isolated from
fermented foods and are used to produce natural health-oriented foods enriched with
GABA [18].

The widespread use of GABA is attributed to the gradual elucidation of its physio-
logical functions. GABA and its receptors have also been found in the peripheral nervous
system, the endocrine system, and other non-neural organs, which are involved in oxidative
metabolism [19]. The mechanism of GABA’s action on various diseases is mainly suggested
by its presence in the central nervous system and the nerves around various organs, thus
regulating human functions through nerve signal transmission and various receptors [20].
It is a potent pain reliever, beneficial for cardiovascular function, and treatment of various
neurological diseases, including Parkinson’s disease, Huntington’s chorea, and Alzheimer’s
disease [19,21]. GABA exhibits significant health benefits, including anti-hypertensive,
anti-diabetic, and anti-inflammatory properties. Moreover, its potential anticancer effects,
by stimulating cancer cell death and inhibiting growth, offer hope for its future applications
in cancer treatment [13,22].

From the point of view of market consumption, GABA-rich foods are becoming in-
creasingly popular due to the various physiological activities of GABA [23]. Currently,
GABA-enriched foods include mostly grain-based staple foods, beverages, dairy products,
and some snacks. The health claims of these GABA-rich products are mostly associated with
relieving insomnia or improving sleep, lowering blood pressure, and relieving stress [24].
GABA impacts cognitive functions such as cognition, emotion, and memory and controls
central nervous system activity. Therefore, it is necessary to draw attention to how im-
portant GABA function is in regulating neuronal activity and maintaining a healthy and
functional neurological system [19]. It has also been reported that GABA-enriched foods
have other health benefits, such as relieving stress and fatigue, hepatoprotective effects,
and protection against cisplatin-induced nephrotoxicity [24].
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This review aims to detail the process of obtaining GABA from LABs, the factors
affecting this process, the use of GABA in the food sector, and its possible health benefits in
light of the current literature. Given the significant role of GABA in the food sector and
the growing body of evidence supporting its beneficial effects on health, this review will
provide a comprehensive understanding of the process.

2. Biosynthesis of GABA by LABs

GABA is a non-protein amino acid produced mainly by plants, animals, and mi-
croorganisms [25] and has different functions depending on the producing organism [26].
Several LAB strains producing GABA have been isolated from traditional fermented foods
such as cheese, kimchi, paocai, yogurt, and fermented soya beans [18]. In a recent sys-
tematic review, GABA-producing Lactobacillus species were compiled as Levilactobacillus
brevis, Lentilactobacillus buchneri, Lactobacillus delbreuckii subsp. bulgaricus, Limosilactobacillus
fermentum, Lactobacillus helveticus, Lacticaseibacillus paracasei, Lactiplantibacillus plantarum,
Lactococcus lactis, etc. [18]. The GABA production capacity of different species is highly
variable. Levilactobacillus brevis is able to produce higher amounts of GABA compared to
other LAB species [27]. At the same time, various strains of a species also have marked
differences in GABA productivity [27–30].

Some microorganisms use Putrescine (Puu) or GAD pathways for GABA biosynthe-
sis [31]. The Puu pathway is a route used by some microorganisms (Escherichia coli [32] and
Aspergillus oryzae, a fungus [33]) to obtain GABA [34,35]. In another pathway, the GAD
pathway, GABA can be synthesized by a wide variety of microorganisms, including Lacto-
bacillus spp. [36], Escherichia coli [37], Listeria monocytogenes [38], and Aspergillus oryzae [39].
Since this review focuses on GABA synthesis by LABs, the GAD pathway is detailed. The
first step of the GAD pathway is carried out by an L-Glutamate (Glu)/GABA antiporter
encoded by a gadC gene [40]. This antiporter pumps the precursor Glu or its monosodium
glutamate (MSG) into the microorganism [41]. Subsequently, a PLP-dependent GAD en-
zyme catalyzes the conversion of the precursor to GABA, which is then transferred to the
extracellular matrix by the action of the Glu/GABA antiporter [42,43]. L-glutamate precur-
sor, a-ketoglutarate, is synthesized from glucose via the glycolysis pathway and part of the
Krebs cycle and then converted to L-glutamate by L-glutamate dehydrogenase [18]. The
GAD enzyme is encoded by a gadB gene that usually binds to PLP [37]. In most Lactobacillus
strains (Lacticaseibacillus rhamnosus, Lactiplantibacillus plantarum, Lacticaseibacillus casei, and
Latilactobacillus sakei), GAD is encoded by a gadB gene [44]. However, Levilactobacillus brevis
also possesses a gadA, which presents a similar structure to the gadB gene. Although both
genes play the same role in GAD expression, deletion of gadB is reported to be associated
with a more pronounced decrease in GABA production than deletion of gadA [45]. The
metabolic pathway GABA production is given in Figure 1.
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sis [22,51]. In a study analyzing how initial pH affects GABA production by Lactiplanti-
bacillus plantarum, the best GABA concentration was found at pH 5.5, and it was reported 
that, at this pH, twice the amount of GABA obtained at pH 4.0 could be obtained [53]. In 
general, acid environment (as in Korean kimchi and Chinese paocai) has been reported to 
be beneficial for the growth of GABA-producing LABs [18]. Therefore, the optimal condi-
tions for fermenting microorganisms vary according to the different properties of GADs, 
and the optimum pH is reported to be 3.5–5.0 [18]. Low pH must be maintained for effec-
tive GABA production [54,55]. It is also known that GAD activity is significantly lost at 
near-neutral pH (pH 7.0) [18]. 
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Figure 1. Metabolic pathway GABA production (Adapted from [18,46]). Abbreviations: PDH,
pyruvate dehydrogenase; GDH, glutamate dehydrogenase; GAD, glutamate decarboxylase; GABA-T,
GABA transaminase; SSADH, succinic semialdehyde dehydrogenase.

2.1. Factors Affecting GABA Synthesis

Lactobacillus has attracted significant interest due to its many GABA-producing
strains (e.g., Lactiplantibacillus plantarum, Levilactobacillus brevis, Latilactobacillus sakeii, Lac-
ticaseibacillus paracasei, Lactobacillus delbreuckii subsp. bulgaricus, Levilactobacillus zymae,
Companilactobacillus futsaii, Lentilactobacillus buchneri, Lentilactobacillus parabuchneri, Levilac-
tobacillus namurensis, Lacticaseibacillus rhamnosus, and Limosylactobacillus fermentum) [13].
Depending on the natural environment of each Lactobacillus strain, different parameters
influence the expression of GAD genes and, thus, GABA production [47]. These factors are
explained below.

2.1.1. pH and Temperature

pH and temperature are the main environmental factors that can modulate GAD gene
expression [48]. The pH value is a key factor for GABA biosynthesis by LABs and affects the
growth of the bacteria and GAD activity [22,45,49–51]. Changes in pH enhance GAD path-
way activation, a key mechanism for maintaining cell homeostasis [27,52]. Some studies
have shown that the initial pH of the fermentation medium affects GABA synthesis [22,51].
In a study analyzing how initial pH affects GABA production by Lactiplantibacillus plan-
tarum, the best GABA concentration was found at pH 5.5, and it was reported that, at this
pH, twice the amount of GABA obtained at pH 4.0 could be obtained [53]. In general, acid
environment (as in Korean kimchi and Chinese paocai) has been reported to be benefi-
cial for the growth of GABA-producing LABs [18]. Therefore, the optimal conditions for
fermenting microorganisms vary according to the different properties of GADs, and the
optimum pH is reported to be 3.5–5.0 [18]. Low pH must be maintained for effective GABA
production [54,55]. It is also known that GAD activity is significantly lost at near-neutral
pH (pH 7.0) [18].

At the same time, temperature also affects GABA production due to its relationship
with GAD activation [53]. The researchers summarized the optimal temperatures and



Foods 2024, 13, 2437 5 of 38

pH values for various Lactobacillus species. Accordingly, Latilactobacillus sakei showed the
highest GAD activity at 55 ◦C and pH 5, while 40 ◦C and pH 4.5 were reported as the best
values for Lactiplantibacillus plantarum GAD activity. In addition, different strains of L. brevis
show optimum activity between 30 and 48 ◦C and at a pH of 4.2–5.2 [56,57]. The optimal
temperatures of GADs ranged from 30 to 60 ◦C in different LAB species [18].

2.1.2. Effect of Medium Composition

GAD activity is the key factor determining the GABA yield of a strain. Not only
pH and temperature but also adding various media additives, such as L-glutamic acid
and PLP, can modulate GABA synthesis. L-glutamic acid, the substrate of GAD, is an
indispensable compound in the medium for the synthesis of GABA by LABs since LABs
cannot synthesize sufficient L-glutamic acid for GABA production. Monosodium glutamate
(MSG) is usually used in GABA production because it can produce L-glutamic acid by
hydrolysis [18]. By increasing MSG, the aim is to stimulate GABA production of GAD
via the GABA shunt pathway. At the same time, some researchers have shown that
excessive MSG can inhibit cell growth and reduce GABA production. The optimal MSG
concentrations for various microorganisms in GABA production are different [30,43,54].
The concentration of the Glu or MSG precursors strongly alters GABA synthesis [58]. In one
study, the relationship between the amount of GABA produced Lactiplantibacillus plantarum
and the effect of Glu concentration was measured in the range of 0–600 mM, and it was
found that GABA production increased sharply until a 400 mM Glu concentration was
reached [59]. Another study evaluating how different MSG concentrations affect GABA
production by Lactiplantibacillus plantarum reported that the optimum Glu concentration
to obtain the best GABA results was 20 g/L [53]. In a study in which a range of 0 to
400 mM MSG was used to evaluate the GABA yield of Levilactobacillus brevis, the best
result was obtained at 270 mM [43]. Despite the effectiveness of the direct addition of Glu
or MSG, alternatives were sought to reduce economic costs [26]. Woraharn et al. (2016)
used the fungus Hericium erinaceus as a source of Glu combined with a co-culture of two
Lactobacillus strains. Levilactobacillus brevis was used to hydrolyze L-glutamine to Glu using
an L-glutaminase, and L. fermentum was added to convert this Glu to GABA. Another
technique to promote the secretion of Glu without external support is co-cultivation with a
microorganism that synthesizes Glu [60]. Yang et al. (2015) used a strain of Corynebacterium
glutamicum to produce Glu, which was then converted to GABA by Lactiplantibacillus
plantarum via the fermentation of cassava powder [61].

