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Abstract: Oxygen heterocyclic compounds play a beneficial role in plants, and their presence in foods,
such as Citrus fruits, cinnamon, carrots, and parsley, has been documented in recent years. Published
research articles reported several extractions and chromatographic techniques for their determination.
The aim of this review was to take into consideration the research articles published from 2016 to
2024 in which the authors developed extraction and chromatographic analysis methods of oxygen
heterocyclic compounds in foods. The objective of this review was to assist researchers in choosing
the best approach for their future work by identifying all the possible approaches to characterize
coumarins, furocoumarins, and polymethoxyflavones in foodstuffs.
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1. Introduction

Oxygen heterocyclic compounds (OHCs), which include coumarins, furocoumarins,
and polymethoxyflavones (Figure 1), are secondary plant metabolites. These compounds
play a beneficial role in plants by providing protection against infections and supporting
growth. Their presence in foods has been extensively documented in recent years by
researchers [1–4]. These compounds are primarily found in Citrus fruits, cinnamon, carrots,
parsley, and similar foods.
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Figure 1. Chemical structure of coumarins, furocoumarins, and polymethoxyflavones.

While the positive effects of polymethoxyflavones on human health are well-
documented [5–7], there are some concerns about furocoumarins and coumarin. Inter-
national authorities, such as the European Parliament and the International Fragrance
Association (IFRA), have issued amendments regarding the concentration of coumarin and
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furocoumarins in foods and cosmetic products to protect human health [8,9]. Negative
health effects have been observed following the ingestion of coumarin [10,11]. According
to the European Food Safety Authority (EFSA) in 2004 [12], and the European Parliament
in 2008 [13], the tolerable daily intake of coumarin is 0.1 mg per kg of body weight; for this
reason, a maximum level permitted of coumarin in several foods, such as desserts, bakery
products, and cereals, is regulated [2,14]. No specific recommendations were provided for
the daily intake of other oxygen heterocyclic compounds in foodstuffs. On the other hand,
regulations limiting the presence of these molecules are particularly stringent for cosmetic
products because of the harmful interaction between furocoumarins and ultraviolet A
rays [15,16].

Numerous studies have investigated the presence of oxygen heterocyclic compounds
in foods, employing various extraction techniques such as liquid–liquid extraction (LLE),
solid–liquid extraction (SLE), microwave and/or ultrasound-assisted extraction (UAE),
solid-phase extraction (SPE), and Quick, Easy, Cheap, Effective, Rugged, Safe (QuECh-
ERS) [1–3,6,17]. These extraction methods are followed by chromatographic analyses for
coumarin, furocoumarin, and polymethoxyflavone characterization. Most studies focus
on the analysis of coumarins in foods, utilizing different chromatographic techniques like
high-performance liquid chromatography (HPLC) [18,19], supercritical fluid chromatogra-
phy (SFC) [20–22], and thin-layer chromatography (TLC) [23–25] for their determination.
But it is now well known that the most suitable analytical technique for oxygen heterocyclic
compound determination is HPLC coupled with both spectrophotometric (PDA) and mass
spectrometer (MS) detectors [4,26,27].

When assessing an analytical method that includes both an extraction step and chro-
matographic analysis, it is crucial to consider parameters like recovery, limit of detection
(LoD), limit of quantification (LoQ), precision, and accuracy. Additionally, attention to en-
vironmental impact and operator safety is significant. Consequently, factors such as timing,
the nature of reagents used, the amount of waste generated, and the energy consumed are
important considerations for prioritizing environmental protection [28].

The aim of this review was to take into consideration the research articles published in
the last eight years in which the authors developed extraction and chromatographic analysis
methods of oxygen heterocyclic compounds in foods. The objective was to compare all
the proposed methods for all oxygen heterocyclic classes in terms of the use of traditional
or innovative methodology, using conventional or more advanced extraction/analytical
techniques, and to determine if an eco-friendly solution could be the best way to investigate
these molecules.

Paper Selection

In order to be able to draft this review, a bibliographic search was carried out using
Scopus and Google Scholar. These keywords were used “oxygen heterocyclic compounds”,
“coumarins”, “extraction”, “furocoumarins”, “polymethoxyflavones”, “analysis”, and
“chromatography”. From this research, more than 5000 reviews and research articles were
found. After a careful and accurate selection of this first investigation, sixteen reviews
and fifty-six research articles focused only on foodstuffs (beverages, snacks, extra-virgin
olive oil, essential oils, fruits, vegetables, jams, and so on) were selected. The other articles
were not considered because they did not deal with foodstuffs, but rather with traditional
Chinese medicine, or they focused on the use of biological assays that did not match the
object of this review.

2. Extraction Methods

For OHCs investigation in foodstuffs, in most cases, an extraction step is mandatory.
Based on a literature survey, (a) UAE, (b) SLE, (c) LLE, (d) SPE, (e) QuEChERS, and
(f) supercritical fluid (SFE) extraction techniques were the most employed methods (see
Figure 2). It is notable that only for liquid samples, some authors reported only a simple
pre-treatment step of the investigated food before the analytical process. For example, a
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filtration on a 0.45 µm filter was used to characterize coumarins in a cachaça sample [29].
Only one dilution step was used to determine OHCs in cold-pressed Citrus essential oils,
Citrus-flavored extra-virgin olive oils, wines, Citrus juices [30–40].
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2.1. UAE

The literature survey revealed that ultrasound-assisted extraction is the prevalent
method employed to enhance the extraction of OHCs from plant materials and foodstuffs,
as reported in Figure 2. Over the years, various solvents with different polarities have
been tested in order to identify the most suitable solvent for the aforementioned molecules.
In particular, methanol and ethanol, both pure and in several dilutions, as well as ethyl
acetate, have emerged as the most commonly used solvents.

It is well known that cinnamon is the richest source of coumarin in the human diet,
so several research articles proposed an extraction procedure from cinnamon bark and
flavoring powder, as well as beverages and foods flavored with cinnamon [41–44]. Consid-
ering the procedures adopted, methanol appears to be the solvent of choice. Differences
among the validated methodologies were related to extraction time and the sample/solvent
ratio. Firstly, Solaiman et al. [41] presented coumarin extraction from 500 mg of cinnamon
bark previously pulverized with 25 mL of a methanol/water solution (80:20, v/v) with
60 min as total extraction time. Three years later, Cao et al. [42] used the same solvent
mixture (250 mL) to extract coumarin from 500 mg of cinnamon flavoring powder but with
a shorter extraction time (20 min). Recently, Pages-Rebull and colleagues [43] reported a
faster procedure (15 min) to recover the coumarin from cinnamon using only methanol
(2 mL for 500 mg of sample). On the other hand, a longer extraction time (one hour) was
employed by Kruger et al. [44] to extract the coumarin from 500 mg of cinnamon with
100 mL of pure methanol. The same authors investigated extraction from foodstuffs but
with a different sample/solvent ratio, including samples of tea (500 mg/10 mL), breakfast
cereal and milk rice (500 mg/2 mL), and cinnamon buns (500 mg/5 mL).

The coumarin content was also investigated in Citrus fruits and Citrus-flavored
foodstuffs [45,46]. Aznar et al. [45] proposed an extraction procedure for 1 g of dried
and powdered finger lime peels and pulps with 60 mL of 80% aqueous methanol for
90 min of sonication. Ethyl acetate was chosen as the extraction solvent by Cafeo and
co-workers [46] to extract coumarin and twenty-seven other OHCs (reported in Table 1) in
Citrus-flavored jams and bakery products as follows: 1 g of sample extracted with 3 mL of
solvent for 45 min.
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Furocoumarins, coumarins, and polymethoxyflavones were recovered from Citrus
fruits and Citrus-flavored foodstuffs [47–49] using both methanol and ethyl acetate as
extraction solvents. Arigò et al. [47] chose ethyl acetate to carry out a solid–liquid extraction
of 35 OHCs (reported in Table 1) from lemon marmalade. In their study, 10 g of a sample
was sonicated with 30 mL of solvent for 45 min. Zhao et al. [48] and Guo et al. [49] selected
methanol as an extraction solvent and recovered twenty and twenty-eight OHCs from
pummelo fruit and Satsuma mandarin peels and pulps, respectively, in 90 min. Zhao and
co-workers [48] used 400 mg of the sample with 25 mL of methanol, while Guo et al. [49]
used 5 g of each sample with 45 mL of solvent.

