Effects of Dietary Energy Levels on Growth Performance, Serum Metabolites, and Meat Quality of Jersey Cattle–Yaks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Animals, Experimental Design, and Feeding
2.3. Feed Nutrient Analysis
2.4. Growth Performance
2.5. Serum Metabolites
2.6. Meat Quality Traits
2.7. Fatty Acid Measurements
2.8. Statistical Analysis
3. Results
3.1. Growth Performance and Apparent Digestibilities
3.2. Serum Biochemical Parameters
3.3. Meat Quality Characteristics
3.4. Intramuscular Fatty Acid Profiles
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huang, X.D.; Tan, H.Y.; Long, R.; Liang, J.B.; Wright, A.D. Comparison of methanogen diversity of yak (Bos grunniens) and cattle (Bos taurus) from the Qinghai-Tibetan plateau, China. BMC Microbiol. 2012, 12, 237. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Q.; Wang, L.; Wang, K.; Yang, Y.; Ma, T.; Wang, Z.; Zhang, X.; Ni, Z.; Hou, F.; Long, R.; et al. Yak whole-genome resequencing reveals domestication signatures and prehistoric population expansions. Nat. Commun. 2015, 6, 10283. [Google Scholar] [CrossRef] [PubMed]
- Barsila, S.R.; Devkota, N.R.; Kreuzer, M.; Marquardt, S. Effects of different stocking densities on performance and activity of cattle × yak hybrids along a transhumance route in the Eastern Himalaya. SpringerPlus 2015, 4, 398. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.W.; Guan, J.Q.; Luo, Z.G.; Zhang, W.X.; Wang, L.; Luo, X.L.; Zuo, F.Y. A tremendous expansion of TSPY copy number in crossbred bulls (Bos taurus × Bos grunniens). J. Anim. Sci. 2016, 94, 1398–1407. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.Z.; Bao, Y.Q.; Ma, B.L.; Li, B.M.; Bao, Z.X.; Zhang, T.Y.; Fan, J.F.; Ma, Z.T.; Zhang, H.X.; Wang, L.B.; et al. Determination of slaughter performance and meat quality of dzo inalpine pastoral area. Chin. Herbiv. Sci. 2019, 39, 72–74. [Google Scholar]
- Ma, B.L.; Guo, S.Z.; Li, B.M.; Bao, Y.Q.; Fan, J.F.; Wang, L.B.; Nan, J.J.; Wang, W.B.; Zhao, W.Y.; Gou, Q.; et al. Effect of Jersey cattle frozen semen to crossbred and improve Gannan yaks. China Cattle Sci. 2018, 44, 23–25. [Google Scholar]
- Guo, S.Z.; Ma, B.L.; Li, B.M.; Bao, Z.X.; Zhang, T.Y.; Xu, G.Q.; Zhang, H.X.; Wang, L.B.; La, M.J.; Wang, W.B.; et al. Growth index determination in hybrids of male Jersey cattle and female Gannan yaks. China Cattle Sci. 2018, 44, 12–15. [Google Scholar]
- Liu, H.; Zhou, J.; Degen, A.; Liu, H.; Cao, X.; Hao, L.; Shang, Z.; Ran, T.; Long, R. A comparison of average daily gain, apparent digestibilities, energy balance, rumen fermentation parameters, and serum metabolites between yaks (Bos grunniens) and Qaidam cattle (Bos taurus) consuming diets differing in energy level. Anim Nutr. 2023, 12, 77–86. [Google Scholar] [CrossRef]
- Hu, C.; Ding, L.; Jiang, C.; Ma, C.; Liu, B.; Li, D.; Degen, A.A. Effects of management, dietary intake, and genotype on rumen morphology, fermentation, and microbiota, and on meat quality in yaks and cattle. Front. Nutr. 2021, 8, 755255. [Google Scholar] [CrossRef]