PLP can increase GAD activity by acting as a cofactor for the GAD enzyme. The
effect of PLP varies according to the time of the addition of PLP. It was found that PLP
can greatly promote the GABA production of Lacticaseibacillus paracasei at concentrations
of 10 or 100 µM in the initial culture medium [55]. In addition to coenzyme PLP supple-
mentation [62], other procedures, such as regulation of Tween-80 concentration [27] and
the addition of metal ions, can be used to increase GAD activity [48].

Furthermore, adding different carbon and nitrogen sources can help improve bacterial
metabolism and thus enhance GABA synthesis. Zareian et al. (2012) used glucose (carbon
source) and nitrogen to enhance the bacterial production of Glu without any other supple-
mentation [63]. However, the optimal carbon and nitrogen source varies depending on the
Lactobacillus species. Several studies have shown that glucose is the most efficient carbon
source for Lactiplantibacillus plantarum [64] and Levilactobacillus brevis [58]. Similarly, Zhao
et al. (2015) reported that Lentilactobacillus buchneri produced higher amounts of GABA
in the presence of xylose [65]. Yi Song and Yu Chui (2017) observed that Lacticaseibacillus
rhamnosus synthesized high amounts of this amino acid using galactose [66].

2.1.3. Effect of Cultivation Time

The point at which optimum GABA production was reached varied depending on the
Lactobacillus strain used. In one study, the highest GABA yield was detected after 60 h of
cultivation using Lactiplantibacillus plantarum [59], while another study reported a higher
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GABA yield at 35 h when using another Lactiplantibacillus plantarum strain [62]. A study on
Levilactobacillus brevis reported that the highest amount of GABA was reached in 30 h [67].

2.2. Mechanisms and Techniques to Improve GABA Production

The GABA production capacity of strains is significantly affected by culture condi-
tions. Numerous studies have been conducted to increase GABA yield by optimizing
fermentation conditions, such as optimizing the initial pH of the culture medium, fermenta-
tion temperature, fermentation time, L-glutamic acid concentration, PLP, media additives,
carbon source, nitrogen source, etc. [43,51,68].

Several LAB strains have shown potential for industrial GABA production. How-
ever, there is a need to improve the production efficiency of LAB-derived GABA. Several
strategies have been used to improve GABA synthesis by LAB strains [69]. These strategies
can be grouped under two headings: strategies dependent on modern biotechnology and
traditional fermentation optimizations [70–73]. As a modern strategy, genetic improve-
ment based on understanding cell physiology can effectively increase GABA production
by LAB strains [74]. Conventional optimization has also proven to be an effective way
to increase GABA production of LAB strains [65,75,76]. LABs often face various envi-
ronmental stresses, including acid, cold, heat, drying, oxidative stress, etc., during fer-
mentation and industry application [77,78]. In response to these challenges, LAB strains
need good metabolic capabilities, strong physiological endurance, and environmental
suitability [79–81]. Physiology-driven engineering has become an important way to in-
crease the productivity of industrially applicable strains by improving their physiological
performance [81].

Genetic engineering is an important strategy to improve GABA bioconversion and
increase GABA yield through directed modulation of metabolic pathways. The direct
approach is overexpression of the key enzyme GAD. Genes encoding GAD have been
identified to be heterologously or homologously overexpressed in model LAB strains
(Latilactobacillus sakei, Lactiplantibacillus plantarum, and so forth) [18,82,83]. A recombinant
C. glutamicum was constructed by co-expression of two GAD genes (gadB1 and gadB2)
from L. brevis Lb85. Compared to strains with a single expression of gadB1 or gadB2, this
co-expressing strain increased GABA production more than twofold [82]. In addition to
the overexpression of the GAD gene, glutamate in the GABA synthesis pathway, GABA
antiporter gene gadC, and the regulatory gene gadR can also be used as a pathway for
overproduction to increase GABA efficiency in the species [83].

The key to genetically modifying LABs is recombinant protein production gene ther-
apy and genome engineering of the DNA molecules of plasmids used to deliver the genes
of interest [84]. Since LABs have a thick peptide-glycan layer that acts as a barrier for
transferring exogenous DNA into cells, the use of plasmids is often limited by transforma-
tion efficiency [85]. Additionally, factors such as low plasmid copy number, endonuclease
activity within cells, and species-to-species variation limit the use of plasmids in LABs [86].
Alternatively, using genome engineering tools to insert the gene of interest into the LAB
chromosome can increase the genetic stability of these constructs [87].

The Cre-lox system is another pathway for genetic recombination in LABs [88]. It
offers flexibility and high recombination efficiency by allowing the deletion or insertion
of a specific gene in any region of the bacterial chromosome [89]. There are limitations
to the use of the Cre-lox system, such as iterative screening procedures, off-target effects,
and high rates of false positive colonies causing genomic instability [90]. Alternatively,
clustered regularly interspaced short palindromic repeats (CRISPR)-Cas systems, which
make lethal double-strand breaks in the targeted region to eliminate false positive or
wild-type colonies during screening, have been developed to provide a high-throughput
screening and genome editing platform [91,92]. Rapid progress is being made in genetic
engineering of LABs using recombination and CRISPR-based systems [84]. The most
common genera used in the field of genetic engineering of LABs are Lactococcus and
Lactobacillus [93,94].
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However, the use of genetically modified LABs in food production is limited, due
to concerns related to the dissemination of modified strains, plasmids, and recombinant
genes, and especially due to a lack of public acceptance. Therefore, the use of genetically
modified LABs is not approved and requires legal regulation [9].

Increased GABA biosynthesis efficiency and GABA productivity can also be achieved
by inactivating the competing pathways of GABA production. The GABA aminotransferase
enzyme gadT directs GABA to the Krebs cycle and causes GABA degradation. When
gadB and gadC genes are co-overexpressed in the gadT mutant strain, the final GABA
concentration is found to be increased [95].

A sufficient amount of precursor substance (L-glutamate) is needed for GABA pro-
duction. However, since GABA-producing LABs cannot synthesize high concentrations
of this compound naturally, exogenous L-glutamate must be supplied. Therefore, some L-
glutamate recombinant strains have been developed to provide L-glutamate [96,97]. It was
also found that GABA production was significantly increased by improving L-glutamate
supplementation through deletion of the 2-oxoglutarate decarboxylase subunit gene odhA
or the pyruvate carboxylase gene pyc [98].

In addition, using multiple microorganisms is currently popular in the fermentation
industry as some substances produced by co-culture strains can enhance each other’s
growth [99,100]. Co-fermentation with different strains is therefore considered a crucial
and promising route for high yields of GABA [18].

3. Food Applications of GABA Derived from LABs

The production of foods and beverages fermented by LABs is becoming increasingly
widespread because the metabolites produced as a result of their activities improve product
quality and health consequences [101]. GABA is one of these metabolites that bacteria
synthesize from the L-glutamate found in foods with the enzyme glutamate decarboxylase
in order to increase their tolerance to acidic environments [12]. Levilactobacillus brevis,
Lentilactobacillus buchneri, Lactobacillus delbreuckii subsp. bulgaricus, Limosilactobacillus fermen-
tum, Lactobacillus helveticus, Lacticaseibacillus paracasei, and Lactiplantibacillus plantarum are
important LABs for GABA production. Some strains of Streptococcus thermophilus and
Lactococcus lactis are prominent in the production of GABA-rich dairy products. In recent
years, it has been found that some species belonging to the Enterococcus, Leuconostoc, Pedio-
coccus, and Weissella genera can also produce GABA [18]. The GABA production capacity
of different species is highly variable. Compared to other LABs, it has been reported that
Levilactobacillus brevis can produce high amounts of GABA (205 g/L). However, there may
be marked differences in the GABA efficiency of various strains of a bacteria species [27].
Therefore, the use of strains with high GABA productivity as starter cultures in some
fermented foods can be used as an alternative technique in the production of functional
foods that offer significant health effects [102].

In the food industry, the production of functional foods enriched with GABA is
becoming widespread. Examples of these functional foods include GABA-enriched bev-
erages, such as Gabaron Tea, white tea, fruit juice; GABA-enriched dairy products, such
as fermented milk, yogurt, cheese; GABA-enriched cereal-based products, such as brown
rice, fermented oat, wheat-based sourdough, quinoa flakes; and GABA-enriched legumes
and soy products, such as adzuki beans, black soybeans, tempeh, fermented soybeans,
etc. [103,104]. Among these products Gabaron Tea, for example, was a common GABA-
enriched functional beverage that was commercially produced in Japan in the 1980s and
black raspberry juice enriched with GABA is included in the list of GRAS. GABA can also
be used as a food additive in some foods such as chocolates, potato snacks, bread, and
biscuits [104]. The advantage of using LAB fermentation in foods is its high enrichment
effect and suitability for the mass production of GABA [105]. However, the problem with
GABA production from LABs is that it requires a controlled fermentation process [102].
In addition, disadvantages of LAB fermentation include its high cost and strain safety
issues [105].
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3.1. Applications of GABA Produced by LABs in the Baking Industry and Cereal-Based Products

Plant foods are dietary sources of naturally occurring GABA. For example, while the
GABA content in wheat is quite low and insignificant compared to other grain products
(0.7 mg/100 g for wheat flour), the food with the highest GABA content was recorded
as whole grain oat (57.1 mg/100 g). The GABA contents of different rice types also vary.
The foods with the highest GABA content among pseudocereals are stated as Tartary
Buckwheat and quinoa (10.34 mg/100 g and 7.8 mg/100 g, respectively) [106].