Coumarins and furocoumarins were also extracted from some herbaceous materials. In
2020, Fu et al. [50] extracted scopolin and scopoletin from Artemisia annua herbal samples
with 20 mL of 80% ethanol using a sample–solvent ratio of 1 to 40 and a total extraction time
of 1 h. On the other hand, Dresler et al. [51] extracted six coumarins and six furocoumarins
from the herb Heracleum sphondylium L. and the cortex of Aesculus hippocastanum L. using
just a tenfold amount of 80% methanol with respect to the ground sample/powder and in
half the time reported by Fu et al. [50].

2.2. SLE

To date, solid–liquid extraction is a widespread technique for solid sample prepa-
ration, based on analyte partitioning between the matrix and the extraction solvent [52].
Methanol, ethanol, and water were the most commonly used extraction solvents in the
studies reviewed in this paper. To improve the extraction efficiency of this technique,
several strategies were considered, including the use of a mechanical shaker. Firstly, in
2017, Hyun et al. [53] stirred Shiranuhi [(Citrus unshiu Marc. × C. sinensis Osbeck) ×
C. Reticulata Blanco)] fruit peels three times with 80% ethanol for 24 h to extract tetra-O-
methyl-scutellarein. The same year, Machynakova et al. [54] recovered nine coumarins,
as reported in Table 1, from the aerial parts of Melilotus officinalis L. (Meliloti herba) and
propolis. In their study, 5 g of Meliloti herba powder was stirred with 30 mL of distilled
water for 60 min, while 1 g of crude propolis was stirred with 40 mL of ethanol for 72 h.
The next year, Hrobonova and co-workers [55] extracted coumarin, 4-hydroxycoumarin,
and dicoumarol from the aerial parts of sweet clover (Melilotus officinalis L.) herb and hay
samples. A total of 0.1 g of each sample was stirred on a mechanical shaker for 60 min with
20 mL of methanol.

Fayek et al. [56] extracted nobiletin from grapefruit, lime, sweet orange, and mandarin
peels with a multi-step extraction. In their method, 600 mL of 80% methanol was percolated
through 200 g of fresh peels, the resulting extract was evaporated, and 10 g of the residue
was suspended in 30 mL of distilled water and then extracted with n-hexane. Two years
later, the same authors [57] extracted twenty-one OHCs, as reported in Table 1, from the
peels of four Citrus species [C. reticulata Blanco cv. Egyptian, C. sinensis (L.) Osbeck cv.
Olinda Valencia, C. aurantiifolia Swingle cv. Mexican and C. paradisi Macfad. cv. Duncan].
They homogenized 160 mg of Citrus peel powder with 7 mL of 100% methanol using
a Turrax mixer for 20 s for five periods. The obtained extract was purified with a C18
cartridge, and the analytes were eluted with 6 mL of methanol.

A longer extraction procedure was used by Moreno-Ley et al. [58]. In their method, six
vanilla samples were incubated with a mixture of ethanol–water at 65% for three months in
darkness with a sample–solvent ratio of 1 to 1 to extract coumarin. Lastly, in 2020, Aboul
Naser et al. [59] extracted six polymethoxyflavones (see Table 1) from sweet orange (Citrus
sinensis) peel powder (250 g) with 2 L of petroleum ether repeated three times.

2.3. LLE

LLE extraction is limited to liquid food samples, namely, beverages. Four research
articles on OHCs recovery were considered [46,47,60,61]. The alcoholic and non-alcoholic
beverages investigated included the following: 16 citrus-flavored beers [60], infusion and
liquors [46,47], citrus juices, and cinnamon-flavored liquor [46]. The extraction procedure
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was carried out with ethyl acetate, in particular, 10 mL of each sample was extracted three
times with 10 mL of solvent by manually shaking in a separatory funnel. For the list of
compounds extracted, see Table 1. Recently, Cafeo et al. [61] developed a miniaturized
extraction procedure and extracted 36 OHCs from 1 g of citrus and herb liquors with 1 mL
of ethyl acetate.

2.4. SPE

Food samples can be considered complex mixtures that necessitate the use of specific
sample pre-treatment methods, such as the use of SPE cartridges, in order to clean and/or
concentrate analytes prior to chromatographic analysis. Several packing materials were
selected to purify OHCs from complex food matrices.

In their first study, Li and co-workers used a C-18 SPE cartridge [62] and then, two
years later, a C-8 [63] SPE cartridge to extract OHCs from citrus juices. After SPE cartridge
conditioning, the molecules of interest were eluted with 5 mL ethyl acetate. A C-18 SPE
cartridge was also used by Wang et al. [64] to enrich the polymethoxyflavone fraction
(nobiletin, tangeretin, and 5-demethylnobiletin) obtained from the ultrasonic extraction of
Ougan (Citrus reticulata cv. Suavissima) peels. Methanol was selected as the eluent.

Hrobonova et al. used a lab-made molecularly imprinted polymer (MIP)-based sor-
bent on the surface of magnetic particles for solid phase extraction [65,66]. The authors
purified coumarins (see Table 1) from Melilotus officinalis L. [65] and wines [66] with a
laboratory made SPE cartridge packed with MIP material, using 2 mL of methanol/acetic
acid (9/1, v/v) as the eluent. MIP material was also used by Machynakova et al. [67] and
Nie et al. [68] to carry out a magnetic solid-phase extraction of coumarins from food sam-
ples (cinnamon sticks, ground cinnamon, cinnamon cereals, dried archangel, chamomile,
lavender, soft drink, biscuit, and sesame paste). Each sample was subjected to solvent
treatment (water [67] and acetonitrile [68]) prior to the multi-step magnetic solid phase
extraction procedure.

In 2022, Kalogiuri et al. [69] proposed a novel capsule-phase microextraction (CPME)
method for coumarin isolation from bakery products, namely, Greek tsoureki, cinnamon
biscuits, and Italian panettone. The extract obtained with methanol–water (80:20, v/v) was
subjected to a clean-up procedure through a sol-gel C18 CPME device under magnetic
stirring for 20 min. Analyte elution was obtained using 3 mL of methanol under magnetic
stirring for 15 min.

2.5. QuEChERS

Some procedures for coumarin and furocoumarin extraction employed the QuEChERS
methodology. QuEChERS powder (magnesium sulfate/sodium acetate) was used to extract
furocoumarins from Ruby red grapefruit (whole, flesh, peel, and juice) [70] and other popu-
larly consumed foods and beverages in the United States [71]. For both applications, 5 g of
each sample was extracted with 10 mL of acetonitrile. Vetter et al. [72] used a QuEChERS
powder (magnesium sulfate/sodium chloride mixture (4:1)) and10 g of cinnamon-flavored
bakery products to extract coumarin with 20 mL of acetonitrile/water (1:1, v/v).

2.6. SFE

SFE has emerged as a promising alternative technique to conventional solvent extrac-
tion for OHC isolation from foods [73]. CO2 is the extraction agent of choice because of
its environmental friendliness. However, in some instances, the addition of modifiers or
cosolvents is necessary to enhance the extraction of polar compounds, and methanol and
ethanol are commonly used for this purpose [74].

