Development of Functional Foods: A Comparative Study on the Polyphenols and Anthocyanins Content in Chokeberry and Blueberry Pomace Extracts and Their Antitumor Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Plant Material and Pomace Preparation
2.3. Total Phenolic Content (TPC)
2.4. Determination of Antioxidant Activity Using the 2,2-Diphenyl-1-picrylhydrazyl (DPPH) Radical Scavenging Method
2.5. Identification and Quantification of Anthocyanins by Ultra Performance Liquid Chromatography (UPLC) Analysis
2.6. Cell Culture and Treatment
2.7. Culture Medium and Cell Lysate Preparation
2.8. Lactate Dehydrogenase Activity Evaluation in the Culture Medium
2.9. Inflammatory Cytokines and MMPs Quantifications
2.10. Western Blot Assays
2.11. Statistical Analysis
2.12. Mathematical Models
3. Results
3.1. Chokeberry and Blueberry Pomace Extracts Characterization
3.1.1. Total Polyphenols Content
3.1.2. Anthocyanins Composition
3.1.3. Antioxidant Activity
3.1.4. Mathematical Models: Evaluation of the Dependence of Antioxidant Activity on Polyphenol and Anthocyanin Levels
3.2. Antiproliferative and Cytotoxic Effects of Chokeberry and Blueberry Fruit Pomace
3.3. Antioxidative Effects of Chokeberry and Blueberry Pomace Extracts
3.4. Evaluation of Potential Signaling Mechanisms Affected by Cells Exposure to Chokeberry and Blueberry Pomace Extracts
3.5. Cytokine Assessment and Inflammatory Response
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Calu, V.; Ionescu, A.; Stanca, L.; Geicu, O.I.; Iordache, F.; Pisoschi, A.M.; Serban, A.I.; Bilteanu, L. Key biomarkers within the colorectal cancer related inflammatory microenvironment. Sci. Rep. 2021, 11, 7940. [Google Scholar] [CrossRef] [PubMed]
- Morgan, E.; Arnold, M.; Gini, A.; Lorenzoni, V.; Cabasag, C.J.; Laversanne, M.; Vignat, J.; Ferlay, J.; Murphy, N.; Bray, F. Global burden of colorectal cancer in 2020 and 2040: Incidence and mortality estimates from GLOBOCAN. Gut 2023, 72, 338. [Google Scholar] [CrossRef]
- Thanikachalam, K.; Khan, G. Colorectal Cancer and Nutrition. Nutrients 2019, 11, 164. [Google Scholar] [CrossRef]
- Geicu, O.I.; Stanca, L.; Voicu, S.N.; Dinischiotu, A.; Bilteanu, L.; Serban, A.I.; Calu, V. Dietary AGEs involvement in colonic inflammation and cancer: Insights from an in vitro enterocyte model. Sci. Rep. 2020, 10, 2754. [Google Scholar] [CrossRef] [PubMed]
- Lau, K.Q.; Sabran, M.R.; Shafie, S.R. Utilization of Vegetable and Fruit By-Products as Functional Ingredient and Food. Front. Nutr. 2021, 8, 661693. [Google Scholar] [CrossRef]
- Saracila, M.; Untea, A.E.; Oancea, A.G.; Varzaru, I.; Vlaicu, P.A. Comparative Analysis of Black Chokeberry (Aronia melanocarpa L.) Fruit, Leaves, and Pomace for Their Phytochemical Composition, Antioxidant Potential, and Polyphenol Bioaccessibility. Foods 2024, 13, 1856. [Google Scholar] [CrossRef]
- Martins, M.S.; Gonçalves, A.C.; Alves, G.; Silva, L.R. Blackberries and Mulberries: Berries with Significant Health-Promoting Properties. Int. J. Mol. Sci. 2023, 24, 12024. [Google Scholar] [CrossRef] [PubMed]
- Mayer-Miebach, E.; Adamiuk, M.; Behsnilian, D. Stability of Chokeberry Bioactive Polyphenols during Juice Processing and Stabilization of a Polyphenol-Rich Material from the By-Product. Agriculture 2012, 2, 244–258. [Google Scholar] [CrossRef]
- Gao, N.; Shu, C.; Wang, Y.; Tian, J.; Lang, Y.; Jin, C.; Cui, X.; Jiang, H.; Liu, S.a.; Li, Z.; et al. Polyphenol components in black chokeberry (Aronia melanocarpa) as clinically proven diseases control factors—An overview. Food Sci. Hum. Wellness 2024, 13, 1152–1167. [Google Scholar] [CrossRef]
- Lončarić, A.; Celeiro, M.; Jozinović, A.; Jelinić, J.; Kovač, T.; Jokić, S.; Babić, J.; Moslavac, T.; Zavadlav, S.; Lores, M. Green Extraction Methods for Extraction of Polyphenolic Compounds from Blueberry Pomace. Foods 2020, 9, 1521. [Google Scholar] [CrossRef]