Since the amount of GABA naturally found in foods is low, the GABA content in
cereal-based foods can be increased through the fermentation process using LABs. When
a brown rice was fermented with 1 × 107 CFU/mL LAB (Lactiplantibacillus plantarum,
Lacticaseibacillus casei, Limosilactobacillus fermentum, and Lacticaseibacillus rhamnosus) at 36 ◦C
for 48 h, the GABA content increased from 4.64 mg/g to 6.93 mg/g (49%) [107]. Although
the amount of GABA naturally found in wheat is low (0.7 mg/100 g for wheat flour) [106],
the GABA content was increased to 19.9 mg/g in wheat germ as a result of the fermentation
with Lactiplantibacillus plantarum 299v [108]. Similarly, an increase in GABA content has
been reported in breads prepared by fermenting with LABs [109–111] and in fermented
products prepared using pseudocereals [70,112]. Table 1 summarizes the GABA content
increase in cereal-based products fermented by LABs.

Applications increasing GABA content in cereal-based products should be considered
in terms of their effects on product quality as well as their effects on health. The fermen-
tation process with LABs is important in terms of improving taste, flavor, aroma, and
texture in cereal-based and bakery industry products [113]. At the end of the fermentation
process, an improvement in the volume, color, brightness, and taste of the bread product
was demonstrated [109,111]. Fermentation plays a role in improving the bioavailability
of micronutrients by providing optimal conditions for the enzymatic degradation of phy-
tates. Improving protein digestibility causes an increase in the levels of free amino acids,
especially lysine, methionine, and tryptophan [114]. Due to their antimicrobial effects,
fermentation with LABs is also important in the detoxification of harmful components
such as toxins [113]. Additionally, the production of gluten-free cereal-based fermented
beverages may be a good option for people with celiac disease or gluten sensitivity [115].

Table 1. Effect of lactic acid fermentation on GABA content in cereal-based foods.

Cereal Based Foods Lactic Acid Bacteria GABA Content Reference

Brown rice
Lactiplantibacillus plantarum, Lacticaseibacillus

casei, Limosilactobacillus fermentum and
Lacticaseibacillus rhamnosus

6.93 mg/g [107]

Rice bran Lactiplantibacillus plantarum EJ2014 19.8 g/L [116]

Wheat germ Lactiplantibacillus plantarum 299v 19.9 mg/g [108]

Quinoa sourdough Levilactobacillus brevis CRL2013 26.6 g/L [70]

Fermented bread production by
adding wheat bran to surplus bread

Pediococcus pentosaceus F01
Levilactobacillus brevis MRS4

Lactiplantibacillus plantarum H64
Lactiplantibacillus plantarum C48

148 mg/kg dough [110]

Steamed breads Levilactobacillus sp. LB-2 4.95 mg/g [109]

Wheat germ bread Lactiplantibacillus plantarum

Wheat flour bread
(5.17 mg/100 g)

Raw wheat germ bread
(26.64 mg/100 g)

Fermented wheat germ
bread (28.42 mg/100 g)

[111]
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Table 1. Cont.

Cereal Based Foods Lactic Acid Bacteria GABA Content Reference

Amaranth flour bread (%20) Levilactobacillus brevis A7
Lactobacillus farciminis A11

26.9 mg/kg
39.0 mg/kg [112]

Fermented beverage produced from
brown rice milk Lactobacillus pentosus 9D3 14.3 mg/100 mL [115]

3.2. Applications of GABA Produced by LABs in Dairy Products

Lactobacillus, Streptococcus, Leuconostoc, Pediococcus, and Lactococcus are LABs that play
a role in the fermentation of dairy products. During the fermentation process, various
biochemical changes occur that increase food quality, such as the conversion of lactose to
lactic acid, the release of fatty acids, improvements in sensory properties such as taste and
texture, and the production of bioactive compounds [117]. In addition, the breakdown
of proteins into casein and whey peptides and the increase in the shelf life of the dairy
products are among the other positive results of the fermentation with LABs [118].

The use of probiotic LABs in dairy products is important in the production of func-
tional foods that can reduce cholesterol and support the diet with GABA. Additionally,
LABs can reduce oxidative stress by increasing the level of antioxidant components [119].
Animal studies have shown that the GABA in fermented dairy products may have anti-
insomnia [120] and anti-diabetic [121] effects. Studies on fermented dairy products show
that the use of more than one bacterial strain together increases the GABA content com-
pared to a single bacterial strain [122–124]. In addition, the increase in GABA content
continues during storage, and the sensory characteristics of fermented dairy products
are better than the control group [125]. However, especially in cheeses, proteolysis can
stimulate the release of free amino acids that can be converted to toxic biogenic amines. The
accumulation of biogenic amines such as histamine and tyramine can have adverse effects
on health. In a study evaluating the safety of starter cultures in cheese, it was reported
that the Levilactobacillus brevis TAUL1567 strain could produce tyramine (193.15 µg/mL).
Also, the Lactococcus lactis TAUL88 and TAUL8000 strains and the Levilactobacillus brevis
TAUL1567 strain have been shown to be capable of producing putrescine [126]. Therefore,
it is important to use starter cultures that do not produce biogenic amines in the fermented
foods. The effect of LAB fermentation on GABA content in fermented dairy products is
given in Table 2.

Table 2. Effect of lactic acid fermentation on GABA content in fermented dairy products.

Fermented Dairy Products Lactic Acid Bacteria GABA Content Reference

Fermented milk From a total of 94 LAB strains, Lactococcus lactis
L-571 and L-572 showed the highest production

86.0 mg/L
86.2 mg/L [124]

Fermented milk Lactococcus lactis and Lacticaseibacillus rhamnosus
Lactococcus lactis and Lacticaseibacillus paracasei

185.81 mg/L
319.72 mg/L [122]

Fermented milk Enterococcus Faecium MDM21 and Lactococcus
lactis subsp. lactis BRM3. 136 mg/L [123]

Fermented sheep’s milk

Commercial starter (Streptococcus thermophilus
and Lactobacillus delbrueckii subsp. bulgaricus)

Lacticaseibacillus paracasei Lb24 Lacticaseibacillus
paracasei Lb41 Lactiplantibacillus plantarum Lb56

~150 mg/L
~170 mg/L
191.9 mg/L
197.9 mg/L

(Values refer to after 28 days
of storage)

[125]

Iranian traditional dairy
products

Lactococcus lactis 311
Lactococcus lactis 491

0.395 mg/mL
0.179 mg/mL [127]
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Table 2. Cont.

Fermented Dairy Products Lactic Acid Bacteria GABA Content Reference

Yogurt Control
Levilactobacillus brevis CGMCC1.5954

35.33 mg/100 mL
147.36 mg/100 mL [128]

Yogurt Lacticaseibacillus paracasei (supplemented
with spirulina) 99.63 µg/mL [129]

Kefir Lactobacillus sp. Makhdzir Naser-1
3.82 mg/mL

(Initial milk GABA content:
0.01 mg/mL)

[130]

Cheese Lactiplantibacillus plantarum L10 and L11 11.30 mg/100 mL [131]

3.3. Applications of GABA Produced by LABs in the Other Food Sources

LABs are also widely used in the fermentation of meat products. LABs metabolize the
proteins, lipids, and glycogen in meat into smaller molecules through enzyme systems and
are responsible for the development of a special taste in the final product. In addition, the
fermentation process improves the physical and chemical properties of meat products and
increases antioxidant and antibacterial metabolites and nitrite breakdown [132]. During
fermentation, the product is also enriched with GABA. Related studies have shown that
LABs increase the amount of GABA in the Vietnamese traditional fermented meat product
Nem Chua [133], fermented sausage [134], and fermented fish products [135,136].

Legumes are a source of natural prebiotic ingredients including oligosaccharides,
resistant starch, polyphenols, and isoflavones. These compounds provide various important
physiological benefits due to their anti-inflammatory and immune system regulation as well
as anti-cancer properties [137]. In a study conducted on mice with depressive-like behavior,
it was shown that the GABA content in fermented Adzuki bean sprouts increased serotonin
and norepinephrine levels and improved social interaction [138]. However, applications for
legumes are still limited due to the presence of undesirable compounds such as phytic acid
and saponin and their unpleasant sensory qualities [139]. Fermentation of legumes with
LABs is important in reducing undesirable nutritional components such as phytic acid and
in developing a healthier and technologically adapted symbiotic product [137,139]. Protein
solubility, water and oil retention capacity, emulsification, and gel formation properties can
change during the fermentation process; thus, the technological properties of the products
can be improved. In addition, fermentation with LABs is important in the degradation
of aromatic components, reducing undesirable taste and allergenic properties [139]. By
fermenting legumes, snacks and beverages with enhanced GABA, such as bread, pasta,
and yogurt, can be produced [137]. The effect of lactic acid fermentation on GABA content
in other food sources is shown in Table 3.

Similarly, fermentation of fruits and vegetables with LABs can have positive effects on
health through the production of bioactive components [140]. In a study, it was reported that
strawberry juice with enhanced GABA had an anti-inflammatory effect and reduced serum
TNF-α and IL-6 levels in mice [141]. In another study, the GABA in fermented Hovenia
dulcis extract was shown to have liver-protective properties in mice [142]. In addition to
its health effects, fermentation also improves the quality of the foods. The fermentation
extends the shelf life of products by reducing or inhibiting foodborne pathogens in fruits
and vegetables [143]. Fruit juices fermented by LABs have higher viscosity, enhanced aroma
with the production of new compounds, and increased stability of phenolic compounds
through the production of organic acids [101]. Recently, the production of vegan fermented
fruit and vegetable juices that can be easily used by individuals with lactose intolerance or
allergies has been at the forefront. In a systematic review, it was stated that these products
offer strong antimicrobial and antioxidant properties, high vitamin, total phenolic substance,
amino acid, exopolysaccharide content, and unique sensory quality [144]. Fermentation of
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fruit and vegetable juices with LABs is also effective in increasing the GABA content of the
products [145–148].

Table 3. Effect of lactic acid fermentation on GABA content in other food sources.