Oba and coworkers [75] carried out SFE extraction of nobiletin from Citrus Unshiu
peels. Conventional supercritical CO2 extraction was compared with the addition of
a modifier, namely, ethanol, mixed with CO2 before the extraction cell. The impact of
varying ethanol concentrations on the yield of nobiletin was investigated. The results
demonstrated that an increase in ethanol concentration in supercritical CO2 led to an
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enhancement in nobiletin yield. Long et al. [76] employed preparative SFE to enrich
the extract of three polymethoxyflavones, namely, 3,5,6,7,8,3′,4′-heptamethoxyflavone,
nobiletin, and tangeretin, from Citri reticulatae pericarpium (CRP). Jokic et al. [73] used
supercritical CO2 in dynamic extraction mode to extract scopoletin from Helichrysum
italicum (Roth) G. Don fil. ssp. italicum flowers with an extraction run of 90 min. Two
operating parameters, namely, pressure and temperature, were varied, and it was found
that 20 MPa and 40 ◦C were the conditions that led to the highest yield (6.31%) with the
highest content of scopoletin (1.933 mg/100 g).

2.7. Miscellanea

Katekhaye et al. [77] evaluated the efficiency of several methods (microwave-assisted
(MAE), heat reflux, maceration, Soxhlet, and ultrasonic-assisted) in extracting bergapten
from Pithecellobium dulce bark. For each extraction methodology tested, the authors used
2 g of dried sample and 40 mL of chloroform, except for the Soxhlet extraction, which was
carried out with 80 mL of chloroform and an extraction time from 10 min (MAE) to 24 h
(maceration). The outcomes demonstrated that MAE exhibited a higher extraction yield
that consumed a reduced amount of solvent and required the shortest extraction time.

Ananthakishnan et al. [78] extracted coumarin from 10 samples Cinnamomum verum
barks (1 g each sample) with methanol for 3 h in a Soxhlet apparatus.

Table 1. List of the research papers that investigated both the extraction and the analysis of OHCs in
foodstuffs (from 2016 to 2024).

Samples OHCs Extraction Method Ref.

Cachaças Two Cs: 4-methylumbelliferone, coumarin Filtration HPLC-DAD [29]

Wines and spirits Six Cs: esculetin, scopoletin, fraxetin, umbelliferone,
4-methylumbelliferone, coumarin Dilution HPLC-HRMS [30]

Citrus essential oils

Fifteen FCs: psoralen, bergapten, xanthotoxin,
isopimpinellin, oxypeucedanin, oxypeucedanin hydrate,
byakangelicol, byakangelicin, heraclenin,
8-geranyloxypsoralen, bergamottin, imperatorin,
isoimperatorin, phellopterin, and epoxybergamottin

Dilution HPTLC [31]

Cold-pressed Citrus
essential oils

Ten Cs: aurapten, citropten, epoxyaurapten, herniarin,
isomerazin, meranzin, meranzin hydrate,
5-geranyloxy-7-methoxycoumarin,
5-isopentenyloxy-7-methoxycoumarin, osthol; 15 FCs:
bergamottin, bergapten, byakangelicin, byakangelicol,
cnidicin, cnidilin, epoxybergamottin, isoimperatorin,
isopimpinellin, oxypeucedanin, oxypeucedanin hydrate,
phellopterin, 8-geranyloxypsoralen, epoxybergamottin
hydrate; 5 PMFs: nobiletin, sinensetin, tangeretin,
tetra-O-methylscutellarein, heptamethoxyflavone

Dilution SFC-QqQ-
MS/MS [32]

Cold-pressed Citrus
essential oils,
Citrus-flavoured juices
and beverages

Eigth Cs: coumarin, herniarin, meranzin, meranzin
hydrate, citropten, epoxyaurapten, auraptene,
5-geranyloxy-7-methoxy-coumarin; 21 FCs:
8-methoxypsoralen, byakangelicin, psoralen,
oxypeucedanin hydrate, angelicin, isopimpinellin,
heraclenin, oxypeucedanin, bergapten, byakangelicol,
isobergapten, 6′,7′-dihydroxybergamottin, imperatorin,
trioxalen, phellopterin, cnidilin, epoxybergamottin,
isoimperatorin, cnidicin, 8-geranyloxypsoralen,
bergamottin; seven PMFs: sinensetin, nobiletin,
tetra-O-methylscutellarein, 5-O-demethylnobiletin,
tangeretin, gardenin A, gardenin B

Dilution HPLC-QqQ-
MS/MS [33]
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Table 1. Cont.

Samples OHCs Extraction Method Ref.

Mandarin essential oil Five PMFs: tangeretin, nobiletin, sinensetin,
tetra-O-methyl scutellarein, heptamethoxyflavone Dilution HPLC-PDA-

MS [34]

Cold-pressed Citrus
essential oils

Nine Cs: coumarin, meranzin hydrate, herniarin, citropten,
meranzin, isomeranzin, aurapten, epoxyaurapten,
5-geranyloxy-7-methoxycoumarin; 19 FCs: byakangelicin,
8-methoxypsoralen, psoralen, angelicin, oxypeucedanin
hydrate, isopimpinellin, heraclenin, bergapten,
isobergapten, byakangelicol, oxypeucedanin, imperatorin,
phellopterin, cnidilin, isoimperatorin, epoxybergamottin,
cnidicin, 8-geranyloxypsoralen, bergamottin; seven PMFs:
sinensetin, nobiletin, tetra-O-methylscutellarein,
tangeretin, 5-O-demethylnobiletin, gardenin A, gardenin B

Dilution HPLC-PDA [35]

Extra-virgin olive oils
flavoured with
aromatic plants

Four Cs: citropten, herniarin, meranzin,
5-geranyloxy-7-methoxycoumarin; 11 FCs: bergamottin,
bergapten, byakangelicol, cnidicin, cnidilin,
isoimperatorin, isopimpinellin, oxypeucedanin,
oxypeucedanin hydrate, phellopterin,
8-geranyloxypsoralen; seven PMFs: gardenin A, gardenin
B, nobiletin, sinensetin, tangeretin,
tetra-O-methylscutellarein, 5-O-demethylnobiletin

Dilution HPLC-
MS/MS [36]

Citrus essential oils

Two Cs: citropten, herniarin; 16 FCs: bergapten, psoralen,
xanthotoxin, bergamottin, epoxybergamottin,
byakangelicol, byakangelicin, isopimpinellin, imperatorin,
isoimperatorin, oxypeucedanin, oxypeucedanin hydrate,
heraclenin, phellopterin, 8-geranyloxypsoralen, angelicin

Dilution UHPLC-TOF-
MS [37]

Bergamot essential oil Untargeted compounds Dilution Ambient MS [38]

Citrus sinensis oil

Eight PMFs: sinensetin, hexamethoxyflavone,
tetramethyl-O-isoscutellarein, nobiletin,
tetramethyl-O-scutellarein, heptamethoxyflavone,
5-demethylnobiletin, tangeretin

Dilution HPLC-DAD [39]

Citrus essential oils

Ten Cs: meranzin hydrate, herniarin, citropten, meranzin,
isomeranzin, epoxyaurapten, osthol,
5-isopentenyloxy-7-methoxycoumarin, aurapten,
5-geranyloxy-7-methoxycoumarin; 15 FCs: byakangelicin,
oxypeucedanin hydrate, isopimpinellin, bergapten,
byakangelicol, oxypeucedanin, isoimperatorin,
imperatorin, cnidilin, epoxybergamottin, 5-(isopent-2′-
eniloxy)-8-(2′,3′-epoxy)-isopentenyloxypsoralen, cnidicin,
8-geranyloxypsoralen, 5-geranyloxy-8-methoxypsoralen,
bergamottin; six PMFs: sinensetin, hexamethoxyflavone,
nobiletin, tetra-O-methylscutellarein,
heptamethoxyflavone, tangeretin

Dilution NanoUPLC-
UV/EI-MS [40]

Cinnamomum cassia
Blume bark One C: coumarin UAE HPLC-DAD [41]

Cinnamon flavoring
powders One C: coumarin UAE HPLC-UV [42]

Cinnamon powders
and sticks One C: coumarin UAE HPLC-UV [43]

Cinnamon, tea,
breakfast cereal, milk
rice, cinnamon bun

One C: coumarin UAE HPTLC [44]
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Table 1. Cont.