- Nusri-un, J.; Kabsuk, J.; Binsulong, B.; Sommart, K. Effects of cattle breeds and dietary energy density on intake, growth, carcass, and meat quality under Thai feedlot management system. Animals 2024, 14, 1186. [Google Scholar] [CrossRef]
- Yang, C.; Ahmad, A.A.; Bao, P.J.; Guo, X.; Wu, X.Y.; Liu, J.B.; Chu, M.; Liang, C.N.; Pei, J.; Long, R.J.; et al. Increasing dietary energy level improves growth performance and lipid metabolism through up-regulating lipogenic gene expression in yak (Bos grunniens). Anim. Feed Sci. Technol. 2020, 263, 114455. [Google Scholar] [CrossRef]
- Wang, H.; Li, H.; Wu, F.; Qiu, X.; Yu, Z.; Niu, W.; He, Y.; Su, H.; Cao, B. Effects of dietary energy on growth performance, rumen fermentation and bacterial community, and meat quality of Holstein-Friesians bulls slaughtered at different ages. Animals 2019, 9, 1123. [Google Scholar] [CrossRef] [PubMed]
- Kang, K.; Ma, J.; Wang, H.; Wang, Z.; Peng, Q.; Hu, R.; Zou, H.; Bao, S.; Zhang, W.; Sun, B. High-energy diet improves growth performance, meat quality and gene expression related to intramuscular fat deposition in finishing yaks raised by barn feeding. Vet. Med. Sci. 2020, 6, 755–765. [Google Scholar] [CrossRef] [PubMed]
- Diler, A.; Yanar, M.; Özdemir, V.F.; Aydin, R.; Kaynar, Ö.; Palangi, V.; Lackner, M.; Koçyigit, R. Effects of slaughter age of Holstein Friesian bulls on meat quality: Chemical composition, textural characteristics, sensory attributes and fatty acid profile. Foods 2023, 12, 158. [Google Scholar] [CrossRef] [PubMed]
- Hu, R.; Zou, H.; Wang, H.; Wang, Z.; Wang, X.; Ma, J.; Shah, A.M.; Peng, Q.; Xue, B.; Wang, L.; et al. Dietary energy levels affect rumen bacterial populations that influence the intramuscular fat fatty acids of fattening yaks (Bos grunniens). Animals 2020, 10, 1474. [Google Scholar] [CrossRef] [PubMed]
- AOAC. Official Methods of Analysis of the Association of Official Analytical Chemists; AOAC Intl: Gaithersburg, MD, USA, 2005. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zuo, Z.; Liu, Y.; Wang, C.; Peng, Z.; Zhong, J.; Zhang, M.; Wang, H. Effect of methionine analogues on growth performance, serum biochemical parameters, serum free amino acids and rumen fermentation of yaks. Animals 2022, 12, 3175. [Google Scholar] [CrossRef] [PubMed]
- Song, S.Z.; Wu, J.P.; Zhao, S.G.; Casper, D.P.; He, B.; Liu, T.; Lang, X.; Gong, X.Y.; Liu, L.S. The effect of energy restriction on fatty acid profiles of longissimus dorsi and tissue adipose depots in sheep. J. Anim. Sci. 2017, 95, 3940–3948. [Google Scholar] [CrossRef]
- Wang, H.; He, Y.; Li, H.; Wu, F.; Qiu, Q.; Niu, W.; Gao, Z.; Su, H.; Cao, B. Rumen fermentation, intramuscular fat fatty acid profiles and related rumen bacterial populations of Holstein bulls fed diets with different energy levels. Appl. Microbiol. Biotechnol. 2019, 103, 4931–4942. [Google Scholar] [CrossRef]