Fermented Meat Products Lactic Acid Bacteria GABA Content Reference

Traditionally fermented meat
(Nem chua) Lactiplantibacillus plantarum VL1 1.568 mg/mL [133]

Dry-fermented sausage

Lactiplantibacillus plantarum KS-3, KS-11, KS-17,
KS-25, Lactiplantibacillus plantarum subsp.

plantarum KS-12, Pediococcus acidilactici KS-20,
Weissella hellenica KS-24, Lactiplantibacillus

pentosus KS-27, Latilactobacillus sakei KS-30, KS-82

1.657 mM for
Lactiplantibacillus plantarum

KS-25
[134]

Fermented fish INS-A2
INS-A4

20.0 mg/mL
18.8 mg/mL [135]

Fermented fish sauce Pediococcus pentosaceus MN12 27.9 mM [136]

Fermented legume products

Red lentils
Green lentils

Lactiplantibacillus plantarum No. 122
Lacticaseibacillus casei No. 210

Lactiplantibacillus plantarum No. 122
Lacticaseibacillus casei No. 210

4.53 µmol/g
2.91µmol/g
9.35 µmol/g
8.48 µmol/g

[149]

Fermented chickpea milk Lactiplantibacillus plantarum M-6 0.537 mg/mL [150]

Isoflavone-enriched soybean
leaves

Lactiplantibacillus plantarum P1201 and
Levilactobacillus brevis BMK184

Increased from 144.24 to
173.09 mg/100 g [151]

Fermented soymilk Lactiplantibacillus plantarum Lp3 3.74 mg/mL [152]

Fermented soymilk
hydrolysate Lactiplantibacillus plantarum LMG6907 859 mg/L [153]

Soy yogurt Lactobacillus delbrueckii subsp. latis KFRI 01181
and Lactiplantibacillus plantarum KFRI 00144 0.455 mg/g [154]

Yogurt-style snack produced
with leguminosae flours

Lactiplantibacillus plantarum DSM33326 and
Levilactobacillus brevis DSM33325

110.9 mg/L
(Before fermentation:

90 mg/mL)
[155]

Soybean sprout yogurt-like
product Levilactobacillus brevis NPS-QW 145 2.302 g/L [156]

Fermented fruit and
vegetable products

Cucumber Not specified
Fresh 0.83 mM

Acidified 0.56 mM
Fermented 1.21 mM

[157]

Kimchi
Different LAB strains were evaluated:
Lactiplantibacillus plantarum isolates

Levilactobacillus brevis isolates

5.8 to 101.7 mM
8.5 to 88.6 mM [158]

Kimchi Leuconostoc mesenteroides K1501
Leuconostoc mesenteroides K1627

22.13 mM
22.81 mM [159]

Tomato juice Lactiplantibacillus plantarum KB1253 41.0 mM [146]

Litchi Juice
Levilactobacillus brevis LBG-29
Levilactobacillus brevis LBG-24
Levilactobacillus brevis LBD–14

3.07 g/L
2.29 g/L

0.327 g/L
[145]

Litchi Juice Lactiplantibacillus plantarum HU-C2W 3.92 g/L [148]

Black grape juice Lactiplantibacillus plantarum plantarun IBRC
(10817) 117.33 ppm [147]
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3.4. Potential Adverse Effects of High GABA Intake

The literature regarding the potential side effects of GABA produced by LAB fermen-
tation is limited. It is known that some toxic components (such as biogenic amines) can be
produced during lactic acid fermentation. Identification of strains that produce beneficial
metabolites but do not increase toxic compounds may expand the use of these bacteria in
the health and food industries [160]. On the other hand, the effects of GABA as a dietary
supplement or as a naturally occurring ingredient in fermented milk or soy matrices were
studied in clinical trials. Data at dosages up to 18 g/d for 4 days and in longer studies at
intakes of 120 mg/d for 12 weeks indicated no significant side effects related to GABA. It is
possible that using GABA concurrently with anti-hypertensive drugs could raise the risk
of hypotension because GABA may cause a drop in blood pressure. Caution is advised
for pregnant and lactating women since GABA can impact neurotransmitters and the
endocrine system, which includes elevated levels of prolactin and growth hormone [23].

4. Human Health Benefits of GABA

In recent years, numerous studies have demonstrated the beneficial effects of GABA
produced by LABs, referred to as a postbiotic, on neuroprotection, improvement of sleep
quality, alleviation of depression, and pain relief (see Table 4). Foods enriched with GABA
have been found to possess various health benefits, such as anti-diabetic, anti-hypertensive,
and anti-inflammatory properties [24]. Despite its effects on different organs, GABA
primarily exerts its influence through the brain–gut axis [161]. The positive effects of GABA
on health are shown in Figure 2.
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4.1. Neuroprotection

The inflammatory response to nerve tissue damage disrupts the balance of electrical
activities between excitatory and inhibitory neurotransmitter systems in the brain by
leading to the release of various inflammatory mediators such as reactive oxygen species
(ROS), nitric oxide (NO), and cytokines [163,164]. This condition contributes to various
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neurological disorders, including epilepsy, Alzheimer’s, cerebrovascular diseases, multiple
sclerosis, Parkinson’s, neuroinfections, and insomnia [165–167].

GABA is a significant inhibitory neurotransmitter in the nervous system and plays
a critical role in transmitting information, neuronal development, and regulation of neu-
rological disorders [168,169]. The impact of GABA on various diseases is attributed to
its regulation of numerous functions through neuronal signal transmission and various
receptors via its distribution in the central nervous system and peripheral organs [20].
Low GABA concentrations in the brain, imbalances in the GABAergic system, and alter-
ations in GABA neurotransmitter activity, have been observed to lead to dysfunctions in
ion transport functionality, synaptic connections, and modulation of the central nervous
system [170,171]. Additionally, it has been noted that permanent damage to GABA func-
tion resulting from hypoxic–ischemic events during fetal development may lead to the
emergence of learning and memory deficits [172].

The therapeutic effects of GABA as a dietary supplement have been extensively
studied, showing its potential to enhance memory and cognitive functions by suppress-
ing neurodegeneration [50,150,173–179]. It has been suggested that GABA supplements
may reduce the severity of epileptic seizures and could be utilized for the prevention or
mitigation of cerebral stroke damage [180,181]. However, in particular studies, the neu-
roprotective effect of GABA was not observed in cerebral ischemia [182,183]. In a study
conducted on mice, significant neuroprotection could not be achieved when GABA trans-
porters were inhibited following focal cerebral ischemia [183]. Similarly, consistent with the
previous study, GABA did not exhibit a significant difference in functional or histological
measurements following ischemia in the rat suture model, indicating no neuroprotective
effect [182].

GABA produced by Lentilactobacillus buchneri isolated from kimchi protects against
neurotoxic-induced cell death [50]. Additionally, GABA produced by another LAB, Lacto-
bacillus sakei B216, isolated from kimchi, has improved long-term memory loss in cognitively
impaired mice and increased the proliferation of in vitro neuroendocrine PC-12 cells [173].
Pre-germinated brown rice extract with enhanced levels of GABA has been observed to ef-
fectively inhibit apoptosis-associated DNA fragmentation and intracellular ROS formation,
thereby significantly reducing the proliferation and apoptosis of human neuroblastoma
cells [174]. Neuroprotective effects observed in mice fed with fermented rice flour contain-
ing 750.55 ± 26.03 mg GABA/100 g have been linked to increased activities of antioxidant
enzymes superoxide dismutase and catalase in the cortex and cerebellum regions, along
with a decrease in oxidative stress [175].

GABA-enriched fermented sea tangle (Laminaria japonica) fermented with Levilacto-
bacillus brevis BJ20 has been shown to provide a protective effect against cognitive decline
in dementia model mice and the elderly, potentially enhancing neuroplasticity [176,177].
Another study revealed that GABA-enriched fermented sea tangle with Levilactobacillus
brevis BJ20 effectively increased neurotrophic factor levels associated with reduced risk
of dementia and Alzheimer’s disease in middle-aged women [184]. GABA produced by
Lactiplantibacillus plantarum from novel fermented chickpea milk has been reported to
protect neuroendocrine PC-12 cells from MnCl2-induced damage and enhance cell viability,
thus providing neuroprotective effects [150].

In conclusion, the neuroprotective effects of GABA may stem from its ability to im-
prove long-term memory loss, support the proliferation of neuroendocrine cells, protect
against neurotoxic-induced cell death, inhibit the proliferation and apoptosis of neurob-
lastoma cells, reduce ROS and oxidative stress levels, increase neuroplasticity and neu-
rotrophic factor levels, and protect neuroendocrine cells.

4.2. Anti-Hypertension Activity

Hypertension, a condition where blood vessels are consistently under high pres-
sure, typically arises from the narrowing or stiffening of the vessels [185]. Angiotensin-
converting enzyme (ACE) plays a significant role in regulating blood pressure by converting
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angiotensin I to the potent vasoconstrictor angiotensin II; ACE inhibitors hinder this con-
version, leading to vasodilation and consequently lowering blood pressure, thus proving
effective in hypertension treatment [186–188]. It is noted that GABA found in foods fer-
mented by LABs exhibits antihypertensive effects through ACE inhibitory activity, thereby
playing a role in central blood pressure control in the cerebral renin-angiotensin system [20].

Skimmed milk fermented by the ND01 strain LAB demonstrated antihypertensive
potential due to its high ACE inhibitor activities, with the Lactobacillus helveticus ND01
strain showing an ACE inhibitory activity of 67.18% [189]. GABA produced by Lactococcus
lactis DIBCA2 and Lactiplantibacillus plantarum PU11 bacteria from fermented milk showed
0.70 ± 0.07 mg/mL ACE inhibitor activity [190]. Similarly, high ACE inhibitor activity
has been observed in GABA produced by Lactiplantibacillus plantarum NTU 102 bacteria
from fermented milk [191]. The production of 113.35 mg/L of GABA from skimmed
milk by Lactobacillus helveticus has possible uses in the treatment of hypertension [187].
Additionally, 77.4 mg/kg of GABA obtained from milk fermentation with Lactiplantibacillus
plantarum strain, when combined with other LABs, reaches a concentration of 144.5 mg/kg,
thus providing an effective dosage for hypertensive effects [190]. Furthermore, yogurts
containing GABA produced from Lactobacillus helveticus or Lacticaseibacillus rhamnosus have
also shown antihypertensive effects [192].