Samples OHCs Extraction Method Ref.

Citrus australasica L.
peel and pulp One C: coumarin UAE HPLC-QTOF-

MS/MS [45]

Juices, beverages, jams,
bakery products
flavored with Citrus
and cinnamon

Nine Cs: coumarin, aurapten, citropten, epoxyaurapten,
herniarin, isomerazin, meranzin, meranzin hydrate,
5-geranyloxy-7-methoxycoumarin; 15 FCs:
8-methoxypsoralen, bergamottin, bergapten,
byakangelicin, byakangelicol, cnidicin, cnidilin,
epoxybergamottin, isoimperatorin, isopimpinellin,
oxypeucedanin, oxypeucedanin hydrate, phellopterin,
8-geranyloxypsoralen, psoralen; four PMFs: nobiletin,
sinensetin, tangeretin, tetra-O-methylscutellarein

UAE
LLE

SFC-QqQ-
MS/MS [46]

Citrus-flavored
beverages and jams

Eight Cs: aurapten, citropten, epoxyaurapten, herniarin,
isomeranzin, meranzin, meranzin hydrate,
5-geranyloxy-7-methoxycoumarin; 20 FCs: angelicin,
bergamottin, bergapten, byakangelicin, byakangelicol,
cnidicin, cnidilin, epoxybergamottin, heraclenin,
imperatorin, isobergapten, isoimperatorin, isopimpinellin,
oxypeucedanin, oxypeucedanin hydrate, phellopterin,
psoralen, trioxsalen, 8-geranyloxypsoralen,
8-methoxypsoralen; Seven PMFs: gardenin A, gardenin B,
nobiletin, sinensetin, tangeretin,
tetra-O-methylscutellarein, 5-O-demethylnobiletin

UAE
LLE

HPLC-
MS/MS [47]

Pummelo fruits

Four Cs: umbelliferone, scoparone, limettin, isomeranzin;
eight FCs: psoralen, bergaptol, xanthotoxin, bergapten,
6′,7′-dihydroxybergamottin, imperatorin, isoimperatorin,
6′,7′-epoxybergamottin; eight PMFs:
eupatorin-5-methylether, sinensetin,
3′,4′,5,5′,6,7-heptamethoxyflavone, nobiletin,
5-hydroxy-7,8,4′-trimethoxyflavone, tangeretin,
5-hydroxy-3′,4′,7-trimethoxyflavone,
5-hydroxy-3,7,3′,4′-tetramethoxyflavone

UAE UHPLC-QqQ-
MS/MS [48]

Satsuma mandarin
peels and pulp

Eight Cs: umbelliferone, isomeranzin, scoparone,
meranzin hydrate, limettin, scopoletin, aurapten,
5-geranyloxy-7-methoxycoumarin; 11 FCs: bergaptol,
psoralen, isopsoralen, xanthotoxin, bergapten,
6′,7′-dihydroxybergamottin, imperatorin, isoimperatorin,
6′,7′-epoxybergamottin, 8-geranyloxypsoralen,
bergamottin; nine PMFs:
5-hydroxy-7,8,4′-trimethoxyflavone,
eupatorin-5-methylether, 5,7,3′,4′-tetramethoxyflavone,
5,3′-dihydroxy-3,6,7,4′-tetramethoxyflavone,
5-demethylnobiletin, 3′,4′,5,5′,6,7-hexamethoxyflavone,
sinensetin, tangeretin, nobiletin

UAE HPLC-QqQ-
MS [49]

Artemisia annua Two Cs: scopolin, scopoletin UAE HPLC-DAD [50]

Heracleum sphondylium
L. and Aesculus
hippocastanum L.

Six Cs: coumarin, scoparone, isoscopoletin, esculin,
esculetin, umbelliferone; six FCs: xanthotoxin,
byakangelicin, isopimpinellin, bergapten, phellopterin,
xanthotoxol

UAE MEKC [51]

Shiranuhi fruit
and peels One PMF: tetramethyl-O-scutellarein SLE MPLC [53]

Melilotus officinalis L.
and propolis

Nine Cs: esculin, daphnetin, fraxetin, umbelliferone,
4-methylumbelliferone, 4-hydroxycoumarin, scoparone,
coumarin, herniarin

SLE UHPLC-UV-
FLD [54]
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Table 1. Cont.

Samples OHCs Extraction Method Ref.

Sweet clover herb, hay,
and spoiled hay Three Cs: dicumarol, coumarin and 4-hydroxycoumarin SLE HPLC-DAD [55]

Citrus fruits One PMF: nobiletin SLE HPLC-UV [56]

Citrus peels

Thirteen Cs: trihydroxycoumarin hexoside,
trihydroxycoumarin hexoside isomer,
methoxy-trihydroxycoumarin hexoside,
methoxy-trihydroxycoumarin hexoside isomer,
methoxy-umbelliferone-hexoside,
methoxy-trihydroxycoumarin hexoside isomer,
dimethoxy-umbelliferone hexoside,
benzyl-methyl-cyclohexanecarboxylateumbelliferone
pentoside, umbelliferone,
hydroxy-trimethoxy-methylchromen-4-one,
allyloxy-dimethylcoumarin, aurapten, aurapten isomer;
one FC: epoxybergamottin; seven PMFs:
tetrahydroxy-dimethoxyflavone,
dihydroxy-dimethoxyflavone,
dihydroxy-trimethoxyflavone,
dihydroxy-trimethoxyflavone isomer,
dihydroxy-methoxyflavanone,
dihydroxy-tetramethoxyflavone,
hydroxy-pentamethoxyflavone

SLE UPLC-QTOF-
MS/MS [57]

Vanilla extracts One C: coumarin SLE MID-FTIR [58]

Citrus sinensis peels

Six PMFs: 8-hydroxy-3,4′,5,6,7-pentamethoxyflavone,
5-hydroxy-6,7,8,3′,4′-pentamethoxyflavone, tangeretin,
nobiletin, 3-methoxynobiletin, 7-hydroxy-3,5-dimethoxy-3,
4′-methylenedioxyflavone

SLE TLC [59]

Citrus-flavored beers

Seven Cs: aurapten, citropten, epoxyaurapten, herniarin,
isomeranzin, meranzin hydrate,
5-geranyloxy-7-methoxycoumarin; 16 FCs: angelicin,
bergamottin, bergapten, byakangelicin, byakangelicol,
cnidicin, cnidilin, epoxybergamottin, heraclenin,
isoimperatorin, isopimpinellin, oxypeucedanin hydrate,
phellopterin, psoralen, 8-methoxypsoralen,
8-geranyloxypsoralen; seven PMFs: gardenin A, gardenin
B, nobiletin, sinensetin, tangeretin,
tetra-O-methylscutellarein, 5-O-methylnobiletin

LLE HPLC-
MS/MS [60]

Citrus and herbliquors

Eight Cs: coumarin, herniarin, meranzin, meranzin
hydrate, citropten, epoxyaurapten, auraptene,
5-geranyloxy-7-methoxy-coumarin; 21 FCs:
8-methoxypsoralen, byakangelicin, psoralen,
oxypeucedanin hydrate, angelicin, isopimpinellin,
heraclenin, oxypeucedanin, bergapten, byakangelicol,
isobergapten, 6′,7′-dihydroxybergamottin, imperatorin,
trioxalen, phellopterin, cnidilin, epoxybergamottin,
isoimperatorin, cnidicin, 8-geranyloxypsoralen,
bergamottin; seven PMFs: sinensetin, nobiletin,
tetra-O-methylscutellarein, 5-O-demethylnobiletin,
tangeretin, gardenin A, gardenin B

LLE HPLC-QqQ-
MS/MS [61]

Citrus juices

Five Cs: scopoletin, citropten, meranzin, isomeranzin,
osthol; 6 FCs: bergaptol, bergapten, oxypeucedanin,
6′,7′-dihydroxybergamottin, epoxybergamottin,
bergamottin; four PMFs: sinensetin, nobiletin,
heptamethoxyflavone, tangeretin

SPE HPLC-PDA-
FLD [62]
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Table 1. Cont.

