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Abstract: This study investigated the impact of drying parameters on the quality of fingerroot
(Boesenbergia rotunda) extract, focusing on phenolic compounds, flavonoids, and antioxidant activity.
A Box–Behngen design was employed to evaluate the effects of maltodextrin concentration, inlet
temperature, and outlet temperature on the extract’s properties. The highest total phenolic content
(18.96 µg of GAE/mg extract) and total flavonoid content (33.52 µg of GE/mg extract) were achieved
using 20% maltodextrin, a 160 ◦C inlet temperature, and an 80 ◦C outlet temperature. Antioxidant
activity, measured by DPPH and FRAP assays, was also influenced by drying parameters. Stepwise
regression analysis revealed that maltodextrin concentration significantly affected all responses, while
the inlet temperature had no significant effect. The outlet temperature significantly influenced FRAP
activity. The developed mathematical models accurately predicted experimental values, validating
the effectiveness of the RSM and Deep-Learning Machine. Optimal drying conditions for maximizing
phenolic compounds were determined to be 20% maltodextrin, a 150 ◦C inlet temperature, and a
70 ◦C outlet temperature, resulting in TPC 15.33 µg of GAE/mg extract, TF 28.75 µg of GE/mg
extract, IC50 value of 3.99 µg/mL, FRAP value at 4.44 µmoL Fe2+/mg extract of phenolic content,
and 18.96 µg of the GAE/mg extract. Similar conditions were found to be optimal for maximizing
flavonoid content. These findings provide valuable insights for optimizing the drying process of
fingerroot extract to preserve its bioactive compounds and enhance its potential applications.

Keywords: deep-learning machine; response-surface methodology; fingerroot; optimization;
percentage yield; antioxidant activity

1. Introduction

Boesenbergia rotunda, a medicinal plant from the ginger family, has been extensively
studied for its bioactive compounds and therapeutic properties. Researchers have em-
ployed various solvents, such as methanol, ethanol, water, and their combinations, along
with extraction techniques like maceration, Soxhlet extraction, ultrasound-assisted ex-
traction, and supercritical fluid extraction, to obtain these compounds [1–6]. The major
bioactive compounds extracted include flavonoids (e.g., pinostrobin, pinocembrin, and
alpinetin), chalcones (e.g., Panduratin A, Panduratin B, and Panduratin C), and essential
oils (e.g., camphene, β-pinene, and borneol) [5,7,8]. These compounds have exhibited

Foods 2024, 13, 2676. https://doi.org/10.3390/foods13172676 https://www.mdpi.com/journal/foods

https://doi.org/10.3390/foods13172676
https://doi.org/10.3390/foods13172676
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/foods
https://www.mdpi.com
https://orcid.org/0009-0005-7024-5841
https://orcid.org/0000-0002-4574-4156
https://orcid.org/0000-0002-5266-8411
https://orcid.org/0000-0002-6473-1852
https://doi.org/10.3390/foods13172676
https://www.mdpi.com/journal/foods
https://www.mdpi.com/article/10.3390/foods13172676?type=check_update&version=2


Foods 2024, 13, 2676 2 of 23

various bioactivities, such as antioxidant, anti-inflammatory, antimicrobial, and anticancer
properties [9–11]. Optimization techniques, like response-surface methodology (RSM),
have been employed to enhance the extraction yield and bioactivity [2,5], while purification
methods, such as column chromatography, preparative HPLC, and crystallization, have
been used to isolate and purify specific bioactive compounds from the crude extracts [7,8].

The extracts obtained from Boesenbergia rotunda, particularly those containing flavonoids,
chalcones, and essential oils, have exhibited significant antioxidant properties in various studies.
Cheng et al. [9] isolated and characterized antioxidant compounds from B. rotunda extracts,
finding that the extracts contained substantial amounts of phenolic compounds and flavonoids,
which contributed to their strong antioxidant activity. Morikawa et al. [11] investigated the
structure–activity relationships of pimarane-type diterpenes from B. rotunda, and some of
these diterpenes displayed notable antioxidant effects, suggesting their potential as natural
antioxidant agents. Although studying a different plant species (Alpinia zerumbet), Elzaawely
et al. [3] employed similar extraction methods and solvents as those used for B. rotunda,
demonstrating the ability of these techniques to obtain antioxidant-rich extracts from related
plants in the ginger family. These findings collectively indicate the significant antioxidant
potential of the bioactive compounds extracted from B. rotunda, warranting further exploration
of these extracts as natural sources of antioxidants for various applications.