- Piasecka, I.; Wiktor, A.; Górska, A. Alternative Methods of Bioactive Compounds and Oils Extraction from Berry Fruit By-Products—A Review. Appl. Sci. 2022, 12, 1734. [Google Scholar] [CrossRef]
- Pandey, K.B.; Rizvi, S.I. Plant Polyphenols as Dietary Antioxidants in Human Health and Disease. Oxidative Med. Cell. Longev. 2009, 2, 897484. [Google Scholar] [CrossRef]
- Papoutsis, K.; Zhang, J.; Bowyer, M.C.; Brunton, N.; Gibney, E.R.; Lyng, J. Fruit, vegetables, and mushrooms for the preparation of extracts with α-amylase and α-glucosidase inhibition properties: A review. Food Chem. 2021, 338, 128119. [Google Scholar] [CrossRef]
- Pisoschi, A.M.; Iordache, F.; Stanca, L.; Cimpeanu, C.; Furnaris, F.; Geicu, O.I.; Bilteanu, L.; Serban, A.I. Comprehensive and critical view on the anti-inflammatory and immunomodulatory role of natural phenolic antioxidants. Eur. J. Med. Chem. 2024, 265, 116075. [Google Scholar] [CrossRef]
- Mattioli, R.; Francioso, A.; Mosca, L.; Silva, P. Anthocyanins: A Comprehensive Review of Their Chemical Properties and Health Effects on Cardiovascular and Neurodegenerative Diseases. Molecules 2020, 25, 3809. [Google Scholar] [CrossRef] [PubMed]
- Norma Francenia, S.-S.; Raúl, S.-C.; Claudia, V.-C.; Beatriz, H.-C. Antioxidant Compounds and Their Antioxidant Mechanism. In Antioxidants; Emad, S., Ed.; IntechOpen: Rijeka, Yugoslavia, 2019; Chapter 2. [Google Scholar] [CrossRef]
- Pisoschi, A.M.; Pop, A.; Iordache, F.; Stanca, L.; Predoi, G.; Serban, A.I. Oxidative stress mitigation by antioxidants—An overview on their chemistry and influences on health status. Eur. J. Med. Chem. 2021, 209, 112891. [Google Scholar] [CrossRef]
- Wu, X.; Beecher, G.R.; Holden, J.M.; Haytowitz, D.B.; Gebhardt, S.E.; Prior, R.L. Concentrations of Anthocyanins in Common Foods in the United States and Estimation of Normal Consumption. J. Agric. Food Chem. 2006, 54, 4069–4075. [Google Scholar] [CrossRef] [PubMed]
- Kang, H.-J.; Ko, M.-J.; Chung, M.-S. Anthocyanin Structure and pH Dependent Extraction Characteristics from Blueberries (Vaccinium corymbosum) and Chokeberries (Aronia melanocarpa) in Subcritical Water State. Foods 2021, 10, 527. [Google Scholar] [CrossRef]
- Khoo, H.E.; Azlan, A.; Tang, S.T.; Lim, S.M. Anthocyanidins and anthocyanins: Colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food Nutr. Res. 2017, 61, 1361779. [Google Scholar] [CrossRef]
- Zhao, F.; Wang, J.; Wang, W.; Lyu, L.; Wu, W.; Li, W. The Extraction and High Antiproliferative Effect of Anthocyanin from Gardenblue Blueberry. Molecules 2023, 28, 2850. [Google Scholar] [CrossRef]
- Malik, M.; Zhao, C.; Schoene, N.; Guisti, M.M.; Moyer, M.P.; Magnuson, B.A. Anthocyanin-rich extract from Aronia meloncarpa E. induces a cell cycle block in colon cancer but not normal colonic cells. Nutr. Cancer 2003, 46, 186–196. [Google Scholar] [CrossRef] [PubMed]
- Lala, G.; Malik, M.; Zhao, C.; He, J.; Kwon, Y.; Giusti, M.M.; Magnuson, B.A. Anthocyanin-Rich Extracts Inhibit Multiple Biomarkers of Colon Cancer in Rats. Nutr. Cancer 2006, 54, 84–93. [Google Scholar] [CrossRef]
- Lim, S.; Xu, J.; Kim, J.; Chen, T.-Y.; Su, X.; Standard, J.; Carey, E.; Griffin, J.; Herndon, B.; Katz, B.; et al. Role of anthocyanin-enriched purple-fleshed sweet potato p40 in colorectal cancer prevention. Mol. Nutr. Food Res. 2013, 57, 1908–1917. [Google Scholar] [CrossRef]
- Ion, V.A.; Nicolau, F.; Petre, A.; Bujor, O.C.; Badulescu, L. Variation of bioactive compounds in organic Ocimum basilicum L. during freeze-drying processing. Sci. Pap. Ser. B Hortic. 2020, 64, 397–404. [Google Scholar]
- Bujor, O.-C.; Le Bourvellec, C.; Volf, I.; Popa, V.I.; Dufour, C. Seasonal variations of the phenolic constituents in bilberry (Vaccinium myrtillus L.) leaves, stems and fruits, and their antioxidant activity. Food Chem. 2016, 213, 58–68. [Google Scholar] [CrossRef]