Samples OHCs Extraction Method Ref.

Citrus juices

Twelve Cs: scopoletin, umbelliferone, herniarin, meranzin,
isomeranzin, meranzin hydrate, citropten, auraptenol,
marmin, osthol, aurapten, 5-geranoxy-7-methoxycoumarin;
16 FCs: heraclenol, bergaptol, oxypeucedanin hydrate,
byakangelicin, bergapten, heraclenin, isosinensetin,
byakangelicol, oxypeucedanin, 6′,7′-dihydroxybergamottin,
imperatorin, phellopterin, isoimperatorin,
6′,7′-epoxybergamottin, 8-geranyloxypsoralen, bergamottin;
eight PMFs: sinensetin, tetramethyl-O-isoscutellarein,
nobiletin, tetramethyl-O-scutellarein, heptamethoxyflavone,
tangeretin, 5-demethylnobiletin, 5-demethyltangeretin

SPE HPLC-PDA-
FLD [63]

Citrus reticulata cv.
Suavissima peels Three PMFs: nobiletin, tangeretin, 5-demethylnobiletin SPE HSCCC [64]

Sweet clover herb, hay,
and spoiled hay One C: dicoumarol SPE HPLC-DAD [65]

Tokaj wine
Six Cs: esculin, coumarin, herniarin,
4-methylumbelliferone,
scoparone, scopoletin

SPE HPLC-DAD-
FLD [66]

Cinnamon foods and
plants (lavender,
chamomile, archangel)

Three Cs: coumarin, 7-hydroxycoumarin,
7-methoxycoumarin SPE HPLC-DAD [67]

Soft drink, biscuits,
sesame paste

Six Cs: coumarin, 7-methoxycoumarin, 7-methylcoumarin,
7-diethylaminocoumarin, pyranocoumarin, 3,3′-carbonylbis
(7-diethylaminocoumarin)

SPE HPLC-MS/MS [68]

Tsoureki, cinnamon
biscuit, panettone One C: coumarin SPE HPLC-DAD [69]

Citrus paradisi Macf.
fruit and juice

Seven FCs: bergaptol, psoralen, 8-methoxypsoralen,
bergapten, 6′,7′-dihydroxybergamottin,
epoxybergamottin, bergamottin

QuEChERS UPLC-MS/MS [70]

Foods and beverages,
with Citrus, figs,
vegetables, herbs,
and spices

Seven FCs: bergaptol, psoralen, 8-methoxypsoralen,
bergapten, 6′,7′-dihydroxybergamottin,
epoxybergamottin, bergamottin

QuEChERS UPLC-MS/MS [71]

Cinnamon bakery
products One C: coumarin QuEChERS GC-MS [72]

Helichrysum italicum
flowers One C: scopoletin SFE HPLC-UV [73]

Citrus unshiu peels One PMF: nobiletin SFE HPLC-UV-Vis [75]

Citri reticulatae
pericarpium

Three PMFs: nobiletin, 3,5,6,7,8,3′,4′-heptamethoxyflavone,
tangeretin SFE HPLC-DAD [76]

Pithecellobium dulce bark One FC: bergapten MAE HPLC-UV/Vis [77]

Cinnamomum verum bark One C: coumarin Soxhlet
extraction

UHPLC-QqQ-
MS/MS [78]

Prangos pabularia
essential oil One C: suberosin Hydrodistillation

with Clevenger
GC-FID
GC-MS [79]

Geijera parviflora leaves Three Cs: osthol, scoparone, xanthyletin; one
FC: isopsoralen SLE GC-MS [80]
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Table 1. Cont.

Samples OHCs Extraction Method Ref.

Cassia cinnamon,
chamomile tea,
Tokaj wines

Seven Cs: 6,7-dihydroxycoumarin,
7,8-dihydroxy-6-methoxycoumarin, 7-hydroxycoumarin,
7-hydroxy-4-methylcoumarin, 6,7-dimethoxycoumarin,
coumarin, 7-methoxycoumarin

on-line MISPE HPLC-DAD [81]

Matricaria chamomilla Two Cs: herniarin, umbelliferone Maceration HPLC-PDA [82]

Lemon and
persian lime

Three Cs: herniarin, citropten, 5
geranyloxy-7-methoxycoumarin; eight FCs:
oxypeucedanin hydrate, isopimpinellin, bergapten,
bergamottin, byakangelicol, oxypeucedanin,
8-geranyloxypsoralen, 5-geranyloxy-8-methoxypsoralen

UAE
LLE HPLC-DAD [83]

Angelica dahurica roots
Two Cs: osthol, umbelliferone; six FCs: angelicin,
imperatorin, xanthotoxin, isoimperatorin, oxypeucedanin,
xanthotoxol

UAE SFC-PDA [84]

Ammi visnaga (L.)
Lam. fruits

Five Cs: dihydrosamidin, visnadin, samidin, khellin,
visnagin UAE SFC-PDA [85]

Cnidium monnieri (L.)
Cusson fruits One C: osthol; one FC: imperatorin SLE SP-SFC-

UV/Vis [86]

C: coumarin; FC: furocoumarin; PMF: polymethoxyflavone; UAE: ultrasound-assisted extraction; LLE: liquid–
liquid extraction; SLE: solid–liquid extraction; SPE: solid-phase extraction; MISPE: molecularly imprinted solid-
phase extraction; MAE: microwave-assisted extraction; SFE: supercritical fluid extraction; QuEChERS: Quick,
Easy, Cheap, Effective, Rugged, Safe; HPLC: high-performance liquid chromatography; GC: gas chromatography;
SFC: supercritical fluid chromatography; TLC: thin-layer chromatography; MEKC: micellar electrokinetic capillary
chromatography; MPLC: medium pressure liquid chromatography; HSCCC: high-speed counter current chro-
matography; DAD: diode array detector; PDA: photodiode array detector; FLD: fluorometer detector; FID: flame
ionization detector; MS: mass spectrometer; HRMS: high-resolution mass spectrometer; QqQ: triple quadrupole
mass spectrometer; TOF: time-of-flight mass spectrometer; FTIR: Fourier transform infrared spectroscopy.

3. Analytical Methods Used to Characterize OHCs

The presence of OHCs in a wide variety of plants and, consequently, in foodstuffs has
promoted the development of numerous methods for the determination and quantification
of these compounds. In the last eight years, several analytical methods have been developed
to characterize OHCs, including gas chromatography (GC) coupled with flame ionization
detector (FID) and MS, HPLC with UV, PDA, fluorometer (FL), and MS, and SFC with PDA
and MS. Because of the high molecular weight of these compounds, the analytical technique
mainly used for their determination is HPLC coupled with a PDA or MS detector [87].
However, each of these analytical approaches has benefits and drawbacks. Firstly, it is
difficult to detect many OHCs simultaneously because of the fact that these compounds
have different structures and polarities. Therefore, one of the aspects to take into account
when selecting an analytical approach is the number and type of analytes to be determined.
Secondly, an environmental assessment must be carried out. It is advisable to evaluate
the amount and type of solvents used, analysis time, energy consumption, and equipment
costs. Finally, the analytical technique employed for the characterization of OHCs should
be repeatable, accurate, sensitive to low levels of OHCs concentration, and suitable for
several food samples.