- Zhang, D.; Yuan, C.; Guo, T.; Liu, J.; Lu, Z. Effects of different dietary energy levels on development, quality of carcass and meat, and fatty acid profile in male lambs. Animals 2023, 13, 2870. [Google Scholar] [CrossRef]
- Danso, A.S.; Morel, P.C.H.; Kenyon, P.R.; Blair, H.T. Effects of dietary protein and energy intake on growth, body composition and nutrient utilisation in lambs reared artificially with milk replacers and pellet feeds. Anim. Feed Sci. Technol. 2018, 237, 35–45. [Google Scholar] [CrossRef]
- Honig, A.C.; Inhuber, V.; Spiekers, H.; Windisch, W.; Götz, K.; Schuster, M.; Ettle, T. Body composition and composition of gain of growing beef bulls fed rations with varying energy concentrations. Meat Sci. 2022, 184, 108685. [Google Scholar] [CrossRef]
- Li, L.; Zhu, Y.; Wang, X.; He, Y.; Cao, B. Effects of different dietary energy and protein levels and sex on growth performance, carcass characteristics and meat quality of F1 Angus × Chinese Xiangxi yellow cattle. J. Anim. Sci. Biotechnol. 2014, 5, 21. [Google Scholar] [CrossRef] [PubMed]
- Laameche, F.; Chehma, A.; Faye, B. Effect of diet composition on dry matter intake of dairy she-camels. Trop. Anim. Health Prod. 2019, 51, 2513–2519. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, A.A.; Yang, C.; Zhang, J.; Kalwar, Q.; Liang, Z.; Li, C.; Du, M.; Yan, P.; Long, R.; Han, J.; et al. Effects of dietary energy levels on rumen fermentation, microbial diversity, and feed efficiency of yaks (Bos grunniens). Front. Microbiol. 2020, 11, 625. [Google Scholar] [CrossRef] [PubMed]
- Pang, R.; Xiao, X.; Mao, T.; Yu, J.; Huang, L.; Xu, W.; Li, Y.; Zhu, W. The molecular mechanism of propionate-regulating gluconeogenesis in bovine hepatocytes. Anim. Biosci. 2023, 36, 1693–1699. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Zhang, P.; Shen, L.; Niu, L.; Tan, Y.; Chen, L.; Zhao, Y.; Bai, L.; Hao, X.; Li, X.; et al. Short-chain fatty acids and their association with signalling pathways in inflammation, Glucose and Lipid Metabolism. Int. J. Mol. Sci. 2020, 21, 6356. [Google Scholar] [CrossRef] [PubMed]
- Shakeri, P.; Riasi, A.; Alikhani, M.; Fazaeli, H.; Ghorbani, G.R. Effects of feeding pistachio by-products silage on growth performance, serum metabolites and urine characteristics in Holstein male calves. J. Anim. Physiol. Anim. Nutr. 2013, 97, 1022–1029. [Google Scholar] [CrossRef] [PubMed]
- Chelikani, P.K.; Ambrose, D.J.; Keisler, D.H.; Kennelly, J.J. Effects of dietary energy and protein density on plasma concentrations of leptin and metabolic hormones in dairy heifers. J. Dairy. Sci. 2009, 92, 1430–1441. [Google Scholar] [CrossRef]
- Abdel-Sala, A.M.; Zeitoun, M.M.; Abdelsalam, M. Effect of synbiotic supplementation on growth performance, blood metabolites, insulin and testosterone and wool traits of growing lambs. J. Biol. Sci. 2014, 14, 292–298. [Google Scholar] [CrossRef]