- Bräunlich, M.; Slimestad, R.; Wangensteen, H.; Brede, C.; Malterud, K.E.; Barsett, H. Extracts, Anthocyanins and Procyanidins from Aronia melanocarpa as Radical Scavengers and Enzyme Inhibitors. Nutrients 2013, 5, 663–678. [Google Scholar] [CrossRef] [PubMed]
- Stanca, L.; Geicu, O.I.; Serban, A.I.; Dinischiotu, A. Interplay of Oxidative Stress, Inflammation, and Autophagy in RAW 264.7 Murine Macrophage Cell Line Challenged with Si/SiO2 Quantum Dots. Materials 2023, 16, 5083. [Google Scholar] [CrossRef]
- Menke, W. Review of the Generalized Least Squares Method. Surv. Geophys. 2015, 36, 1–25. [Google Scholar] [CrossRef]
- Yuan, J.Y. Numerical methods for generalized least squares problems. J. Comput. Appl. Math. 1996, 66, 571–584. [Google Scholar] [CrossRef]
- Jöreskog, K.G.; Goldberger, A.S. Factor analysis by generalized least squares. Psychometrika 1972, 37, 243–260. [Google Scholar] [CrossRef]
- Browne, M.W. Generalized Least Squares Estimators in the Analysis of Covariance Structures. ETS Res. Bull. Ser. 1973, 1973, i-36. [Google Scholar] [CrossRef]
- Pap, N.; Fidelis, M.; Azevedo, L.; do Carmo, M.A.V.; Wang, D.; Mocan, A.; Pereira, E.P.R.; Xavier-Santos, D.; Sant’Ana, A.S.; Yang, B.; et al. Berry polyphenols and human health: Evidence of antioxidant, anti-inflammatory, microbiota modulation, and cell-protecting effects. Curr. Opin. Food Sci. 2021, 42, 167–186. [Google Scholar] [CrossRef]
- Bunea, A.; Rugina, O.D.; Pintea, A.M.; SconŢA, Z.; Bunea, C.I.; Socaciu, C. Comparative Polyphenolic Content and Antioxidant Activities of Some Wild and Cultivated Blueberries from Romania. Not. Bot. Horti Agrobot. Cluj-Napoca 2011, 39, 70–76. [Google Scholar] [CrossRef]
- Brachet-Botineau, M.; Polomski, M.; Neubauer, H.A.; Juen, L.; Hédou, D.; Viaud-Massuard, M.-C.; Prié, G.; Gouilleux, F. Pharmacological Inhibition of Oncogenic STAT3 and STAT5 Signaling in Hematopoietic Cancers. Cancers 2020, 12, 240. [Google Scholar] [CrossRef] [PubMed]
- Valle-Mendiola, A.; Gutiérrez-Hoya, A.; Soto-Cruz, I. JAK/STAT Signaling and Cervical Cancer: From the Cell Surface to the Nucleus. Genes 2023, 14, 1141. [Google Scholar] [CrossRef]
- Yang, H.; Tian, T.; Wu, D.; Guo, D.; Lu, J. Prevention and treatment effects of edible berries for three deadly diseases: Cardiovascular disease, cancer and diabetes. Crit. Rev. Food Sci. Nutr. 2019, 59, 1903–1912. [Google Scholar] [CrossRef] [PubMed]
- Shi, N.; Chen, X.; Chen, T. Anthocyanins in colorectal cancer prevention review. Antioxidants 2021, 10, 1600. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.; Yu, W.; Hao, R.; Fan, J.; Gao, J. Anthocyanins from Aronia melanocarpa Induce Apoptosis in Caco-2 Cells through Wnt/β-Catenin Signaling Pathway. Chem. Biodivers. 2020, 17, e2000654. [Google Scholar] [CrossRef] [PubMed]
- Gill, N.K.; Rios, D.; Osorio-Camacena, E.; Mojica, B.E.; Kaur, B.; Soderstrom, M.A.; Gonzalez, M.; Plaat, B.; Poblete, C.; Kaur, N. Anticancer effects of extracts from three different chokeberry species. Nutr. Cancer 2021, 73, 1168–1174. [Google Scholar] [CrossRef]
- Yi, W.; Fischer, J.; Krewer, G.; Akoh, C.C. Phenolic Compounds from Blueberries Can Inhibit Colon Cancer Cell Proliferation and Induce Apoptosis. J. Agric. Food Chem. 2005, 53, 7320–7329. [Google Scholar] [CrossRef]
- Kalt, W.; Cassidy, A.; Howard, L.R.; Krikorian, R.; Stull, A.J.; Tremblay, F.; Zamora-Ros, R. Recent research on the health benefits of blueberries and their anthocyanins. Adv. Nutr. 2020, 11, 224–236. [Google Scholar] [CrossRef] [PubMed]
- Bornsek, S.M.; Ziberna, L.; Polak, T.; Vanzo, A.; Ulrih, N.P.; Abram, V.; Tramer, F.; Passamonti, S. Bilberry and blueberry anthocyanins act as powerful intracellular antioxidants in mammalian cells. Food Chem. 2012, 134, 1878–1884. [Google Scholar] [CrossRef]