A list of some of the methods used, reported in Figure 3, is presented in this section.
Several parameters, such as chromatographic conditions, compounds detected, and envi-
ronmental assessment, are explained for each method in order to facilitate the researchers’
choice of approach for their future work.
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3.1. Gas Chromatography Methods

Gas chromatography can be used to determine some semi-volatile oxygen heterocyclic
compounds, such as coumarin and furocoumarins with low molecular weight.

In 2016, Tabanca et al. [80] presented a detailed analysis of Prangos pabularia essential
oil by means of GC-FID and GC-MS. One compound was identified as suberosin. In
the same year, Sadgrove et al. [81] investigated the phytochemical diversity of Geijera
parviflora leaves. Through the use of solvent extraction and GC-MS, several unknown and
known coumarins (isopsoralen, scoparone, xanthyletine, osthole, and dehydrogeijerin)
were identified, suggesting geographical variability in the plant’s chemical composition.

In 2017, Vetter et al. [72] used the QuEChERS sample preparation technique and GC-
MS analysis to assess only the coumarin content in 14 different bakery products flavored
with cinnamon.

As is evident from the mentioned publications, GC is limited to the determination of
coumarin and a few other oxygenated heterocyclic compounds. To investigate the complete
profile of these chemicals in plants and foods, further analytical methods are required.

3.2. Liquid Chromatography Methods

The most common methodologies, as shown in Figure 3, to determine OHCs in foods
are based on HPLC with different detectors. HPLC has been shown to be a more efficient
method for the chromatographic separation of these compounds, improving analytical
sensitivity and resolution in a shorter retention time than other gas chromatographic
techniques [3]. Among the detectors coupled to HPLC instrumentation, UV, DAD, and
PDA were the most used because of (i) the presence of chromophores in the chemical
structure of OHCs, (ii) the low cost of the detector, and (iii) ease of use. MS detectors were
also used for OHC characterization, especially for OHCs present in trace amounts, or to
improve the separation of some isomeric compounds.

Some of the research articles found in our literature survey were focused on the de-
velopment of an analytical method only for the characterization of OHCs. On the other
hand, some research papers reported the identification and quantification of OHCs to-
gether with other bioactive molecules, such as phenols, using the same HPLC analytical
methodology [29,42,43,45,49,50,57,78]. For example, Cao et al. [42] and Pages-Rebull et al. [43]
developed an HPLC-UV methodology to quantify key compounds in cinnamon, includ-
ing coumarin, in order to discover adulterations. Fu et al. [50] and Santiago et al. [29]
used an HPLC-DAD instrument to characterize coumarins, together with phenols and
sesquiterpenes, in Artemisia annua L. and cachaça, respectively. HPLC coupled with a mass
spectrometer detector was used by Aznar et al. [45], Fayek et al. [57], and Guo et al. [49]
to investigate the content of bioactive compounds in Citrus fruits. The authors quantified
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various coumarins, furocoumarins, and polymethoxyflavones in the samples investigated.
Ananthakrishnan et al. discussed the quantification of coumarin and other phenolic com-
pounds in cinnamon samples from South India using an HPLC system coupled with a
triple quadrupole mass spectrometer (HPLC-QqQ-MS) [78].

3.2.1. HPLC Coupled with Spectrophotometric Detectors

Most of the HPLC analytical methods using a spectrophotometer as a detector were
developed to identify and quantify only the OHCs considered as markers for monitor-
ing authenticity (e.g., coumarin, bergapten, dicumarol) [41,55,65,67,77,81–83]. In all the
research articles considered, the authors selected an octadecylsilyl (C18) stationary phase
for the separation of molecules.

In 2017, Solaiman et al. [41] developed an HPLC-DAD method to determine the
concentration of coumarin in the methanol extract of cinnamon bark (Cinnamomum cassia
Blume). The researchers used a C18 column (250 mm × 4.6 mm, 5 µm) as the stationary
phase. The analysis was in isocratic mode with a mobile phase composed of acetonitrile and
0.5% acetic acid in water (25:75) with a flow rate of 1 mL min−1. Coumarin was identified
at a retention time of 10.4 min. The LoD and LoQ were 0.623 µg mL−1 and 1.889 µg mL−1,
respectively. The mean concentration of coumarin in the cinnamon bark extract was found
to be 916.71 mg kg−1. This information is important for determining compliance with the
maximum limits set by food safety authorities. The same stationary phase was used by
Katekhaye et al. [77] to determine the presence of bergapten in Pithecellobium dulce (Roxb.).
The authors used acetonitrile and water (65:35, v/v) in isocratic mode, a flow rate of
1.0 mL min−1, and a UV wavelength of 266 nm. A C18 (250 mm × 4 mm, 5 µm) stationary
phase was employed by Machynakova et al. [67,81] to quantify seven OHCs in complex
food. Molecules were characterized using an HPLC-DAD system, and chromatographic
separation was carried out with a mixture of acetonitrile/0.3% acetic acid (9:1, v/v) and
acetonitrile as the mobile phase at a flow rate of 1 mL min−1.

A shorter C18 column (150 mm) was selected by Molnar et al. [82] to determine umbel-
liferone and herniarin concentrations in chamomile. Quantification of the two coumarins
was carried out using water and methanol as the mobile phase at a flow rate of 1.0 mL min−1

with an HPLC-PDA instrument. Hroboňová and co-workers quantified dicoumarol [65]
and coumarin, 4-hydroxycoumarin, and dicoumarol [55] from Melilotus officinalis (sweet
clover) with a C18 (150 mm × 3.9 mm, 5 µm) column. The gradient elution was performed
using methanol with 0.3% acetic acid and a 0.3% aqueous solution of acetic acid as the
mobile phase. Jungen et al. [83] discussed the detection of adulteration in lemon and
lime juices using coumarins and psoralens as chemical markers. The researchers used an
HPLC-DAD method for quantitative analyses. Chromatographic separation was achieved
using a C18 column (150 mm × 4.6 mm i.d., 2.6 µm). Eluents were tertiary mixtures of wa-
ter/acetonitrile/tBME (A: 85/13/2, v/v/v) and acetonitrile/methanol/tBME (B: 65/30/5,
v/v/v). The flow rate was 0.7 mL/min and the total run time was 50 min.

In 2018, a more polar stationary phase was selected by Li et al. [39] to character-
ize polymethoxyflavones present in orange peel oil. In this context, a C8 column (i.d.
4.6 mm × 150 mm, 2.7 µm particle) was used as stationary phase. The solvent consisted of
0.05% phosphoric acid/water (A), methanol (B), and 50% tetrahydrofuran/water (C) used
in gradient mode, and the flow rate was 1 mL min−1 for 35 min. Eight polymethoxyflavones
were identified in the sample.

In order to characterize a higher number of OHCs (including isomeric forms) in
foods, it is necessary to use analytical instrumentation with higher performance in terms
of selectivity. In 2019m Arigò and co-workers [35] developed an HPLC-PDA method
combined with a linear retention index (LRI) approach and a UV-Vis library to characterize
35 OHCs in Citrus essential oils. The separation was carried out using a C18 column
(50 mm × 4.6 mm, 2.7 µm) with water/methanol/tetrahydrofuran (85:10:5, v/v) as solvent
A and methanol/tetrahydrofuran (95:5, v/v) as solvent B. The flow rate was 2 mL min−1

and the total analysis time was 14 min. The authors concluded that the LRI-based LC-
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PDA method, combined with the UV-Vis library, was a viable approach for screening and
quantifying OHCs and even compounds with very similar spectra.