The antihypertensive effects of GABA produced from fermented dairy products have
been confirmed in rats [193,194] and humans [195,196]. In spontaneously hypertensive
rats, after eight weeks of oral administration of GABA-enriched low-fat milk fermented
by Lactiplantibacillus plantarum (80.6 mg/100 g), a decrease in systolic and diastolic blood
pressure was observed [194]. Additionally, this effect of GABA from fermented milk
was seen in another study involving both spontaneously hypertensive and normotensive
rats [193]. In a study involving twenty-three adult men, daily consumption of 50 g of
Cheddar cheese containing 16 mg of GABA prepared with Lactococcus lactis ssp. lactis strain
over 12 weeks decreased 3.5 ± 2.8 mmHg in blood pressure and 5.5 ± 3.9 mmHg in systolic
blood pressure [196]. Another randomized placebo-controlled study conducted in mildly
hypertensive patients showed that supplementation of 10–12 mg of GABA in 100 mL of
fermented milk significantly reduced blood pressure within 2 or 4 weeks [195].

It has been reported that GABA-enriched wheat-based fermented rice, fermented
brown rice, and buckwheat exhibit a strong ACE inhibitory effect, with buckwheat’s
maximum ACE inhibition percentage being 2.57 times higher than that of pure buck-
wheat [197–199]. Studies on GABA-enriched rice [199–203], idli [204], and purple sweet
potatoes [205,206] have consistently shown antihypertensive effects in both humans and
animals. It has been observed that GABA produced by Lactiplantibacillus plantarum MNZ
from wheat-based fermented rice prevents the increase in blood pressure in spontaneously
hypertensive rats. Additionally, a decrease in aortic endothelin-1 protein expression was
observed in these rats [199]. It has been reported that supplementation of idli, a fermented
rice and black lentil meal, significantly reduced systolic blood pressure in spontaneously
hypertensive rats. The blood pressure-lowering effects of idli were attributed to reduced
gene expressions of ET-1, HSP70, NF-κB, and iNOS in the aorta of spontaneously hyperten-
sive rats [204]. In a randomized, double-blind, placebo-controlled clinical trial involving
39 mildly hypertensive adults, 150 g/day of GABA-enriched rice decreased morning blood
pressure after the first week and between the sixth and eighth weeks compared to placebo
rice [200]. GABA-enriched rice reduced blood pressure by approximately 20 mmHg in
spontaneously hypertensive rats. However, it did not show a significant hypotensive effect
in normotensive rats [201]. Similarly, the antihypertensive effect of GABA-rich brown rice
has been demonstrated in spontaneously hypertensive rats [202,203]. Moreover, the blood
pressure of patients with mild to moderate hypertension decreased significantly during
daily consumption of 120 g of GABA-rich bread [207].

Research indicates that GABA derived from plant proteins such as beans, soybeans, and
lentils exhibits high ACE inhibitor activity and has positive effects on hypertension [208–211].
Fermented soybeans with approximately 1.9 g/kg GABA produced by Levilactobacillus
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brevis were found to have higher ACE inhibitor activity than traditional soybeans [208].
Kimchi LABs fermented soybeans under optimized conditions, GABA content reached up
to 1.3 mg/g and exhibited up to 43% ACE inhibitor activity [209]. An extract of 10.42 mg/g
GABA obtained from fermented lentils showed a potent ACE inhibitor activity of 92% [211].
Significant systolic and diastolic blood pressure decreases were achieved in spontaneously
hypertensive rats fed with GABA-enriched lentils [210]. On the other hand, the amount
of GABA in foods needs to reach an effective dose for it to exhibit an antihypertensive
effect. In a study evaluating the antihypertensive effects of eggplant, the GABA content in
eggplants did not exhibit a hypotensive effect in spontaneously hypertensive rats [212].

GABA produced by purple sweet potato milk fermentation with LABs (Lactococcus
acidophilus BCRC 14065, Lactococcus delbrueckii ssp. lactis BCRC 12256, and Lactococcus gasseri
BCRC 14619) reduced both systolic and diastolic blood pressure. They showed positive
effects on cardiac hypertrophy in spontaneously hypertensive rats [205,206]. Similarly, it
has been shown that a GABA-rich tomato significantly reduces blood pressure in spon-
taneously hypertensive rats [213]. These findings confirm the ACE inhibitor activity of
GABA found in fermented products and its ability to reduce blood pressure, supporting
the consideration of fermented products as a potential alternative or adjunct therapy in
hypertension management.

4.3. Management of Stress and Sleep

Insomnia, characterized by difficulty initiating sleep, poor sleep quality, and impaired
daytime functioning, adversely affects individuals’ quality of life, mood, cognitive function,
and health [214]. In individuals experiencing insomnia, GABA’s inhibitory function may
be impaired, and reduced expression levels of GABAA receptor α1 and α2 subunit mRNA
may indicate sleep disorders [215].

Research on the effectiveness of GABA in reducing stress and improving sleep quality
has yielded mixed results. While in a recent study on 19 sleep-disorder patients who took
700 mg/day GABA supplementation, the sleep score did not exhibit a statistically signifi-
cant difference [216], others, mostly in animals, have demonstrated its potential to increase
sleep duration [120,217–219], reduced sleep latency [120,219], and enhanced sleep quality
both in animal and human studies [169,220]. Oral administration of GABA-rich fermented
milk with Levilactobacillus brevis to mice induced with sodium pentobarbital or sodium
barbital has increased sleep duration and reduced sleep latency [120]. Another study on
mice showed that GABA derived from fermented rice seed extracts prevented caffeine-
induced sleep disturbances, increased sleep duration, and mildly neutralized anxiety-like
behaviors [217]. The alleviation of fatigue following the consumption of GABA-containing
beverages has been demonstrated in both rats [221] and humans [222,223]. Oral administra-
tion of GABA Maoyecha tea extracts at a low dose (0.83 g/kg) for 30 days has significantly
increased sleep duration and reduced sleep latency via GABAergic neurotransmission
in mice induced with sodium pentobarbital [219]. Another study found that high-dose
(3.33 g/kg) intake of GABA-rich black tea extracts for 15 days significantly increased sleep
duration and proportion in mice induced with sodium pentobarbital. However, it did not
significantly affect sleep latency [218].

Stress and anxiety are standard emotional states that impact people’s lives. Stress
emerges as a response to external stimuli and is characterized by increased adrenergic
activity [224]. Anxiety, on the other hand, is a personal response to prolonged or excessive
stress, often defined as intense tension, worry, or anxiety associated with future adverse
events [225,226]. Stress and anxiety have physical, psychological, and behavioral symptoms
that can affect daily life and sometimes lead to pathological conditions. Therefore, main-
taining an optimal stress level is essential for sustaining normal life processes [227]. Stress
and anxiety are typically treated with lifestyle changes, psychotherapy, antidepressants,
and anxiolytics [228].

The pathophysiology of anxiety is not entirely clear; however, research has shown
that alterations in the GABA system are effective and that GABA improves mood [168,229].
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Since the GABA receptor is the active site of anxiolytic drugs, GABA participates in de-
pression and anxiety processes [230,231]. Therefore, it has been suggested that anxiety and
depressive disorders can be treated with antidepressant drugs that regulate GABAergic
transmission or GABA receptors. Additionally, it is noted that GABA tends to be less addic-
tive compared to other antidepressants [230,231]. Furthermore, evidence suggests that oral
GABA supplementation, when reaching concentrations that can produce biological effects
in the brain, positively influences mood and sleep biology and plays a role in stress, anxiety,
and depression [180,232,233]. Hence, it is recommended that GABA-containing foods and
beverages could offer an alternative to pharmaceuticals in alleviating these conditions.

Animal studies have indicated reduced psychological and physical stress in animals
fed with GABA-containing foods [219,234,235]. Rats fed with fermented black soybean milk
containing GABA and subjected to forced swimming tests exhibited antidepressant-like
effects without showing side effects such as loss of appetite or weight loss [234]. GABA-rich
monascus, found on fermented rice or other grains, improved the levels of monoamines in
the hippocampus of rats subjected to forced swimming tests, indicating an antidepressant
effect [235]. In mice fed with GABA (3.43 mg/kg) produced by Levilactobacillus brevis J1
bacteria from fermented milk of adzuki bean sprouts for ten days, a decrease in mild
depression-like symptoms was observed along with increased social interaction and mental
activities [138].

A study on adults suggested that GABA increases alpha waves, decreases beta waves,
and increases IgA levels under stressful conditions, implying that GABA can provide
relaxation and reduce anxiety in stressful conditions [223]. Additionally, it is noted that
GABA found in foods and beverages has a stress-reducing effect on acute and chronic stress
in adults [236]. Supplementation with GABA-enriched yeast extract has been reported
to alter human cortical excitation and inhibition balance [237]. Moreover, in more than
65% of 20 women consuming approximately 80 g of defatted rice germ enriched with
GABA, the most common mental symptoms observed before menopause and in old age
were significantly improved [238]. Another study showed that a single dose of chocolate
containing 28 g of GABA produced by Lactobacillus hilgardii K-3 bacteria had a stress-
reducing effect [239]. In contrast to previous studies, Konno et al. found that, in adults
with sleep problems, the combination of GABA (700 g/day) and L-theanine (200 mg/day)
significantly improved the Pittsburgh Sleep Quality Index score and Fitbit Charge 5 sleep
improvement scores. Nevertheless, the sleep score did not exhibit a statistically significant
difference. It has been reported that this might be attributed to a significant quantity of
missing data about sleep duration and stage variables [216].