- Huang, W.; Yan, Z.; Li, D.; Ma, Y.; Zhou, J.; Sui, Z. Antioxidant and anti-inflammatory effects of blueberry anthocyanins on high glucose-induced human retinal capillary endothelial cells. Oxidative Med. Cell. Longev. 2018, 2018, 1862462. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Daza, M.-C.; Daoust, L.; Boutkrabt, L.; Pilon, G.; Varin, T.; Dudonné, S.; Levy, É.; Marette, A.; Roy, D.; Desjardins, Y. Wild blueberry proanthocyanidins shape distinct gut microbiota profile and influence glucose homeostasis and intestinal phenotypes in high-fat high-sucrose fed mice. Sci. Rep. 2020, 10, 2217. [Google Scholar] [CrossRef]
- Wood, E.; Hein, S.; Heiss, C.; Williams, C.; Rodriguez-Mateos, A. Blueberries and cardiovascular disease prevention. Food Funct. 2019, 10, 7621–7633. [Google Scholar] [CrossRef]
- Kavela, E.T.A.; Szalóki-Dorkó, L.; Máté, M. The Efficiency of Selected Green Solvents and Parameters for Polyphenol Extraction from Chokeberry (Aronia melanocarpa (Michx)) Pomace. Foods 2023, 12, 3639. [Google Scholar] [CrossRef]
- Le, X.T.; Huynh, M.T.; Pham, T.N.; Than, V.T.; Toan, T.Q.; Bach, L.G.; Trung, N.Q. Optimization of total anthocyanin content, stability and antioxidant evaluation of the anthocyanin extract from Vietnamese Carissa carandas L. fruits. Processes 2019, 7, 468. [Google Scholar] [CrossRef]
- Oszmiański, J.; Wojdylo, A. Aronia melanocarpa phenolics and their antioxidant activity. Eur. Food Res. Technol. 2005, 221, 809–813. [Google Scholar] [CrossRef]
- Jakobek, L.; Drenjančević, M.; Jukić, V.; Šeruga, M. Phenolic acids, flavonols, anthocyanins and antiradical activity of “Nero”, “Viking”, “Galicianka” and wild chokeberries. Sci. Hortic. 2012, 147, 56–63. [Google Scholar] [CrossRef]
- Gibson, L.; Rupasinghe, H.P.V.; Forney, C.F.; Eaton, L. Characterization of Changes in Polyphenols, Antioxidant Capacity and Physico-Chemical Parameters during Lowbush Blueberry Fruit Ripening. Antioxidants 2013, 2, 216–229. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, Y.; Liu, X.; Chen, X.; Ding, C.; Dong, L.; Zhang, J.; Sun, S.; Ding, Q.; Khatoom, S.; et al. Chokeberry (Aronia melanocarpa) as a new functional food relationship with health: An overview. J. Future Foods 2021, 1, 168–178. [Google Scholar] [CrossRef]
- Merecz-Sadowska, A.; Sitarek, P.; Kowalczyk, T.; Zajdel, K.; Jęcek, M.; Nowak, P.; Zajdel, R. Food Anthocyanins: Malvidin and Its Glycosides as Promising Antioxidant and Anti-Inflammatory Agents with Potential Health Benefits. Nutrients 2023, 15, 3016. [Google Scholar] [CrossRef] [PubMed]
- Felgus-Lavefve, L.; Howard, L.; Adams, S.H.; Baum, J.I. The Effects of Blueberry Phytochemicals on Cell Models of Inflammation and Oxidative Stress. Adv. Nutr. 2022, 13, 1279–1309. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Wu, L.; Yan, G.; Chen, Y.; Zhou, M.; Wu, Y.; Li, Y. Inflammation and tumor progression: Signaling pathways and targeted intervention. Signal Transduct. Target. Ther. 2021, 6, 263. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.E.; Yeo, I.J.; Han, S.-B.; Yun, J.; Kim, B.; Yong, Y.J.; Lim, Y.-s.; Kim, T.H.; Son, D.J.; Hong, J.T. Significance of chitinase-3-like protein 1 in the pathogenesis of inflammatory diseases and cancer. Exp. Mol. Med. 2024, 56, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Bazzichetto, C.; Milella, M.; Zampiva, I.; Simionato, F.; Amoreo, C.A.; Buglioni, S.; Pacelli, C.; Le Pera, L.; Colombo, T.; Bria, E.; et al. Interleukin-8 in Colorectal Cancer: A Systematic Review and Meta-Analysis of Its Potential Role as a Prognostic Biomarker. Biomedicines 2022, 10, 2631. [Google Scholar] [CrossRef] [PubMed]
- Fousek, K.; Horn, L.A.; Palena, C. Interleukin-8: A chemokine at the intersection of cancer plasticity, angiogenesis, and immune suppression. Pharmacol. Ther. 2021, 219, 107692. [Google Scholar] [CrossRef] [PubMed]
- Han, F.; Ma, J. Pan-cancer analysis reveals IL32 is a potential prognostic and immunotherapeutic biomarker in cancer. Sci. Rep. 2024, 14, 8129. [Google Scholar] [CrossRef]