Another approach that can be used to improve the sensitivity and selectivity of the an-
alytical method is the coupling of other detectors to a PDA. Several researchers developed
chromatographic methods using serially coupled PDA and FLD [54,62,63,66]. Fluores-
cence detection provided high sensitivity, with detection limits in the ng mL−1 range for
the coumarins.

In 2017, Machynakova et al. [54] developed a UHPLC method coupled with UV
and FL detection for the simultaneous determination of nine coumarins (see Table 1).
The separations were performed using a phenyl–hexyl silica-based analytical column
(50 mm × 4.6 mm, 1.8 µm) under gradient elution with mobile phases consisting of acetoni-
trile and water (1:9 v/v) with 0.3% acetic acid (A) and acetonitrile (B). The total analysis time
for the separation of the selected compounds was less than 6 min at a flow rate of 2.0 mL
min−1. The limits of quantification were in the µg mL−1 range for UV detection and the ng
mL−1 range for FL detection. The applicability of the method was demonstrated by analyz-
ing plant (Melilotus officinalis) and propolis samples. In 2020, Hrobonova et al. [66] described
the development and comparison between HPLC-DAD-FLD and fluorescence spectrometry
methods for the determination of natural coumarins in Tokaj wine. The HPLC method was
able to separate and quantify six coumarins using a C18 column (100 mm × 4.6 mm I.D.,
5 µm) and a gradient elution with methanol/acetic acid (99/1 v/v) (A) and 1% aqueous
solution of acetic acid (B). The analysis lasted 15 min at 1.0 mL min−1. DAD was used
to monitor coumarin, while FLD was used for esculin, herniarin, 4-methylumbelliferone,
scoparone, and scopoletin.

Li and co-workers developed two HPLC-PDA-FLD methods for determining OHCs
in Citrus juices [62,63]. In the first method, the separation was performed on a C18 column
(150 mm × 4.6 mm, 3.5 µm). The solvent consisted of 0.01% phosphoric acid/water (A),
acetonitrile (B), and methanol (C) used in gradient mode at a flow rate of 1 mL min−1.
The total analysis time was 55 min. The developed method provided a comprehensive
approach for the analysis of sixteen bioactive Citrus compounds in a single run [62]. The
second HPLC-PDA-FLD method developed by Li et al. allowed for the identification of a
total of thirty-seven OHCs. The column, flow rate, and analysis time were the same as in
the previous method. In addition to the mobile phase cited above, the researchers used a
mixture of water/acetonitrile/tetrahydrofuran (55:20:25, v/v/v) as mobile phase D. Their
work provided a detailed distribution pattern that helped to understand the relationship
between Citrus juice intake and health outcomes [63].

3.2.2. HPLC Coupled with Mass Spectrometer Detectors

Coumarins, furocoumarins, and polymethoxyflavones in foodstuffs can be better
identified using LC with high-resolution mass spectrometry (HRMS) and tandem mass
spectrometry (MS/MS) technologies, which are known to provide the best selectivity and
sensitivity compared with traditional LC methods. These methodologies also allow for
the chromatographic separation of isomers, ensuring a more accurate identification of the
compounds present in the samples analyzed.

Regarding LC-HRMS, Masson et al. [37] developed a UHPLC/TOF-MS method to
quantify 18 specific furocoumarins and coumarins in Citrus essential oils. The chro-
matographic separation was performed on a C18 stationary phase (100 mm × 2.1 mm,
1.8 µm). Solvent A was a mixture of water/methanol/tetrahydrofuran (85:10:5 v/v/v)
with 0.1% of formic acid and 5 mM ammonium formate solution, while Solvent B was
methanol/acetonitrile/tetrahydrofuran (65:30:5 v/v/v) with 0.1% of formic acid and 5 mM
ammonium formate. The method successfully discriminated between Citrus species and
detected adulteration with high sensitivity. Winstel et al. [30] investigated the role of
oak-derived coumarins in contributing to the taste of wines and spirits during barrel aging.
An LC-HRMS method was developed and validated to quantify six coumarins (Table 1)
in various wines and spirits. The same stationary phase of the previous work was used
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with water containing 0.1% of formic acid (A) and acetonitrile with 0.1% of formic acid
(B) as mobile phases. The flow rate was set at 600 µL/min for 12 min. An Orbitrap mass
spectrometer equipped with a heated electrospray ionization (HESI II) probe was used.
Their study provided new insights into the role of non-volatile oak-derived compounds,
specifically coumarins, in shaping the sensory characteristics of aged wines and spirits.

Over the years, many researchers have developed HPLC-MS/MS methods to identify
and quantify OHCs in Citrus fruits and Citrus-flavored foods [33,36,47,48,60,61,70]. In
2020, Zhao et al. [48] described the development of a rapid and sensitive UHPLC-QqQ-
MS/MS method for the simultaneous qualitative and quantitative analysis of coumarins,
furocoumarins, flavonoids, and phenolic acids in pummelo fruits. The column was C18
(2.1 × 100 mm, 1.8 µm), and the mobile phases consisted of 0.1% formic acid in wa-
ter (A) and methanol (B). The detector was a QTRAP system equipped with a Turbo
Spray Ion source, and it was used in multiple reaction monitoring (MRM) acquisition
mode. Chromatographic conditions and MRM transitions were optimized to achieve good
separation and accurate quantification of 47 analytes, including 13 groups of isomers,
within a 13 min run time. The method presented low limits of detection and quantita-
tion (0.014–1.50 µg L−1). The developed UHPLC-QqQ-MS/MS method combined high
sensitivity, good selectivity, and short chromatographic run time, making it a versatile
analytical tool for comprehensive profiling of these important secondary metabolites in
pummelo fruits. Lee et al. [70] focused on developing an analytical method for identifying
and quantifying furanocoumarins in grapefruit and their metabolites in human plasma and
urine. Seven specific furanocoumarins were analyzed using UPLC-MS/MS. A C18 column
(50 mm × 2.1 mm, 1.7 µm) was used for the analysis at a flow rate of 0.5 mL min−1 for 8 min.
Mobile phases A and B were 0.1% formic acid in water and 0.1% formic acid in acetoni-
trile, respectively. The findings revealed that bergamottin and 6′,7′-dihydroxybergamottin
were the predominant compounds in grapefruit and plasma, while bergaptol and 6′,7′-
dihydroxybergamottin were the major compounds in urine. Arigò et al. [47] investigated
the presence of OHCs in Citrus alcoholic and non-alcoholic beverages and jams using an
HPLC-MS/MS method combined with an LRI system. The researchers used the same chro-
matographic condition of the previously validated HPLC-PDA method [35], using a triple
quadrupole mass spectrometer via an atmospheric pressure chemical ionization (APCI)
interface set in positive ionization mode. This analytical method was also used to analyze
16 commercial beer samples flavored with Citrus fruit and 18 extra-virgin olive oils flavored
with aromatic and medicinal plants [36,60]. In 2024, Cafeo et al. [33,61] presented a fast and
environmentally friendly HPLC-QqQ/MS method for analyzing OHCs in Citrus-flavored
alcoholic and non-alcoholic beverages. Their method identified 36 OHCs in less than four
minutes using water and ethanol as the mobile phase. The separations were achieved on
a C18 column (50 mm × 2.1 mm, 2.7 µm). The HPLC system was hyphenated to a triple
quadrupole mass spectrometer through an APCI interface operated in positive ionization
mode. This approach enhanced the analysis of Citrus products, ensuring authenticity and
safety with minimal environmental impact.