Studies conducted on animals and humans have demonstrated the effectiveness of
GABA-fortified tea in alleviating stress, anxiety, and depression and relieving insom-
nia [240–243]. In studies on mice with post-ischemic stroke depression, both intraperitoneal
injection and oral administration of GABA green tea via gavage have been shown to reduce
depressive behaviors in mice. These reductions were determined by increased climbing and
swimming times and decreased immobility time in forced swimming and tail suspension
tests [241–243]. Additionally, it has been found that GABA green tea may increase GABAer-
gic neurotransmission in the brains of mice [242]. In a study involving thirty young male
participants, GABA-fortified tea was observed to reduce both acute and chronic stress and
increase parasympathetic activity, thereby slowing down the heart rate. Moreover, it was
noted that this effect was more pronounced in participants with higher levels of chronic
stress [240]. In light of all these reports, it can be concluded that GABA has positive effects
on sleep regulation, stress, and anxiety; therefore, consuming GABA-containing foods and
beverages may benefit health and well-being.

4.4. Pain Reduction

Pain is a natural defense mechanism of the body that arises from nociceptors and
includes the interaction of several neuroanatomical and neurochemical systems [244]. The
International Association for the Study of Pain defines pain as “an unpleasant sensory
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and emotional experience related to actual or potential damage to body tissues”. Pain,
which has a widespread impact on millions of individuals globally, has challenges in terms
of treatment and can significantly influence one’s emotional well-being, social life, and
profession. Pain is a multifaceted phenomenon encompassing several aspects, such as
nociception, emotions, cognition, and social factors. It is a subjective experience that varies
from person to person [245].

The etiology of pain is classified as nociceptive, inflammatory, or neuropathic. Pain
arises from the interplay between receptors, neurotransmitters responsible for regulating
the sense of pain, emotions associated with pain, and memories. Acute pain is a warning
mechanism that protects us from tissue damage. On the other hand, chronic pain lasts
for 3–6 months or more. It is a continuous pain linked to injuries, disorders, or diseases
such as arthritis, gastrointestinal disorders, inflammatory bowel diseases, diabetes, and
tumor growth. Chronic pain may result from nerve fiber damage, causing alterations
in neurotransmitter function [246]. Research has shown that chronic pain problems are
common in the general population. Based on the latest findings by the Centers for Disease
Control and Prevention, it has been determined that a significant number of 51.6 million
people in the United States are currently experiencing chronic pain [247]. A comprehensive
survey of 52 nations revealed that the incidence of pain was documented at 28% [248]. The
complete understanding of the molecular and cellular pathways that underlie persistent
pathological pain remains incomplete. There is a need for clinically proven, well-tolerated,
and effective treatment methods for chronic pain.

Recent research indicates that the gut microbiota significantly affects pain regula-
tion [249,250]. The gut microbiota synthesizes neuroactive compounds such as GABA,
tryptophan, and its metabolites, serotonin, and catecholamines. These compounds can
communicate with the host through receptors on gut cells or neurocrine pathways [251].
Inhibiting the activity of ion channels in sensory neurons and blocking the transmission of
C- and A-afferent fibers in the dorsal root ganglion (DRG) is regarded as an essential ap-
proach to decreasing hypersensitivity, increasing excitability, and alleviating the persistence
of pain. Gut microbiota mediators, which include metabolites (SCFAs), neurotransmitters
(glutamate, GABA, 5-HT), and pathogen-associated molecular patterns (PAMPs), control
the excitability of nociceptive DRG neurons that act on pain-related receptors or ion chan-
nels (e.g., TRLs, TRP channels, ionotropic and metabotropic glutamate receptors, GABA
receptors). They also lessen the activation of immune cells that secrete proinflammatory
cytokines (TNF-α, IL-1, IL-6) and chemokines (CCL2, CXCL1) [249]. SCFAs can mod-
ulate pain sensitization by binding to their receptor FFAR2/3, which in turn regulates
the synthesis of TNF-α, IL-2, IL-6, IL-10, and chemokines (such as C-C motif chemokine
ligand 2, CCL2) by leukocytes [252]. The various metabolic pathways indicate that the gut
microbiota could potentially significantly impact the regulation of neuronal excitability in
the peripheral nervous system during chronic pain.

The gut microbiota can produce neurotransmitters influencing pain signaling [253].
LAB species, including Lactobacillus spp., Lactococcus spp., Streptococcus spp., Bifidobacterium
spp., and Bifidobacterium dentium, produce GABA by using enzymes to remove a carboxyl
group from glutamate [12,254]. The activation of the GABAA receptor causes a chloride
influx to cause hyperpolarization of the post-synaptic neuron. In contrast, GABAB receptor
activation decreases the likelihood of presynaptic neurons to release neurotransmitters,
especially glutamate [255,256]. This inhibits the triggering of a neuron’s action potential
and the release of synaptic vesicles. Gabapentin, a structural analog of GABA, has been
used in medical practice for many years to alleviate thermal and mechanical pain [257].
Gabapentin and pregabalin have shown analgesic properties in individuals with pancre-
atitis, irritable bowel syndrome (IBS), and inflammatory bowel disorders. Also, they can
alleviate abdominal wall discomfort and concomitant fibromyalgia [258–260]. Metage-
nomic research has revealed decreased Lactobacillus and Bifidobacterium in individuals
suffering from visceral hyperalgesia and IBS [261,262]. In vivo studies have demonstrated
that probiotics, including strains from the Lactobacillus and Bifidobacterium families, have
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a positive effect on lowering visceral pain [263,264]. Lactobacillus and Bifidobacterium are
species that express the enzyme glutamate decarboxylase β (GadB), which decarboxylates
glutamate to GABA [265,266]. GABA is capable of relieving pain. However, more research
is required to determine if certain types of microbes can make GABA or similar molecules,
as well as what effects this signaling has on the development and relief of chronic pain.

4.5. Modulation of Glucose Homeostasis

Diabetes mellitus (DM) is a chronic, endocrine, and metabolic condition characterized
by elevated glucose levels and linked to the disruption of carbohydrate metabolism, either
due to insufficient insulin production or a failure of the utilization of insulin [267]. GABA
and GABA-enriched products can potentially be valuable therapeutic agents for controlling
impaired glucose homeostasis [268].

GABA may play a crucial role in the pancreatic islet by regulating hormone secretions,
suppressing the immune response, enhancing the survival of β cells, and facilitating the
conversion of pancreatic α cells into β cells [269]. Furthermore, GABA has demonstrated
its involvement in the control of insulin and glucagon secretions and its role in protecting
and regenerating β-cells and promoting neogenesis. GABA suppresses immunological
activation and inflammation in individuals with diabetes mellitus, resulting in the manage-
ment of glucose homeostasis and a decrease in diabetic complications. According to in vivo
studies, GABA enhances the reproduction and number of human β-cells and promotes
the activation of growth and survival mechanisms by initiating PI3-K/Akt activation in
β-cell islets [270]. Hosseini Dastgerdi et al. [271] found that administering GABA can
decrease hepatic insulin resistance in pregnant diabetic rats and their offspring. This effect
is achieved by modulating the insulin signaling and gluconeogenesis pathways. Adminis-
tration of GABA to pregnant diabetic rats for 12 weeks resulted in a considerable reduction
in plasma glucose levels in both the rats and their offspring. Another study found that
empagliflozin and GABA, as the only treatment in streptozotocin induced diabetic mice,
had beneficial effects on the preservation or growth of β-cell mass [272].

GABA-rich foods have been shown in several studies to have antidiabetic properties.
In recent years, several clinical and animal studies have demonstrated the effectiveness
of pre-germinated foods in improving DM. One contributing factor to their efficacy is the
positive impact on GABA levels [273,274]. Research demonstrated notable improvements
in administering GABA-rich-germinated adzuki beans to mice with type 2 DM. Specifically,
fasting blood glucose levels decreased and there were significant enhancements in HOMA-
β and HOMA-IR scores [275]. Li et al. [121] treated mice with streptozotocin-induced type 2
DM with GABA-rich yogurt and observed that this increased blood insulin levels, HOMA-
β (a measure of β-cell activity), and better insulin sensitivity. C57BL/6J mice produced by
a high-fat diet + streptozotocin (STZ) showed a drop in fasting blood glucose levels and
improved glycolipid metabolism when supplemented with GABA-enriched germinated
adzuki bean [276]. It was reported that GABA-rich fermented camel milk produced by
Levilactobacillus brevis showed hypoglycaemic activity and decreased postprandial blood
glucose levels in STZ-induced C57BL/6J mice [277]. Additionally, it has been suggested
that the production of GABA by LAB strains has a noticeable impact on lowering glucose
and insulin levels in the bloodstream during in vivo trials. This suggests there is potential
for using GABA in pharmaceutical and food applications to decrease the occurrence of
type 1 DM [278]. Furthermore, GABA-enriched fermented foods may regulate blood
glucose levels in rats with type 2 DM by decreasing the activity of antioxidant enzymes,
including glutathione, catalase, and superoxide dismutase. In the short term (6 weeks),
fecal microbiota transplantation from healthy donors can successfully alleviate peripheral
insulin resistance in patients, as evidenced by decreased HbA1c and increased plasma
GABA [279]. Researchers are currently seeking safer and more efficient alternatives for
the treatment of DM, considering its growing global prevalence and the adverse effects of
current treatments. The human gut microbiota serves as a potent reservoir of bacteria that
produce GABA. Hence, investigating the modulation of gut bacteria that produce GABA
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has great promise for future study. Although more research both in vitro and in vivo has
shown that GABA has anti-diabetic properties, there is presently inadequate clinical data
to support the use of GABA or GABA-rich diets in the treatment of DM. As a result, more
clinical research is necessary to confirm the potential of GABA as an anti-diabetic agent
and explore the transplantation of GABA-producing gut microbiota into diabetic patients.