- Zhai, J.-M.; An, Y.-H.; Wang, W.; Fan, Y.-G.; Yao, G.-L. IL-32 expression indicates unfavorable prognosis in patients with colon cancer. Oncol. Lett. 2019, 17, 4655–4660. [Google Scholar] [CrossRef]
- Liu, K.; Huang, A.; Nie, J.; Tan, J.; Xing, S.; Qu, Y.; Jiang, K. IL-35 Regulates the Function of Immune Cells in Tumor Microenvironment. Front. Immunol. 2021, 12, 683332. [Google Scholar] [CrossRef]
- Xue, W.; Yan, D.; Kan, Q. Interleukin-35 as an Emerging Player in Tumor Microenvironment. J. Cancer 2019, 10, 2074–2082. [Google Scholar] [CrossRef] [PubMed]
- Kawada, M.; Seno, H.; Kanda, K.; Nakanishi, Y.; Akitake, R.; Komekado, H.; Kawada, K.; Sakai, Y.; Mizoguchi, E.; Chiba, T. Chitinase 3-like 1 promotes macrophage recruitment and angiogenesis in colorectal cancer. Oncogene 2012, 31, 3111–3123. [Google Scholar] [CrossRef] [PubMed]
- Zhao, T.; Su, Z.; Li, Y.; Zhang, X.; You, Q. Chitinase-3 like-protein-1 function and its role in diseases. Signal Transduct. Target. Ther. 2020, 5, 201. [Google Scholar] [CrossRef] [PubMed]
- Jang, B.-K.; Lee, J.-W.; Choi, H.; Yim, S.-V. Aronia melanocarpa Fruit Bioactive Fraction Attenuates LPS-Induced Inflammatory Response in Human Bronchial Epithelial Cells. Antioxidants 2020, 9, 816. [Google Scholar] [CrossRef] [PubMed]
- Taverniti, V.; Fracassetti, D.; Del Bo’, C.; Lanti, C.; Minuzzo, M.; Klimis-Zacas, D.; Riso, P.; Guglielmetti, S. Immunomodulatory Effect of a Wild Blueberry Anthocyanin-Rich Extract in Human Caco-2 Intestinal Cells. J. Agric. Food Chem. 2014, 62, 8346–8351. [Google Scholar] [CrossRef] [PubMed]
- Skeate, J.G.; Otsmaa, M.E.; Prins, R.; Fernandez, D.J.; Da Silva, D.M.; Kast, W.M. TNFSF14: LIGHTing the Way for Effective Cancer Immunotherapy. Front. Immunol. 2020, 11, 00922. [Google Scholar] [CrossRef]
- Qiao, G.; Qin, J.; Kunda, N.; Calata, J.F.; Mahmud, D.L.; Gann, P.; Fu, Y.-X.; Rosenberg, S.A.; Prabhakar, B.S.; Maker, A.V. LIGHT Elevation Enhances Immune Eradication of Colon Cancer Metastases. Cancer Res. 2017, 77, 1880–1891. [Google Scholar] [CrossRef]
- Page-McCaw, A.; Ewald, A.J.; Werb, Z. Matrix metalloproteinases and the regulation of tissue remodelling. Nat. Rev. Mol. Cell Biol. 2007, 8, 221–233. [Google Scholar] [CrossRef]
- Busuioc, C.; Nutu, A.; Braicu, C.; Zanoaga, O.; Trif, M.; Berindan-Neagoe, I. Analysis of Differentially Expressed Genes, MMP3 and TESC, and Their Potential Value in Molecular Pathways in Colon Adenocarcinoma: A Bioinformatics Approach. BioMedInformatics 2022, 2, 474–491. [Google Scholar] [CrossRef]
- Sampaio Moura, N.; Schledwitz, A.; Alizadeh, M.; Patil, S.A.; Raufman, J.-P. Matrix metalloproteinases as biomarkers and therapeutic targets in colitis-associated cancer. Front. Oncol. 2024, 13, 1325095. [Google Scholar] [CrossRef] [PubMed]
- Abdullah Thani, N.A.; Sallis, B.; Nuttall, R.; Schubert, F.R.; Ahsan, M.; Davies, D.; Purewal, S.; Cooper, A.; Rooprai, H.K. Induction of apoptosis and reduction of MMP gene expression in the U373 cell line by polyphenolics in Aronia melanocarpa and by curcumin. Oncol. Rep. 2012, 28, 1435–1442. [Google Scholar] [CrossRef]
- Matchett, M.D.; MacKinnon, S.L.; Sweeney, M.I.; Gottschall-Pass, K.T.; Hurta, R.A.R. Blueberry flavonoids inhibit matrix metalloproteinase activity in DU145 human prostate cancer cells. Biochem. Cell Biol. 2005, 83, 637–643. [Google Scholar] [CrossRef] [PubMed]
- de Mattos, R.L.M.; Kanno, D.T.; Campos, F.G.; Pacciulli Pereira, G.; Magami Yoshitani, M.; de Godoy Delben, A.; Aires Pereira, J.; Augusto Real Martinez, C. Tissue Content and Pattern of Expression of Claudin-3 and Occludin in Normal and Neoplastic Tissues in Patients with Colorectal Cancer. J. Gastrointest. Surg. 2022, 26, 2351–2353. [Google Scholar] [CrossRef] [PubMed]
- Valdez, J.C.; Cho, J.; Bolling, B.W. Aronia berry inhibits disruption of Caco-2 intestinal barrier function. Arch. Biochem. Biophys. 2020, 688, 108409. [Google Scholar] [CrossRef] [PubMed]