Deep-learning and machine-learning techniques have been increasingly applied in
various areas of biological sciences, including genomics and bioinformatics for genome
sequencing and assembly, gene-expression analysis, protein structure prediction, and
biomarker discovery [12,13]; proteomics and metabolomics for protein–protein interaction
prediction, metabolic pathway analysis, and small molecule identification and characteri-
zation [14,15]; molecular modeling and drug discovery for the virtual screening of drug
candidates, protein–ligand interactions and binding affinity predictions, and quantitative
structure–activity relationship (QSAR) modeling [16,17]; biomedical imaging for image
segmentation and analysis, disease diagnosis and classification, and microscopy image
analysis [18,19]; and systems biology and computational biology for modeling biological
networks and pathways, simulation of biological systems, and integration and analysis of
multi-omics data [20,21]. Deep-learning architectures like convolutional neural networks
(CNNs), recurrent neural networks (RNNs), and deep-belief networks have been success-
fully applied in these areas, often outperforming traditional machine-learning methods in
tasks such as pattern recognition, image analysis, and sequence analysis [22,23]. While the
provided references do not cover these applications, deep learning and machine learning
are rapidly emerging fields in biological sciences, offering powerful tools for data analysis,
modeling, and prediction in various domains.

Deep-learning models are built on artificial neural networks with multiple intercon-
nected layers, enabling them to learn hierarchical representations of data and automatically
extract increasingly complex features from raw inputs, making them effective for tasks
like image recognition, natural language processing, and speech recognition [22,23]. The
backpropagation algorithm, a supervised learning technique that calculates error gradients
to adjust network parameters, is a fundamental component that allows for the efficient
training of these multi-layer networks [24]. Nonlinear activation functions, such as the
rectified linear unit (ReLU), introduce nonlinearity into the models, enhancing their ability
to learn complex, nonlinear relationships within the data [25]. Additionally, deep learning
leverages the principle of transfer learning, where pre-trained models can be fine-tuned on
specific tasks, transferring knowledge gained from large datasets to related domains with
limited data, a process known as feature transferability [26]. Furthermore, deep-learning
models can scale to handle large datasets and benefit from parallel computing architectures
like GPUs, accelerating the training process and enabling the development of increasingly
complex and powerful models [23].

Artificial intelligence (AI) and machine learning (ML) have emerged as indispensable
tools for optimizing food-drying processes. ML models, ranging from shallow- to deep-
learning techniques, have effectively addressed challenges like uneven drying, nutrient



Foods 2024, 13, 2676 3 of 23

degradation, and high energy consumption. By intelligently configuring these models and
integrating them with real-time measurement systems, industries can achieve dynamic
optimization and automated decision-making. Moreover, AI’s ability to predict drying
times and analyze energy usage patterns offers significant potential for resource efficiency.
Despite these advancements, challenges such as data quality, integration complexity, and
ethical considerations persist [27].

Deep learning (DL) offers significant advantages in food-drying optimization. DL
models can accurately predict key parameters like drying time, energy consumption, and
product quality, enabling efficient process control. By integrating DL with real-time mea-
surements, drying parameters can be dynamically adjusted to maintain optimal conditions.
Furthermore, DL-based algorithms can automate decision-making and reduce human
errors, improving process efficiency. Additionally, DL can identify opportunities to opti-
mize resource usage, such as minimizing energy consumption and waste, contributing to
sustainable food production [28–31].

Deep learning, a subset of machine learning, has emerged as a promising tool for
optimizing food-drying processes. These studies demonstrate the potential of DL to
enhance various aspects of food drying, including modeling, prediction, and process
control. By leveraging the power of AI, DL can address challenges such as energy efficiency,
product quality, and operational optimization, leading to more sustainable and efficient
food production [28–31].

This research aims to enhance the antioxidant properties of Boesenbergia rotunda extract
through an optimized drying process. By employing Response Surface Methodology (RSM)
and Dynamic Linear Models (DLM), we sought to identify the optimal drying conditions
that maximize antioxidant activity while minimizing product degradation. This study
contributes to the development of efficient and effective drying techniques for preserving
bioactive compounds in natural products.

2. Materials and Methods

All chemicals of analytical grade, including 1,1-diphenyl-2-picryhydrazyl free radical (DPPH),
2,4,6-tri(2-pyridyl)-s-triazine (TPTZ), ferric, chloride-6-hydrate, ferrous, sulphate 7-hydrate, ac-
etate buffer pH 4.6, gallic acid, Folin–Ciocalteu phenol reagent, anhydrous sodium carbonate
(Na2CO3), catechin, sodium nitrite (NaNO2), and aluminum chloride (AlCl3), were obtained
from Sigma–Aldrich Co. (St. Louis, MO, USA). Solvents such as ethanol were purchased from
Mallinckrodt–Baker (Phillipsburg, NJ, USA).