4.6. Immunoregulatory Effects

Inflammation is the immune system’s response to external stressors, including phys-
ical injury, UV irradiation, microbial invasion, and immunological responses, etc. [280].
Inflammation has been associated with the synthesizing of many proinflammatory agents,
including cytokines, NO, PGE2, and TNF-α. The prevalence of autoimmune diseases and
immune response-related conditions, such as DM type I, atherosclerosis, and obesity, is on
the rise. However, there is a scarcity of novel therapeutic strategies for these ailments. A
growing body of research has examined the immunomodulatory function of microorgan-
isms since it was discovered that gut microbiota protects immunological homeostasis. The
immunological activities of the host are regulated by GABA, which LABs produce. GABA
has been shown as an anti-inflammatory agent, as it inhibits the synthesis of proinflamma-
tory mediators and improves symptoms associated with inflammation. GABA acts as a
neurotransmitter inhibitor and significantly modulates the immune system [13,24]. Han
et al. [281] found that GABA had anti-inflammatory activity by suppressing the synthesis
and expression of iNOS, IL-1β, and TNF-α in RAW 264.7 cells treated with LPS. GABA
improved the reduction of overall healing duration and promoted early wound healing. It
has been shown that in LPS-induced mouse macrophage RAW 264.7 cells, NO generation
and NO synthase expression are suppressed by GABA-enriched sea tangle L. japonica
extract [282]. GABA-rich germinated brown rice reduced the release of IL-8, MCP-1, and
ROS from Caco-2 human intestinal cells stimulated by IL-1 and H2O2 [283].

GABA-rich fermented Aronia melanocarpa extract was found to have anti-inflammatory
properties through immune response modulation in Balb/c mice and inhibition of proin-
flammatory cytokines in RAW 264.7 cells. The findings from the in vivo experiments
demonstrated that consuming fermented Aronia melanocarpa extract, which is rich in GABA,
significantly impacted various immune parameters. Specifically, oral administration of
doses (125, 250, and 500 mg/kg body weight) for 21 days resulted in enhanced proliferation
of splenocytes and lymphocytes. Moreover, there was an increase in the expression of CD4+

and CD8+ T-cells, while the levels of TNF-α and IL-6 were reduced in a dose-dependent
manner [284]. Likewise, the anti-inflammatory properties of GABA-enriched fermented
strawberry juice were assessed, and findings revealed that COX-2 gene expression in
LPS-stimulated RAW 264.7 macrophages reduced TNF-α, IL-6, and CXCL1 levels in mice
given intraperitoneal LPS [141]. The GABA-rich extract derived from the red microalgae
Rhodosorus marinus has been found to have an adverse effect on the expression and release
of the proinflammatory cytokine IL-1α in normal human keratinocytes that have been
stimulated with phorbol myristate acetate. This suggests the extract can treat sensitive skin,
atopy, and dermatitis [285].
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Table 4. In vitro and in vivo studies of the effects of GABA produced by LAB.

Author (Ref.) Study Design Foods Micro-Organism Model and Dosage Outcomes

Neuroprotection

Reid et al. (2018)
[177] In vivo Gaba-enriched fermented sea

tangle (Laminaria japonica)
Levilactobacillus
brevis BJ20

Scopolamine-and ethanol-induced
dementia model mice, 4 weeks

49.5 g/100 g, GABA
# reversed cognitive impairment
# reversed neuroplastic dysfunction

Seo et al. (2012)
[173]

In vitro
In vivo Kimchi Lactobacillus sakei

B2-16

Reduced cognitive function mouse
model with scopolamine and PC-12
cells, 24 h

46.69 mg/mL GABA
# enhanced memory recovery,
# increased neurite growth
# increased neurite differentiation

Li et al. (2016)
[150] In vitro Fermented chickpea milk

(Kabuli)
Lactiplantibacillus
plantarum

Noroendokrin MnCl2 induced PC12
cells, 30 min

537.23 mg/L GABA
# protected the PC12 cells against

MnCl2-induced injury

Cho et al. (2007)
[50] In vitro Kimchi Lactobacillus buchneri 100 g/mL, neuronal cells, 24 h

251 mM with a 94% GABA conversion rate
# protected neuronal cells against

neurotoxicant-induced cell death.

Reid et al. (2018)
[176] Human

Gaba-enriched
fermented sea tangle
(Laminaria
japonica)

Levilactobacillus
brevis BJ20

60 moderately active elderly subjects,
randomized, double-blind, and
placebo-controlled study,
GABA-enriched fermented sea tangle
for 6 weeks

1.5 g/d GABA-enriched fermented sea tangle
# improved neuropsychological test scores
# increased antioxidant activity of GPx, GSR,

and SOD

Choi et al. (2016)
[184] Human

Gaba-enriched
fermented sea tangle
(Laminaria
japonica)

Levilactobacillus
brevis BJ20

21 middle-aged female subjects
randomized, double-blind,
placebo-controlled study,
GABA-enriched fermented sea tangle
for 8 weeks

1000 mg/d GABA-enriched fermented sea tangle
# increased serum brain-derived neurotrophic

factor level that associated with a lower risk
for dementia and Alzheimer’s disease

Anti-hypertension

Zareian et al. (2015)
[199] In vivo Wheat-based fermented rice Lactiplantibacillus

plantarum MNZ
Spontaneously hypertensive rats, diet
with fermented rice for 10 weeks

115.2 mg/kg GABA
# decreased the systolic blood pressure
# improved aortic endothelin-1 protein, plasma

norepinephrine, and superoxide dismutase
activity
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Table 4. Cont.

Author (Ref.) Study Design Foods Micro-Organism Model and Dosage Outcomes

Tsai et al. (2013)
[205] In vivo

Gaba-enriched Chingshey
purple sweet
potato-fermented milk

Lactobacillus gasseri
BCRC 14619

Spontaneously hypertensive rats, a
2.5 mL dose of fermented milk for
5 weeks

2.5-mL Chingshey purple sweet potato fermented
milk (600 µg GABA/mL)
# decreased both systolic blood pressure
# decreased diastolic blood pressure

Lin et al. (2012)
[206] In vivo

Gaba from
probiotic-fermented
purple sweet potato
yogurt

Lactobacillus
acidophilus BCRC
14065
Lactobacillus
delbrueckii ssp. lactis
BCRC 12256

Spontaneously hypertensive rats,
GABA from probiotic-fermented
purple sweet potato yogurt for 8 weeks

150 µg/2.5 mL (10%) and 1500 µg/2.5 mL/kg
(100%) and GABA from probiotic-fermented purple
sweet potato yogurt
# decreased abnormal myocardial architecture

and enlarged interstitial spaces at both doses
# prevented the progression of cardiac

hypertrophy at both doses

Liu et al. (2011)
[194] In vivo Fermented milk

Lactobacillus
paracasei subsp.
NTU 101
Lactiplantibacillus
plantarum NTU 102

Spontaneously hypertensive rats,
fermented milk for 8 weeks

1.36 mg/kg BW/day
# decreased systolic and diastolic blood

pressures
# reduced the disorganization of the media

layer of aortic tissue

Abd El-Fattah et al.
(2018)
[192]

In vitro Fermented milk

Lactobacillus
helveticus
Lacticaseibacillus
rhamnosus

Spectrophotometry ACE inhibitory activity, 88 %

Jang et al. (2015)
[208] In vitro Soybean Levilactobacillus

brevis
In vitro ACE-inhibitory activity
determination

1.9 g/kg GABA
# exhibited higher ACE inhibitory activity

Torino et al. (2013)
[211] In vitro Fermented lentils Lactiplantibacillus

plantarum
In vitro ACE-inhibitory activity
determination

0.42 mg/g extract
# ACE inhibitory activity

Nejati et al. (2013)
[190] In vitro Fermented milk

Lactococcus lactis
DIBCA2
Lactiplantibacillus
plantarum PU11

In vitro ACE-inhibitory activity
determination

77.4 mg/kg GABA (produced from
Lactiplantibacillus plantarum PU11), 144.5 mg/kg
(produced from Lactococcus lactis DIBCA2 and
Lactiplantibacillus plantarum PU11)
# ACE-inhibitory activity

(IC50 = 0.70 ± 0.07 mg/mL) and a
concentration of GABA (ca. 144.5 mg/kg)
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Table 4. Cont.

Author (Ref.) Study Design Foods Micro-Organism Model and Dosage Outcomes

Sun et al. (2009)
[189] In vitro Fermented milk Lactobacillus

helveticus Response surface methodology ACE inhibitory activity higher than 50%

Becerra-Tomás (2015)
[207] Human Gaba-rich bread Levilactobacillus

brevis CECT 8183

30 subjects patients with pre or
mild-to-moderate hypertension,
randomized, double-blind, crossover
study, GABA-rich bread for 12 weeks

120 g/day bread (22.8 mg/100 g of GABA)
# decreased diastolic blood pressure at rest
# decreased 24-h ambulatory blood pressure

Pouliot-Mathieu et al.
(2013)
[196]

Human Cheddar cheese Lactococcus lactis
23 adult male subjects with slightly
elevated blood pressure, cheddar
cheese for 12 weeks

50 g of Cheddar cheese (16 mg GABA)
# decreased systolic pressure
# decreased mean blood pressure

Anti-insomnia and
anti-depression

Wu et al. (2021)
[138] In vivo Adzuki bean sprout

fermented milk

Levilactobacillus
brevis J1
Lactobacillus
bulgaricus
Lactiplantibacillus
plantarum

Male mouse model of mild depression
exposed to social frustration stress for
10 days

3.43 mg/kg GABA
# reduced mild depression-like symptoms
# increased social interaction
# enhanced the pleasure derived from

movement
# increased dopamine in the hippocampus

Yu et al. (2020)
[120] In vivo Fermented milk Levilactobacillus

brevis
Male ICR mice, fermented milk for
30 days

33.33 mg/kg b.w. GABA
# decreased in anxiety behavior

Ko et al. (2013)
[234] In vivo Black soybean milk Levilactobacillus

brevis FPA 3709
Forced swimming rat model, black
soybean milk for 6 weeks

35 mg/kg b.w. including 2.5 mg GABA/kg b.w.,
and 70 mg/kg b.w. including 5.0 mg GABA/kg b.w.
# both dosages showed periods of inactivity

similar to the effect of the antidepressant drug

Byun et al. (2018)
[286] Human Fermented rice Lactobacillus sakei

B2-16
Adult subjects with insomnia
symptoms, 4 weeks

300 mg of GABA produced from fermented rice
(tablet form)
# decreased the sleep latency
# increased the sleep efficacy

Nakamura et al. (2009)
[239] Human GABA-enriched Chocolate Lactobacillus hilgardii

K-3 Healthy male subjects, 15 min
10 g chocolate enriched with 28 mg GABA
# improvement in heart rate variability from a

stressful to a normal state
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Table 4. Cont.