- Marino, M.; Venturi, S.; Rendine, M.; Porrini, M.; Gardana, C.; Klimis-Zacas, D.; Del Bo’, C.; Riso, P. Wild blueberry (V. angustifolium) improves TNFα-induced cell barrier permeability through claudin-1 and oxidative stress modulation in Caco-2 cells. Food Funct. 2023, 14, 7387–7399. [Google Scholar] [CrossRef]
- Beeman, N.; Webb, P.G.; Baumgartner, H.K. Occludin is required for apoptosis when claudin–claudin interactions are disrupted. Cell Death Dis. 2012, 3, e273. [Google Scholar] [CrossRef] [PubMed]
- Martin, T.A.; Jiang, W.G. Loss of tight junction barrier function and its role in cancer metastasis. Biochim. Biophys. Acta (BBA)-Biomembr. 2009, 1788, 872–891. [Google Scholar] [CrossRef]
- Chan, F.K.-M.; Moriwaki, K.; De Rosa, M.J. Detection of Necrosis by Release of Lactate Dehydrogenase Activity. In Immune Homeostasis: Methods and Protocols; Snow, A.L., Lenardo, M.J., Eds.; Humana Press: Totowa, NJ, USA, 2013; pp. 65–70. [Google Scholar] [CrossRef]
- Yue, W.; Lin, Y.; Yang, X.; Li, B.; Liu, J.; He, R. Thymic stromal lymphopoietin (TSLP) inhibits human colon tumor growth by promoting apoptosis of tumor cells. Oncotarget 2016, 7, 16840. [Google Scholar] [CrossRef]
- Sugiura, R.; Satoh, R.; Takasaki, T. ERK: A Double-Edged Sword in Cancer. ERK-Dependent Apoptosis as a Potential Therapeutic Strategy for Cancer. Cells 2021, 10, 2509. [Google Scholar] [CrossRef]
- Deschênes-Simard, X.; Kottakis, F.; Meloche, S.; Ferbeyre, G. ERKs in Cancer: Friends or Foes? Cancer Res. 2014, 74, 412–419. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, Y.; Yun, H.; Chen, S.; Chen, Y.; Liu, Z. ERK expression and its correlation with STAT1 in esophageal squamous cell carcinoma. Oncotarget 2017, 8, 45249. [Google Scholar] [CrossRef] [PubMed]
- Steinman, R.A.; Wentzel, A.; Lu, Y.; Stehle, C.; Grandis, J.R. Activation of Stat3 by cell confluence reveals negative regulation of Stat3 by cdk2. Oncogene 2003, 22, 3608–3615. [Google Scholar] [CrossRef]
- Tolomeo, M.; Cascio, A. The Multifaced Role of STAT3 in Cancer and Its Implication for Anticancer Therapy. Int. J. Mol. Sci. 2021, 22, 603. [Google Scholar] [CrossRef] [PubMed]
- Park, H.; Lee, S.; Lee, J.; Moon, H.; Ro, S.W. Exploring the JAK/STAT Signaling Pathway in Hepatocellular Carcinoma: Unraveling Signaling Complexity and Therapeutic Implications. Int. J. Mol. Sci. 2023, 24, 13764. [Google Scholar] [CrossRef] [PubMed]
- Luo, H.R.; Hattori, H.; Hossain, M.A.; Hester, L.; Huang, Y.; Lee-Kwon, W.; Donowitz, M.; Nagata, E.; Snyder, S.H. Akt as a mediator of cell death. Proc. Natl. Acad. Sci. USA 2003, 100, 11712–11717. [Google Scholar] [CrossRef]
- He, Y.; Sun, M.M.; Zhang, G.G.; Yang, J.; Chen, K.S.; Xu, W.W.; Li, B. Targeting PI3K/Akt signal transduction for cancer therapy. Signal Transduct. Target. Ther. 2021, 6, 425. [Google Scholar] [CrossRef]
- Bontempo, P.; De Masi, L.; Carafa, V.; Rigano, D.; Scisciola, L.; Iside, C.; Grassi, R.; Molinari, A.M.; Aversano, R.; Nebbioso, A.; et al. Anticancer activities of anthocyanin extract from genotyped Solanum tuberosum L. “Vitelotte”. J. Funct. Foods 2015, 19, 584–593. [Google Scholar] [CrossRef]
- Dietrich-Muszalska, A.; Kopka, J.; Kontek, B. Polyphenols from Berries of Aronia melanocarpa Reduce the Plasma Lipid Peroxidation Induced by Ziprasidone. Schizophr. Res. Treat. 2014, 2014, 602390. [Google Scholar] [CrossRef]
Assumption | Statement of the Assumption | Equation |
---|---|---|
H1 | The antioxidant activity (y) is determined only by the total concentration of polyphenols (x1) | |
H2 | The antioxidant activity (y) is predominantly determined by the concentration of anthocyanins (x2) | |
H3 | The antioxidant activity (y) is determined by the combined effects of polyphenols (x1) and anthocyanins (x2) in different proportions and according to different laws. |
Extraction Conditions | ||||||
---|---|---|---|---|---|---|
50% Ethanol | 70% Ethanol | 100% Ethanol | 0.5% Vinegar | Distilled Water | ||