2.1. Fingerroot Powder Preparation

Fingerroot powder was prepared from Boesenbergia rotunda specimens collected in
Nakhon Ratchasima Province, Thailand, during November 2023. The collected finger roots
were thoroughly rinsed to remove any adhering dirt or debris and subsequently subjected
to a drying process at 60 ◦C for 24 h to remove moisture content. After drying, the fingerroot
was ground into a fine powder using an Ultra Centrifugal Mill Model ZM-1000 (Retsch,
Hann, Germany), and the resulting powder was sieved through a mesh size of 0.2 mm
to obtain a uniform particle-size distribution. Finally, the sieved finger root powder was
stored in vacuum-sealed packages at a temperature of −20 ◦C until further use, ensuring
the maintenance of its quality and preventing potential degradation during storage. This
standardized procedure facilitated the preparation of a homogeneous fingerroot powder
from Boesenbergia rotunda, suitable for various applications, such as extraction of bioactive
compounds or incorporation into formulations.

2.2. Fingerroot Extraction

The ethanol-extraction method for fingerroot (Boesenbergia rotunda) followed a similar
procedure to the water extraction, except 57% ethanol was used as the solvent instead of
water. One gram of finger root powder was accurately weighed and extracted three times
with 10 mL of 57% ethanol. The combined extract was then adjusted to a final volume
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of 50 mL. Aliquots of 2 mL were taken from the adjusted extract and transferred into
individual test tubes. Unlike water extraction, the ethanol extracts were dried using a
vacuum dryer instead of freeze-drying. The dried extracts obtained from the vacuum
drying process were stored at −20◦ C until further use or analysis [24].

2.3. Total Phenolic Contents

The total soluble phenolic constituents of the extracts were determined using the Folin–
Ciocalteu method, with gallic acid employed as the standard reference compound [3,26].
In this procedure, 20 µL of the crude extract solution, standard gallic acid solution, or
blank solvent were added to a 1.5 mL cuvette, followed by the addition of 1.58 mL of
deionized water and 100 µL of the Folin–Ciocalteu reagent. The mixture was thoroughly
mixed and incubated for 5 min at room temperature. After incubation, 300 µL of a 2% (w/v)
sodium carbonate (Na2CO3) solution were introduced, and the mixture was allowed to
stand at room temperature for 2 h to facilitate the development of the blue-colored complex
resulting from the reduction of the Folin–Ciocalteu reagent by the phenolic compounds
present in the sample. Subsequently, the absorbance of the solution was measured at a
wavelength of 765 nm using a spectrophotometer. The total soluble phenolic content was
quantified by establishing a calibration curve with known concentrations of the gallic acid
standard, and the results were expressed as gallic acid equivalents (GAE) based on the
linear regression equation obtained from the calibration curve [3,4,26].

2.4. Total Flavonoid

The total flavonoid contents of the extracts were determined using the aluminum
chloride colorimetric method [4,31]. In this assay, 250 µL of the crude extract solution,
standard solution, or blank were added to a 1.5 mL cuvette, followed by the addition
of 1.25 mL of deionized (DI) water and 75 µL of 5% sodium nitrite (NaNO2) solution.
The mixture was incubated for 6 min at room temperature. After incubation, 150 µL of
10% aluminum chloride (AlCl3) solution were introduced, followed by the sequential
addition of 0.5 mL of 1 M sodium hydroxide (NaOH) and 275 µL of DI water. The resulting
mixture was then incubated for an additional 5 min to allow the development of the
pink-colored flavonoid–aluminum complex. Subsequently, the absorbance of the solution
was measured at a wavelength of 510 nm using a spectrophotometer. The total flavonoid
contents were quantified by establishing a calibration curve with known concentrations of
the catechin standard, and the results were expressed as catechin equivalents based on the
linear regression equation obtained from the calibration curve.