- Xia, C.; Aziz, U.R.M.; Yang, H.; Shao, T.; Qiu, Q.; Su, H.; Cao, B. Effect of increased dietary crude protein levels on production performance nitrogen utilisation, blood metabolites and ruminal fermentation of Holstein bulls. Asian Australas. J. Anim. Sci. 2018, 31, 1643–1653. [Google Scholar] [CrossRef] [PubMed]
- Tshuma, T.; Fosgate, G.T.; Hamman, R.; Holm, D.E. Effect of different levels of dietary nitrogen supplementation on the relative blood urea nitrogen concentration of beef cows. Trop. Anim. Health Prod. 2019, 51, 1883–1891. [Google Scholar] [CrossRef] [PubMed]
- Gous, R.M.; Faulkner, A.S.; Swatson, H.K. The effect of dietary energy:protein ratio, protein quality and food allocation on the efficiency of utilisation of protein by broiler chickens. Br. Poult. Sci. 2018, 59, 100–109. [Google Scholar] [CrossRef] [PubMed]
- Lv, J.; Xiao, Q.; Chen, Y.; Fan, X.; Liu, X.; Liu, F.; Luo, G.; Zhang, B.; Wang, S. Effects of magnesium isoglycyrrhizinate on AST, ALT, and serum levels of Th1 cytokines in patients with allo-HSCT. Int. Immunopharmacol. 2017, 46, 56–61. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.X.; Zhang, R.H.; Shi, X.X.; Li, G.; Gao, A.Q. Effects of supplementation of different forms of linseed oil on growth performance, meat quality, fatty acid content and mRNA abundance of lipid metabolism related enzymes in sheep. Acta Vet. Zootech. Sin. 2018, 49, 1928–1939. [Google Scholar]
- Warner, R.D.; Wheeler, T.L.; Ha, M.; Li, X.; Bekhit, A.E.; Morton, J.; Vaskoska, R.; Dunshea, F.R.; Liu, R.; Purslow, P.; et al. Meat tenderness: Advances in biology, biochemistry, molecular mechanisms and new technologies. Meat Sci. 2022, 185, 108657. [Google Scholar] [CrossRef]
- Wu, G.; Farouk, M.M.; Clerens, S.; Rosenvold, K. Effect of beef ultimate pH and large structural protein changes with aging on meat tenderness. Meat Sci. 2014, 98, 637–645. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Liu, C.; Kong, Y.; Li, F.; Yue, X. Effects of intramuscular fat on meat quality and its regulation mechanism in Tan sheep. Front. Nutr. 2022, 9, 908355. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Han, L.; Hou, S.; Raza, S.; Gui, L.; Sun, S.; Wang, Z.; Yang, B.; Yuan, Z.; Simal-Gandara, J.; et al. Metabolomics approach reveals high energy diet improves the quality and enhances the flavor of black Tibetan sheep meat by altering the composition of rumen microbiota. Front. Nutr. 2022, 9, 915558. [Google Scholar] [CrossRef]
- LI, Z.; Cui, R.; Wang, Y.; Luo, Y.; Xue, P.; Tang, Q.; Fang, M. Specific gastrointestinal microbiota profiles in Chinese Tan sheep are associated with lauric acid content in muscle. BMC Microbiol. 2023, 23, 331. [Google Scholar] [CrossRef]
- Sun, Y.; Xiao, Y.; Li, C.; Yang, J.; Yang, S.; Yang, B.; Huang, L. A parallel survey on the fatty acid composition in backfat and longissimus lumborum and comparison of their associations with growth and carcass traits in pigs. Livest. Sci. 2022, 263, 104984. [Google Scholar] [CrossRef]