Chokeberry (Cb) | Mean (mg GAE/g dw) ± SD | 48.6 ± 1.3 | 47.3 ± 1.1 | 51.1 ± 1.5 | 17.7 ± 0.3 | 9.0 ± 1.0 |
50% Ethanol | p < 0.001 | p < 0.001 | ||||
70% Ethanol | p < 0.05 | p < 0.001 | p < 0.001 | |||
100% Ethanol | p < 0.001 | p < 0.001 | ||||
0.5% Vinegar | p < 0.001 | |||||
Blueberry (Bb) | Mean (mg GAE/g dw) ± SD | 10.8 ± 0.2 | 11.2 ± 0.5 | 4.1 ± 0.1 | 4.1 ± 0.2 | 3.8 ± 0.4 |
50% Ethanol | p < 0.001 | p < 0.001 | p < 0.001 | |||
70% Ethanol | p < 0.001 | p < 0.001 | p < 0.001 | |||
100% Ethanol | ||||||
0.5% Vinegar | ||||||
p-value Cb vs. Bb | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.01 |
Extraction Conditions | |||||
---|---|---|---|---|---|
50% Ethanol | 70% Ethanol | 0.5% Vinegar | |||
Chokeberry (Cb) | Total anthocyanins (mg/g dw) Mean ± SD | 3.05 ± 0.49 | 2.26 ± 0.36 | 1.58 ± 0.17 | |
Anthocyanins composition (%) | Cyn 3-O-Gal | 68.9 | 64.6 | 75.0 | |
Cyn 3-O-Glu | 1.6 | 2.0 | 1.7 | ||
Cyn 3-O-Arb | 20.0 | 21.0 | 16.8 | ||
Cyn 3-O-Xyl | 9.5 | 12.3 | 6.4 | ||
p-value | 50% Ethanol | p < 0.01 | |||
70% Ethanol | p < 0.05 | ||||
Blueberry (Bb) | Total anthocyanins (mg/g dw) Mean ± SD | 3.15 ± 0.07 | 2.91 ± 0.03 | 0.83 ± 0.02 | |
Anthocyanins composition (%) | Del 3-O-Gal | 18.5 | 17.3 | nd | |
Cyn 3-O-Gal | 13.1 | 13.6 | 21.7 | ||
Cyn 3-O-Glu | 7.3 | 6.2 | nd | ||
Others | 61.1 | 62.9 | 78.8 | ||
p-value | 50% Ethanol | p < 0.01 | p < 0.001 | ||
70% Ethanol | p < 0.001 | ||||
p-value Total anthocyanins Cb vs. Bb | p < 0.05 | p < 0.001 |
Extraction Conditions | ||||||
---|---|---|---|---|---|---|
50% Ethanol | 70% Ethanol | 100% Ethanol | 0.5% Vinegar | Distilled Water | ||
Chokeberry (Cb) | Mean (mg TE/g dw) ± SD | 684 ± 18 | 697 ± 10 | 610 ± 7 | 298 ± 28 | 216 ± 8 |
50% Ethanol | p < 0.01 | p < 0.001 | p < 0.001 | |||
70% Ethanol | p < 0.001 | p < 0.001 | p < 0.001 | |||
100% Ethanol | p < 0.001 | p < 0.001 | ||||
0.5% Vinegar | p < 0.01 | |||||
Blueberry (Bb) | Mean (mg TE/g dw) ± SD | 120 ± 2 | 127 ± 2 | 62 ± 2 | 50 ± 3 | 53 ± 1 |
50% Ethanol | p < 0.01 | p < 0.001 | p < 0.001 | p < 0.001 | ||
70% Ethanol | p < 0.001 | p < 0.001 | p < 0.001 | |||
100% Ethanol | p < 0.01 | p < 0.001 | ||||
0.5% Vinegar | ||||||
p-value Cb vs. Bb | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 |
Assumption on the Determinant of Antioxidant Activity (y) | Model Label | Model Name | Equation | m | n | a | b | c | ER |
---|---|---|---|---|---|---|---|---|---|
H1 Polyphenols | H1.1 | Linear | 1 | N/A | 7.50 | N/A | 43.66 | 133.00 | |
H1.2 | Quadratic | 2 | N/A | 0.13 | N/A | 94.83 | 134.45 | ||
H1.3 | Cubic | 3 | N/A | <0.01 | N/A | 104.86 | 135.59 | ||
H1.4 | Fractional power | 0.93 | N/A | 9.89 | N/A | 35.24 | 132.99 | ||
H2 Anthocyanins ) | H2.1 | Linear | N/A | 1 | N/A | −32.51 | 189.41 | 64.04 | |
H2.2 | Quadratic | N/A | 2 | N/A | 0 | 118.31 | 72.55 | ||
H2.3 | Cubic | N/A | 3 | N/A | 1.66 | 1.02 | 67.42 | ||
H2.4 | Fractional power | N/A | 0.24 | N/A | 54.33 | 0.00 | 59.07 | ||
H3 Polyphenols without anthocyanins (x1−x2) and anthocyanins (x2) | H3.1 | Linear | 1 | 1 | 0.00 | 23.74 | 22.95 | 57.90 | |
H3.2 | Quadratic | 1 | 2 | 0.00 | 7.79 | 29.05 | 56.17 | ||
H3.3 | Cubic | 1 | 3 | 1.01 | 1.64 | 1.02 | 51.76 | ||
H3.4 | Partial fractional | 1 | 4.95 | 0.00 | 0.26 | 39.44 | 55.00 | ||
H3.5 | Fractional | 2.75 | 6.36 | 0.03 | 0.08 | 0.00 | 55.55 |
Lysate | Control | Chokeberry (Cb) 50 mg/mL | Blueberry (Bb) 50 mg/mL | Cb & Bb 50 mg/mL | |||
---|---|---|---|---|---|---|---|
Cytokine | Average (pg/mL) | Average (pg/mL) | Fold change p-value | Average (pg/mL) | Fold change p-value | Average (pg/mL) | Fold change p-value |
Chitinase-3-like 1 | 143.9 ± 4.7 | 49.8 ± 1.4 | 0.4 p < 0.001 | 35.5 ± 2.2 | 0.3 p < 0.001 | 42.7 + 0.9 | 0.3 p < 0.001 |
gp130 | 180.0 ± 5.8 | 165.0 ± 3.3 | 0.9 p < 0.05 | 110.9 ± 1.3 | 0.6 p < 0.001 | 115.3 ± 1.0 | 0.6 p < 0.001 |
IL-8 | 42.3 ± 2.5 | 24.2 ± 0.7 | 0.6 p < 0.001 | 14.4 ± 0.7 | 0.4 p < 0.001 | 21.7 ± 1.0 | 0.5 p < 0.001 |