Other research articles focused on the development of the LC-MS/MS method to deter-
mine OHCs in foods and beverages known or suspected to contain these molecules [68,71].
Melough et al. [71] analyzed 29 food samples employing UPLC-MS/MS for detection after
preparation using an SPE method. A C18 (50 mm × 2.1 mm, 1.7 µm) column was utilized
for analyte separation. The mobile phase consisted of 0.1% formic acid in water (A) and
0.1% formic acid in acetonitrile (B). The total run time was 8 min with a constant flow
rate of 0.5 mL min−1. The detection and quantification of the seven targeted analytes
were performed in positive electrospray ionization mode (ESI+) with the MRM acquisition
mode. Their findings showed that most foods contained multiple furocoumarins, with
parsley, grapefruits, lime juice, grapefruit juice, and limes having the highest concentrations.
Bergamottin, bergapten, and 6′7′-dihydroxybergamottin were the most commonly detected
compounds. Their study provided valuable data for a more accurate estimation of dietary
furocoumarin exposure and supported future epidemiological research on their health
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impacts. Nie et al. [68] presented a novel method for detecting coumarin and its derivatives
in food matrices such as soft drinks, biscuits, and sesame paste. The researchers developed
a urea-based magnetic adsorbent to perform the solid-phase extraction (MSPE) of OHCs.
The analyses were carried out using an HPLC-MS/MS instrument. Six coumarins were sep-
arated by a C18 column (150 mm × 2.1 mm, 3.5 µm). The flow rate was set at 0.4 mL min−1.
The researchers chose 0.1% formic acid aqueous solution (A) and acetonitrile (B) as the
mobile phase at a flow rate of 0.4 mL min−1 for 15 min. MS/MS analysis was performed
using a QTRAP mass spectrometer, with positive ion mode, in MRM. The method was
environmentally friendly, requiring fewer organic reagents and offering high repeatability.

3.3. Supercritical Fluid Chromatographic Methods

SFC is an additional analytical method for the analysis of OHCs. By using a supercriti-
cal fluid, mainly CO2, as a mobile phase, SFC is able to combine the advantages of gas and
liquid chromatography [84]. As SFC requires less solvent and less time for analysis than
conventional chromatography, it is a more environmentally friendly analytical method.
Although OHCs are excellent target molecules for the SFC approach (because of their low
polarity), only a few scientific articles have been published in the last fifteen years on this
topic [32,46,85,86,88].

Some of the first SFC methods for coumarins were developed with the use of spec-
trophotometric detectors to investigate a few selected OHCs in plants and fruits [85,86,88].
Pfeifer and co-workers [85] presented an SFC-PDA method for the determination of
coumarins in the roots of Angelica dahurica. Eight compounds could be baseline-separated in
6 min using a Fluoro-Phenyl column (100 mm × 3.0 mm, 1.7 µm) with CO2, methanol, and
diethylamine as the mobile phase. The method was applied to analyze coumarins in Angel-
ica dahurica root samples. Imperatorin was the major coumarin (0.09–0.28%), followed by
either isoimperatorin or oxypeucedanin. Winderl et al. [86] described an SFC-PDA method
for the determination of five coumarins (Table 1) in Ammi visnaga fruits. The separation of
these coumarins was achieved in less than 5 min using a C18 column (3.0 mm × 100 mm,
1.8 µm), CO2 as mobile phase A, and a mixture of methanol, acetonitrile, and 0.1% diethy-
lamine as mobile phase B. The limits of detection were below 1.9 µg/mL for all compounds.
The method allowed for the individual quantification of the previously co-eluting isomers
dihydrosamidin and visnadin. Zhang et al. [88] developed a semi-preparative supercritical
fluid chromatography method coupled with a UV/VIS detector (SP-SFC-UV/VIS) for
the isolation and purification of osthol and imperatorin from Fructus Cnidii, a traditional
Chinese medicinal plant. The optimized SP-SFC method used a YMC-Pack NH2 column
(250 mm × 10.0 mm, 5 µm) and 3% ethanol as the modifier in the mobile phase at a flow
rate of 20 mL min−1. Under these conditions, osthol and imperatorin were successfully
isolated and purified from Fructus Cnidii extracts, with high purity confirmed by HPLC,
NMR, and mass spectrometry analysis.

To the best of the authors’ knowledge, the first research article that combines the use
of SFC with a tandem mass spectrometer for OHC analysis was published by Arigò and
co-workers in 2022 [32]. The researchers developed an SFC-MS/MS analytical method for
the analysis of twenty-eight OHCs in Citrus essential oils. Eight different stationary phases
were evaluated, and a pentafluorophenyl column provided the best baseline separation of
target analytes in under 8 min using CO2 and methanol as mobile phases. This method
showed lower detection limits (0.0004–0.0470 mg kg−1) than those previously developed
using PDA as a detector [87]. The validated method was then used to quantify the OHC
profile of 26 Citrus-flavored food samples [46].

4. Conclusions

As can be seen in Figure 4A, in the last eight years, several authors have investigated
all the OHC classes present in foodstuffs, with particular emphasis on coumarin. This
can be attributed to the fact that coumarin is the sole molecule between OHCs for which
strict regulations are in place regarding its presence in foodstuffs [12,13,15]. As reported in
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Figure 4B, more than 60% of the research articles considered in this review focused on the
analysis of OHCs in cinnamon-flavored foods together with Citrus-based products. This is
completely justified by the fact that cinnamon is the major dietary source of coumarin in
the diet and that Citrus fruits are known to have all three classes of OHCs.
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Our general overview of extraction techniques highlights the potential benefits of a
purely dilution-based approach for the preparation of a sample, as it does not require the
involvement of specialized personnel and is both time- and cost-effective. However, it
is suitable only for liquid samples. For solid samples, several extraction methodologies
have been compared. SFE has emerged as a highly effective alternative to conventional
solvent extraction techniques to determine OHCs in foodstuffs. This approach is limited by
the necessity of highly specialized personnel and expensive instrumentations. Conversely,
ultrasound-assisted extraction represents an optimal choice among conventional techniques
for solid samples, offering high sustainability, low cost, user-friendliness, and the ability to
employ an appropriate solvent-to-sample ratio. In the process of validating an extraction
procedure, it would be advantageous to assess extraction recovery. However, it is notable
that only a limited number of authors have reported this aspect. The results of this survey
indicate that the lowest recovery observed for OHCs in foodstuffs is 70.1%.

In terms of the chromatographic techniques used to identify and quantify OHCs, liquid
chromatography is undoubtedly the technique of choice. Most of the scientific articles
published on this subject consider the coupling of LC to spectrophotometric detectors since
OHCs have chromophoric groups. This is because DAD and PDA are cheap and easy-to-use
detectors. However, in order to separate isomeric compounds, analysis times need to be
extended, and small percentages of acids or tetrahydrofuran should be added to the mobile
phases. If the aim is to examine the complete profile of OHCs present in a sample, it is
much more useful to couple more selective HPLC detectors, such as mass spectrometers.
Indeed, with HPLC-MS or HPLC-MS/MS systems, it is possible to identify and quantify
a greater number of OHCs, reducing both the analysis time and the volumes of solvents
used. Thanks to the use of mass spectrometers, it is also possible to quantify the molecules
of interest even if present in traces. The majority of HPLC-MS/MS methods developed and
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validated for the analysis of OHCs are capable of achieving a LoQ in the range of µg mL−1.
Conversely, the drawbacks are associated with the expense of the apparatus, energy usage,
and the requirement for appropriately skilled personnel. A “green” alternative is SFC.
This is an advanced and expensive instrument that is not found in most quality control
laboratories. However, further research using this analytical method is needed in the
context of green chemistry.

In conclusion, if we want to imagine a future perspective in the extraction and analysis
of OHCs in foodstuffs, the choice of developing miniaturized extraction techniques and the
use of liquid chromatography that employs eco-friendly solvents could represent the most
environmentally friendly choice without compromising analytical performance.
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