Author (Ref.) Study Design Foods Micro-Organism Model and Dosage Outcomes

Anti-diabetic

Zhang et al. (2022)
[276] In vivo

GABA-enriched
çimlendirilmiş adzuki
fasulyesi

Germination
HFD+STZ-induced C57BL/6J male
mice, GABA-enriched germinated
adzuki beans for 6 weeks

0.1 g GABA/kg diet/day
# decreased fasting blood glucose
# improved glycolipid metabolism

Abdelazez et al. (2022)
[277] In vivo Fermented camel milk

Levilactobacillus
brevis KLDS1.0727 or
KLDS1.0373 strains

STZ-induced C57BL/6J mice,
Lactobacillus brevis fermented camel
milk for 4 weeks

GABA postbiotic produced by Levilactobacillus brevis
demonstrated hypoglycemic activity and lowered
postprandial blood glucose levels

Jeong et al. (2021)
[287] In vivo GABA-enriched fermented

noodles Bacillus subtilis HFD+STZ-induced mice, 300 mg/kg
noodles with fermented lettuce extract

In diabetic mice, enriched GABA-fermented
noodles increased insulin resistance and glucose
tolerance

Jiang et al. (2021)
[275] In vivo GABA-enriched germinated

adzuki beans Germination
HFD+STZ-induced mice,
GABA-enriched germinated adzuki
beans for 6 weeks

35 g GABA-enriched germinated
adzuki bean treated groups
# decreased fastin serum glucose
# improved HOMA-β and HOMA-IR

Li et al. (2020)
[121] In vivo GABA-enriched yogurt Streptococcus

thermophilus

HFD+STZ-induced type 2 DM
C57BL/6 mice, drinking water
containing 0.5–2 g/L GABA-rich
yogurt for 12 weeks

2 g/L GABA yogurt
# improved insulin sensitivity
# increased serum insulin
# regulated HOMA-β
# improved islet cell morphology

Chung et al. (2019)
[288] In vivo GABA-enriched

Keunnunjami powder Germination
Female ovariectomized
Sprague-Dawley rats, GABA-enriched
Keunnunjami powder for 8 weeks

Reducing blood glucose and plasma insulin levels,
adipokine concentrations, and hepatic
glucose-regulating enzyme activity

Pae et al. (2022)
[289] In vitro - - Islet cell, 100 µM GABA

GABA elevated intracellular calcium levels in
pancreatic β-cells, resulting in the depolarization of
the cell membrane

Ghani et al. (2019)
[290] In vitro - - Rat pancreatic ductal epithelial-like

stem cells, 5–5000 µM GABA
Significantly elevated the concentration of insulin in
the cell clusters

Rancourt-Bouchard
et al. (2020)
[291]

In vivo GABA-enriched cheddar
cheese

Lactococcus lactis ssp.
Lactis

55 healthy men and women
(1) no dairy (control diet)
(2) 3 daily servings of 1% fat milk
(3) 1 daily serving of 31% fat

cheddar cheese naturally
enriched in GABA for 6 weeks

There was no significant difference between all diets
for markers of glucose/insulin homeostasis
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Table 4. Cont.

Author (Ref.) Study Design Foods Micro-Organism Model and Dosage Outcomes

Anti-Inflammatory

Weerawatanakorn
et al. (2023)
[292]

In vivo GABA-fortified oolong tea -

HFD-induced obesity male C57BL/6J
mice
- chow diet
- HFD
- HFD+ GABA-fortified oolong tea

GABA-fortified oolong tea s reduced leptin
expression in epididymal adipose tissue and
showed a protective effect on nonalcoholic fatty
liver disease. It boosted lipid metabolism and
promoted fatty acid oxidation. It also reduced
lipogenesis-related protein levels of sterol
regulatory element binding protein,
acetyl-CoAcarboxylase, and fatty acid synthase and
inhibited hepatic triglyceride levels.

Lee et al. (2022)
[293] In vivo GABA-enriched salt Levilactobacillus

brevis

Cisplatin-induced nephrotoxicity in
mice were administered
92.69/111.92/97.25 mg/g GABA
salt/lacto GABA salt/postbiotics
GABA salt

Reduced expression levels of HMGB-1,
proinflammatory mediators, CoX-2, IL-1β, and
TNF-α

Ali et al. (2021)
[284]

In vivo
In vitro

GABA-rich fermented Aronia
melanocarpa extract

Lactiplantibacillus
plantarum

Female BALB/c mice were
administered 125, 250, and 500 mg/kg
of Aronia melanocarpa extract for
21 days
RAW 264.7 cells were treatment Aronia
melanocarpa extract for 30 min

GABA-rich fermented Aronia melanocarpa extract
stimulated the immune system in mice and
inhibited proinflammatory cytokines in RAW
264.7 cells to provide anti-inflammatory effects

Cataldo et al. (2020)
[141]

In vivo
In vitro

GABA-enriched fermented
strawberry juice

Levilactobacillus
brevis

Male Balb/c mice were treated with
GABA-enriched fermented strawberry
juice (~140 mM GABA) or the diluted
GABA-enriched fermented strawberry
juice (~70 mM GABA)
RAW 264.7 macrophages were
treatment GABA-enriched fermented
strawberry juice (0.1 or 1 mM GABA)

GABA-enriched fermented strawberry juice was
capable of reducing peritoneal, intestinal, and
serum TNF-α, IL-6, and CXCL1 levels while
increasing IL-10 and IFN-γ.
The GABA-enriched fermented strawberry juice
exhibited a notable capacity to substantially
decrease the expression of the CoX-2 gene in RAW
264.7 macrophages.
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Table 4. Cont.

Author (Ref.) Study Design Foods Micro-Organism Model and Dosage Outcomes

Zheng et al. (2023)
[294] In vitro GABA-enriched Moringa

oleifera leaves
Lactiplantibacillus
plantarum LK-1 RAW 264.7 cells

GABA-enriched Moringa oleifera leaves could
effectively alleviate the LPS-induced inflammatory
response by inhibiting the secretion of
proinflammatory cytokines via TLR-4/NF-kB
inflammatory signaling pathway inhibition.

Ngo et al. (2022)
[295] In vitro GABA-enriched rice bran Limosilactobacillus

fermentum RAW 264.7 cells
GABA-enriched rice bran was found to suppress
the levels of inducible NO synthase and CoX-2
enzymes.

Bajić et al. (2020)
[296] In vitro - Levilactobacillus

brevis Mesenteric lymph node cells

The GABA produced by this strain showed
inhibitory effects on the proliferation of mesenteric
lymph node cells, as well as the production of IFN-γ
and IL-17. Additionally, it reduced the expression of
proinflammatory markers such as MHCII and CD80.
The supernatants containing GABA showed the
most potent stimulating effects on the production of
immunoregulatory molecules, including Foxp3+,
IL-10, TGF-β, CTLA4, and SIRP-α.

Sokovic Bajic et al.
(2019)
[297]

In vitro - Levilactobacillus
brevis Caco-2 cells

The anti-inflammatory effects of GABA-producing
Levilactobacillus brevis were observed in reducing
IL-1β-induced inflammation and promoting the
expression of tight junction proteins and TGF-β
cytokine.
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5. Conclusions

Some metabolites of LABs, which are the most commonly used microorganisms in the
food industry, can also be used for similar purposes to improve food safety and quality.
GABA, one of these metabolites known to be synthesized at different levels by many LABs,
helps improve the taste, flavor, aroma, and texture of the food it contains, and increases
protein digestibility. Moreover, it can extend the shelf life of foods by preventing the
proliferation of pathogenic microorganisms. Foods with increased GABA content can
be produced as a result of the fermentation of meat, grains, milk, fruits, vegetables, and
legumes with LABs. With the demonstration of these advantages they provide to foods, the
use of GABA-producing LABs in the food industry has attracted great attention in recent
years. However, it should not be ignored that some microorganisms may cause spoilage in
foods, and strains with high GABA efficiency and proven safety should be preferred.

The positive effects of GABA, produced by LABs and called postbiotic, on neuropro-
tection, improving sleep quality, alleviating depression, and relieving pain have accelerated
efforts to increase GABA production. Moreover, considering the various health benefits of
GABA-enriched foods such as antidiabetics, antihypertension, and anti-inflammatory, their
use will become more widespread in the coming years.

On the other hand, it should not be ignored that during the fermentation of foods
with some LABs, some toxic biogenic amines such as histamine and tyramine, which can
have negative effects on health, may be produced. For this reason, more comprehensive
studies involving in vitro and in vivo analyses and animal and human subjects should be
conducted to identify LAB strains that do not form biogenic amines, have high GABA
yield, and are safe. Moreover, the oral intake of GABA theoretically could cause food–drug
interactions by increasing the sedative effect of barbiturates or benzodiazepines. On the
other hand, GABA intake can alleviate the symptoms of barbiturate withdrawal. Also,
it is important to mention that GABA intake through nutrition can regulate the lateral
hypothalamus (the so-called hunger center) and thereby could positively influence obesity
and overeating disorders.

In summary, this review draws attention to the synthesis of GABA produced from
LABs, the factors affecting its synthesis, and efforts to improve GABA production, under-
lines its areas of use in the food industry and the benefits it provides to the foods it contains.
Thus, it is predicted that this review article will pave the way toward serving for future
studies on increasing GABA production and developing GABA-rich functional products.
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