- Wang, H.; Niu, W.; Wu, F.; Qiu, X.; Yu, Z.; He, Y.; Li, H.; Su, H.; Cao, B. Effects of dietary energy on antioxidant capacity, glucose-lipid metabolism and meat fatty acid profile of Holstein bulls at different ages. J. Anim. Physiol. Anim. Nutr. 2021, 105, 199–209. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Q.; Qiu, X.; Gao, C.; Muhammad, A.; Cao, B.; Su, H. High-density diet improves growth performance and beef yield but affects negatively on serum metabolism and visceral morphology of Holstein steers. J. Anim. Physiol. Anim. Nutr. 2020, 104, 1197–1208. [Google Scholar] [CrossRef] [PubMed]
- Fruet, A.; Trombetta, F.; Stefanello, F.S.; Speroni, C.S.; Donadel, J.Z.; De Souza, A.; Rosado, J.A.; Tonetto, C.J.; Wagner, R.; De Mello, A.; et al. Effects of feeding legume-grass pasture and different concentrate levels on fatty acid profile, volatile compounds, and off-flavor of the M. longissimus thoracis. Meat Sci. 2018, 140, 112–118. [Google Scholar] [CrossRef]
- Chen, X.; Yan, F.; Liu, T.; Zhang, Y.; Li, X.; Wang, M.; Zhang, C.; Xu, X.; Deng, L.; Yao, J.; et al. Ruminal microbiota determines the high-fiber utilization of ruminants: Evidence from the ruminal microbiota transplant. Microbiol. Spectr. 2022, 10, e422–e446. [Google Scholar] [CrossRef]
Item | Diet | ||
---|---|---|---|
LE | ME | HE | |
Ingredients | |||
Corn | 30.00 | 48.50 | 61.70 |
Wheat bran | 10.00 | 7.80 | 4.00 |
Soybean oil | - | - | 1.00 |
Spouting corn bran | 10.00 | 10.00 | - |
Corn white skin | 19.50 | - | - |
Palm kernel cake | 8.00 | 10.00 | 4.00 |
Molasses | 3.00 | 3.00 | 3.00 |
43 large soybean meal | 8.00 | 8.00 | - |
43 soybean meal | - | - | 10.00 |
46 cotton meal | 6.00 | 7.00 | 10.00 |
MgO | 0.30 | 0.30 | 0.30 |
CaHPO4 | - | 0.50 | 1.00 |
NaHCO3 | 1.20 | 1.20 | 1.00 |
NaCl | 1.00 | 1.00 | 1.50 |
LS | 2.00 | 1.70 | 1.50 |
1% ruminant premixed feed | 1.00 | 1.00 | 1.00 |
Nutritional ingredient % DM | |||
Metabolizable energy (MJ/kg) | 8.21 | 9.50 | 10.65 |
Crude protein | 17.09 | 16.91 | 17.00 |
Neutral detergent fiber | 37.39 | 26.43 | 17.60 |
Acid detergent fiber | 18.39 | 13.74 | 9.24 |
Item | Groups | SEM | p-Value | ||
---|---|---|---|---|---|
LE | ME | HE | |||
Initial BW (kg) | 311.78 | 329.21 | 326.92 | 4.62 | 0.244 |
Final BW (kg) | 442.50 a | 480.14 ab | 489.50 b | 5.34 | 0.045 |
ADG (kg/d) | 1.45 a | 1.64 ab | 1.73 b | 0.06 | 0.041 |
DMI (kg/d) | 11.85 a | 11.36 ab | 11.26 b | 0.05 | 0.037 |
Feed efficiency | 0.12 a | 0.14 b | 0.15 b | 0.01 | 0.023 |
Item | Groups | SEM | p-Value | ||
---|---|---|---|---|---|
LE | ME | HE | |||
GLU (mmol/L) | 3.47 a | 3.79 b | 3.92 b | 0.11 | 0.043 |
TG (mmol/L) | 0.21 | 0.23 | 0.26 | 0.02 | 0.063 |
TC (mmol/L) | 2.36 a | 2.98 b | 3.23 b | 0.17 | 0.034 |
HDL-C (mmol/L) | 1.15 | 1.21 | 1.33 | 0.26 | 0.182 |
LDL-C (mmol/L) | 0.53 a | 0.65 ab | 0.76 b | 0.02 | 0.021 |
ALT (U/L) | 18.33 a | 24.83 ab | 26.35 b | 1.22 | 0.007 |
AST (U/L) | 86.66 | 83.36 | 95.58 | 2.64 | 0.193 |
BUN (mmol/L) | 4.99 a | 4.36 b | 4.17 b | 0.12 | 0.026 |