2.5. DPPH Assay

The DPPH (2,2-diphenyl-1-picrylhydrazyl) free-radical scavenging activity of Thai basil
extracts (water, ethanol, and ethyl acetate), as well as the positive controls butylated hy-
droxytoluene (BHT) and ascorbic acid, were evaluated using a DU 800 Spectrophotometer
(Beckman Coulter, Brea, CA, USA) according to the method described by Oonsivilai et al. [5].
An aliquot (100 µL) of the extract at varying concentrations or the positive control solu-
tions prepared in methanol was mixed with 1.9 mL of a methanolic DPPH solution. The
reaction mixtures were incubated in the dark for a specified duration, during which the
DPPH radical was reduced by the antioxidant compounds present in the extracts or positive
controls, resulting in a discoloration of the DPPH solution. The decrease in absorbance at a
specific wavelength (typically 515–520 nm) was measured spectrophotometrically and used
to calculate the percentage of DPPH radical scavenging activity. The IC50 values, representing
the concentration of the extract or positive control required to scavenge 50% of the DPPH
radicals, were determined by nonlinear regression analysis using SigmaPlot 9.1 software
(Systat Software Inc., Chicago, IL, USA) [5].
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2.6. FRAP Assay

The ferric-reducing antioxidant power (FRAP) assay was performed according to the
method described by Oonsivilai et al. [5]. The FRAP reagent was prepared by combining an
acetate buffer (pH 3.6), a 10 mM solution of 2,4,6-tripyridyl-s-triazine (TPTZ) in 40 mM hy-
drochloric acid, and a 20 mM ferric chloride solution in the ratio of 10:1:1 (v/v/v), respectively.
An aliquot (50 µL) of the extract was added to 1.5 mL of the freshly prepared FRAP reagent,
and the mixture was incubated for 4 min at room temperature to facilitate the reduction
of the ferric–tripyridyltriazine complex to the ferrous form by the antioxidant compounds
present in the extract. After the incubation period, the absorbance of the reaction mixture
was measured at 593 nm using a spectrophotometer. A calibration curve was constructed
using ferric sulfate solutions of known concentrations ranging from 100 to 2000 µM. The
FRAP values of the extracts were calculated from the linear regression equation obtained
from the calibration curve and expressed as millimoles of ferric equivalents per gram of dry
plant material [5,26].

2.7. Spray Drying Condition
2.7.1. Experimental Design

Response Surface Methodology (RSM), a well-established optimization technique,
was employed to identify the optimal drying conditions that maximize the extraction
yield, total phenolic contents, total flavonoid contents, and antioxidant activities [31–33].
Three independent variables—maltodextrin concentration (X1: 20, 25, and 30% w/v), inlet
temperature (X2: 140, 150, and 160 ◦C), and outlet temperature (X3: 70, 80, and 90 ◦C)—were
investigated for their influence on the dependent variable, extraction yield. A Box–Behnken
design was utilized to randomize the experimental order, and the resulting data were
analyzed using regression analysis [34,35]. The independent variables are in Table 1.

Table 1. Encoded and coded levels of independent variables used in the experimental design.

Symbols Independent Variables
Coded Levels

−1 0 1

X1 Maltrodextrin (% w/v)) 20 25 30
X2 Inlet Temperature (◦C) 140 150 160
X3 Outlet Temperature (◦C) 70 50 90

2.7.2. Experimental Validation of the Optimal Conditions

A model-driven optimization approach was employed to maximize the extraction
yield, total phenolic contents (TPC), total flavonoid contents (TFC), and antioxidant activi-
ties as measured by DPPH and FRAP assays. The validity of the model was subsequently
assessed by performing three independent extraction experiments under the predicted
optimal conditions, which deviated from those employed for model development.

2.7.3. Deep-Learning Machine Modeling

Deep-learning models are built on artificial neural networks with multiple intercon-
nected layers, enabling them to learn hierarchical representations of data and automatically
extract increasingly complex features from raw inputs, making them effective for tasks
like image recognition, natural language processing, and speech recognition [22,23]. The
backpropagation algorithm, a supervised learning technique that calculates error gradients
to adjust network parameters, is a fundamental component allowing for efficient training
of these multi-layer networks [35]. Nonlinear activation functions, such as the rectified
linear unit (ReLU), introduce nonlinearity into the models, enhancing their ability to learn
complex, nonlinear relationships within the data [36]. Additionally, deep learning leverages
the principle of transfer learning, where pre-trained models can be fine-tuned on specific
tasks, transferring knowledge gained from large datasets to related domains with limited
data, a process known as feature transferability [37]. Furthermore, deep-learning models
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can scale to handle large datasets and benefit from parallel computing architectures like
GPUs, accelerating the training process and enabling the development of increasingly
complex and powerful models [23].

2.8. Statistical Analysis

All experiments were performed in triplicate, and mean values (on a dry basis) with
standard deviations were reported. The experimental data were analyzed using an analysis
of variance (ANOVA). SPSS® software Version 17 (SPSS Inc., Chicago, IL, USA) was used
to perform all statistical calculations.