IL-32 | 62.1 ± 0.9 | 36.8 ± 1.5 | 0.6 p < 0.001 | 26.8 ± 2.3 | 0.4 p < 0.001 | 33.3 ± 1.9 | 0.5 p < 0.001 |
IL-35 | 21.1 ± 0.6 | 43.9 ± 0.3 | 2.1 p < 0.001 | 57.1 ± 0.5 | 2.7 p < 0.001 | 53.3 ± 0.6 | 2.5 p < 0.001 |
LIGHT | 14.0 ± 0.4 | 35.5 ± 0.8 | 2.4 p < 0.001 | 45.4 ± 0.3 | 3.2 p < 0.001 | 36.1 ± 0.7 | 2.6 p < 0.001 |
MMP-1 | 87.1 ± 0.6 | 54.4 ± 0.7 | 0.6 p < 0.001 | 42.4 ± 0.7 | 0.5 p < 0.001 | 49.6 ± 0.4 | 0.6 p < 0.001 |
MMP-2 | 104.8 ± 1.3 | 72.9 ± 1.1 | 0.7 p < 0.001 | 57.9 ± 1.1 | 0.6 p < 0.001 | 63.2 ± 0.7 | 0.6 p < 0.001 |
MMP-3 | 36.4 ± 0.4 | 29.1 ± 0.8 | 0.8 p < 0.001 | 21.1 ± 0.1 | 0.6 p < 0.001 | 27.8 ± 0.2 | 0.8 p < 0.001 |
TSLP | 18.8 ± 0.5 | 43.4 ± 0.4 | 2.3 p < 0.001 | 89.3 ± 0.5 | 4.8 p < 0.001 | 72.4 ± 0.5 | 3.9 p < 0.001 |
Culture Medium | Control | Chokeberry (Cb) 50 mg/mL | Blueberry (Bb) 50 mg/mL | Cb& Bb 50 mg/mL | |||
---|---|---|---|---|---|---|---|
Cytokine | Average (pg/mL) | Average (pg/mL) | Fold change p-value | Average (pg/mL) | Fold change p-value | Average (pg/mL) | Fold change p-value |
Chitinase-3-like 1 | 286.2 ± 15.8 | 76.1 ± 39.6 | 0.3 p < 0.01 | 78.2 ± 1.5 | 0.3 p < 0.001 | 85.4 ± 0.8 | 0.3 p < 0.001 |
gp130 | 257.2 ± 24.4 | 103.7 ± 6.1 | 0.4 p < 0.001 | 64.7 ± 3.1 | 0.3 p < 0.001 | 89.7 ± 1.6 | 0.4 p < 0.001 |
IL-8 | 64.1 ± 1.3 | 29.8 ± 1.0 | 0.5 p < 0.001 | 19.1 ± 0.5 | 0.3 p < 0.001 | 23.4 ± 0.5 | 0.4 p < 0.001 |
IL-32 | 76.7 ± 0.3 | 58.9 ± 0.8 | 0.8 p < 0.001 | 50.4 ± 0.7 | 0.7 p < 0.001 | 52.4 ± 1.1 | 0.7 p < 0.001 |
IL-35 | 26.9 ± 0.2 | 61.4 ± 1.2 | 2.3 p < 0.001 | 97.6 ± 4.2 | 3.6 p < 0.001 | 68.6 ± 1.4 | 2.6 p < 0.001 |
LIGHT | 17.7 ± 0.2 | 55.0 ± 0.6 | 3.1 p < 0.001 | 74.4 ± 1.1 | 4.2 p < 0.001 | 65.5 ± 0.6 | 3.7 p < 0.001 |
MMP-1 | 138.6 ± 0.6 | 65.9 ± 0.5 | 0.5 p < 0.001 | 47.8 ± 0.7 | 0.3 p < 0.001 | 60.7 ± 0.5 | 0.4 p < 0.001 |
MMP-2 | 167.7 ± 0.4 | 84.9 ± 0.5 | 0.5 p < 0.001 | 61.6 ± 0.6 | 0.4 p < 0.001 | 74.0 ± 0.3 | 0.4 p < 0.001 |
MMP-3 | 43.3 ± 0.9 | 35.3 ± 0.9 | 0.8 p < 0.01 | 27.9 ± 0.5 | 0.6 p < 0.001 | 31.6 ± 0.6 | 0.7 p < 0.001 |
sTNF R1 | 41.0 ± 2.5 | 16.6 ± 4.2 | 0.4 p < 0.001 | 13.2 ± 0.7 | 0.3 p < 0.001 | 13.8 ± 0.4 | 0.3 p < 0.001 |
TSLP | 31.4 ± 0.3 | 187.8 ± 1.5 | 6.0 p < 0.001 | 288.5 ± 2.6 | 9.2 p < 0.001 | 241.3 ± 1.0 | 7.7 p < 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stanca, L.; Bilteanu, L.; Bujor, O.C.; Ion, V.A.; Petre, A.C.; Bădulescu, L.; Geicu, O.I.; Pisoschi, A.M.; Serban, A.I.; Ghimpeteanu, O.-M. Development of Functional Foods: A Comparative Study on the Polyphenols and Anthocyanins Content in Chokeberry and Blueberry Pomace Extracts and Their Antitumor Properties. Foods 2024, 13, 2552. https://doi.org/10.3390/foods13162552
Stanca L, Bilteanu L, Bujor OC, Ion VA, Petre AC, Bădulescu L, Geicu OI, Pisoschi AM, Serban AI, Ghimpeteanu O-M. Development of Functional Foods: A Comparative Study on the Polyphenols and Anthocyanins Content in Chokeberry and Blueberry Pomace Extracts and Their Antitumor Properties. Foods. 2024; 13(16):2552. https://doi.org/10.3390/foods13162552
Chicago/Turabian StyleStanca, Loredana, Liviu Bilteanu, Oana Crina Bujor, Violeta Alexandra Ion, Andrei Cătălin Petre, Liliana Bădulescu, Ovidiu Ionut Geicu, Aurelia Magdalena Pisoschi, Andreea Iren Serban, and Oana-Mărgărita Ghimpeteanu. 2024. "Development of Functional Foods: A Comparative Study on the Polyphenols and Anthocyanins Content in Chokeberry and Blueberry Pomace Extracts and Their Antitumor Properties" Foods 13, no. 16: 2552. https://doi.org/10.3390/foods13162552
APA StyleStanca, L., Bilteanu, L., Bujor, O. C., Ion, V. A., Petre, A. C., Bădulescu, L., Geicu, O. I., Pisoschi, A. M., Serban, A. I., & Ghimpeteanu, O. -M. (2024). Development of Functional Foods: A Comparative Study on the Polyphenols and Anthocyanins Content in Chokeberry and Blueberry Pomace Extracts and Their Antitumor Properties. Foods, 13(16), 2552. https://doi.org/10.3390/foods13162552