Item | Groups | SEM | p-Value | ||
---|---|---|---|---|---|
LE | ME | HE | |||
pH45min | 6.68 | 6.55 | 6.53 | 0.032 | 0.637 |
pH24h | 5.69 | 5.66 | 5.62 | 0.027 | 0.938 |
Shear force (kgf) | 17.03 | 15.95 | 14.01 | 0.372 | 0.513 |
Intramuscular fat content (g/100 g) | 0.75 b | 1.26 b | 1.91 a | 0.021 | 0.027 |
Eye muscle area/cm2 | 86.15 a | 99.37 ab | 108.29 a | 8.858 | 0.019 |
Item | Groups | SEM | p-Value | ||
---|---|---|---|---|---|
LE | ME | HE | |||
C12:0 | 0.14638 | 0.16838 | 0.1071 | 0.0107 | 0.132 |
C14:0 | 2.885 | 3.95813 | 2.7667 | 0.2673 | 0.133 |
C15:0 | 0.27363 | 0.23675 | 0.2534 | 0.0126 | 0.509 |
C16:0 | 25.93738 | 26.4485 | 25.5154 | 0.4278 | 0.691 |
C17:0 | 0.95263 | 0.86112 | 0.7829 | 0.0639 | 0.575 |
C18:0 | 12.76237 | 12.52863 | 12.3353 | 0.1663 | 0.597 |
C21:0 | 0.06225 a | 0.14113 ab | 0.1554 b | 0.0163 | 0.0001 |
C14:1 | 0.40225 | 0.44425 | 0.3979 | 0.0226 | 0.671 |
C15:1 | 0.29137 | 0.32288 | 0.3431 | 0.0103 | 0.116 |
C16:1 | 3.75738 b | 4.593 ab | 5.5181 a | 0.2376 | 0.003 |
C17:1 | 0.54875 | 0.65725 | 0.8369 | 0.0737 | 0.233 |
C18:1n9t | 2.3775 b | 3.53213 a | 3.4465 a | 0.2012 | 0.025 |
C18:1n9c | 46.43263 | 42.66338 | 44.18738 | 1.0543 | 0.356 |
C20:1 | 0.4145 | 0.63988 | 0.4929 | 0.0505 | 0.179 |
C18:2n6t | 0.16025 | 0.17788 | 0.2455 | 0.0161 | 0.068 |
C18:2n6c | 2.48538 | 2.44813 | 2.38098 | 0.0936 | 0.907 |
C18:3n6 | 0.034 | 0.10475 | 0.1384 | 0.0268 | 0.278 |
C20:2n6 | 0.02 c | 0.03162 b | 0.047 a | 0.003 | 0.001 |
C20:4n6 | 0.05638 | 0.04288 | 0.0495 | 0.0069 | 0.742 |
SFA | 43.01988 | 44.342 | 41.9159 | 0.6598 | 0.338 |
MUFA | 54.22413 | 52.853 | 55.2226 | 0.7127 | 0.413 |
PUFA | 2.756 | 2.80475 | 2.8615 | 0.1054 | 0.926 |
PUFA/SFA | 0.0639933 | 0.0629916 | 0.0703792 | 0.0023158 | 0.59 |
PUFA/MUFA | 0.0510274 | 0.0537507 | 0.0532992 | 0.00221773 | 0.903 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, D.; Chu, M.; Ge, Q.; Yan, P.; Bao, P.; Ma, X.; Guo, X.; Liang, C.; Wu, X. Effects of Dietary Energy Levels on Growth Performance, Serum Metabolites, and Meat Quality of Jersey Cattle–Yaks. Foods 2024, 13, 2527. https://doi.org/10.3390/foods13162527
Zhang D, Chu M, Ge Q, Yan P, Bao P, Ma X, Guo X, Liang C, Wu X. Effects of Dietary Energy Levels on Growth Performance, Serum Metabolites, and Meat Quality of Jersey Cattle–Yaks. Foods. 2024; 13(16):2527. https://doi.org/10.3390/foods13162527
Chicago/Turabian StyleZhang, Dongqiang, Min Chu, Qianyun Ge, Ping Yan, Pengjia Bao, Xiaoming Ma, Xian Guo, Chunnian Liang, and Xiaoyun Wu. 2024. "Effects of Dietary Energy Levels on Growth Performance, Serum Metabolites, and Meat Quality of Jersey Cattle–Yaks" Foods 13, no. 16: 2527. https://doi.org/10.3390/foods13162527
APA StyleZhang, D., Chu, M., Ge, Q., Yan, P., Bao, P., Ma, X., Guo, X., Liang, C., & Wu, X. (2024). Effects of Dietary Energy Levels on Growth Performance, Serum Metabolites, and Meat Quality of Jersey Cattle–Yaks. Foods, 13(16), 2527. https://doi.org/10.3390/foods13162527