3. Results
3.1. Validation of the Experimental Design

This study investigated the influence of drying parameters on the quality of a fin-
gerroot extract initially obtained using 57% ethanol. A factorial design was employed,
analyzing the effects of maltodextrin concentration (20, 25, 30% w/v), inlet temperature
(140, 150, 160 ◦C), and outlet temperature (70, 80, 90 ◦C) on the extract’s content of phenolic
compounds, flavonoids, and its free-radical scavenging activity.

The total phenolic contents in the dried fingerroot extract ranged from 5.63 to 18.96 µg
of GAE/mg extract. The combination of 20% maltodextrin, 160 ◦C inlet temperature,
and 80 ◦C outlet temperature yielded the highest phenolic content. Similarly, the total
flavonoid contents varied between 5.55 and 33.52 µg of GE/mg extract, with the same
drying conditions (20% maltodextrin, 160 ◦C inlet temperature, 80 ◦C outlet temperature)
producing the most significant amount.

Free-radical scavenging activity, measured by the DPPH method, ranged from 0.67 to 4.22µg/mL
of extract. Interestingly, drying conditions with either 20% or 30% maltodextrin, inlet tem-
peratures of 140 or 150 ◦C, and outlet temperatures of 70 or 90 ◦C resulted in the highest
IC50 and FRAP values (1.28 to 4.829 µmol Fe2/mg extract). However, the drying condition
with 20% maltodextrin, 160 ◦C inlet temperature, and 80 ◦C outlet temperature exhibited
the strongest FRAP value. For detailed results of all experimental conditions, please refer
to Tables 2 and 3.

When taking the total amount of phenolic compounds obtained from dried fingerroot
extracts, the relationship is found with the independent variables using stepwise regression
analysis, which can display results in the form of regression analysis. Details are shown in
Tables 4–6.

Tables 2 and 3 present the fingerroot experimental conditions with the predicted experi-
mental values, and deep-learning machine results of TPC, TF, DPPH, and FRAP assays, as well
as the extraction yield of the recovered bioactive compounds from fingerroot.

The dried extract yield ranges from 23.34± 0.68% (run 15, 30%, 140 ◦C, 70 ◦C) to 67.29± 0.46%
(run 5, 30%, 150 ◦C, 70 ◦C). The TPC ranged from 5.63 µg of the GAE/mg extract (run 13, 25%,
160 ◦C, 90 ◦C) to 18.96 µg of the GAE/mg extract (run 9, 20%, 160 ◦C, 80 ◦C). The TF ranged from
5.55 µg of the GE/mg extract (run 13, 25%, 160 ◦C, 90 ◦C) to 33.52 µg of the GE/mg extract (run 9,
20%, 160 ◦C, 80 ◦C). The antioxidant activity evaluated by the DPPH assay ranged between IC50
4.22 µg/mL (run 1, 20%, 140 ◦C, 80 ◦C) and IC50 0.67 µg/mL (run 10 and 5, 30%, 150 ◦C, 70 ◦C).
In what concerns the FRAP assay, results ranged between 1.28 µmol of the FSE/mg extract (run 6,
25%, 150 ◦C, 80 ◦C) and 4.83 µmol of the FSE/mg extract (run 9, 20%, 160 ◦C, 80 ◦C). Interestingly,
the results obtained for the drying condition at maltodextrin 20%, inlet temperature 150 ◦C, and
outlet temperature 70 ◦C, were similar for both antioxidant activity responses. In addition, the
inlet temperature and outlet temperature did not affect the DPPH and FRAP responses. The
highest DPPH response (1.24 µg/mL) was achieved at maltodextrin 20%, inlet temperature 150
◦C, and outlet temperature 70 ◦C.

The experimental values for the four responses were similar (p > 0.05) to the respective
predicted ones and DLM data, allowing the validation of the experimental design and
demonstrating the effectiveness and adequacy of the RSM and Deep-Learning Machine
(Tables 4–6).
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Table 2. Experimental and predicted values of TPC and TF of Boesenbergia rotunda crude extract.

Independent Variables Dependent Variables

Point SWE Condition
Y1, TPC Y2, TF

(µg GAE/mg) (µg GE/mg)

Run
X1 X2 X3 Exp Pred DLM Exp Pred DLM(M, % w/v) (T (In), ◦C) (T (Out), ◦C)

1 20 140 80 14.97 ± 4.24 defg 14.89 14.92 27.74 ± 3.95 e 25.86 27.55
2 30 140 80 12.17 ± 0.81 bcde 10.83 12.15 15.02 ± 2.14 c 19.79 15.00
3 25 160 70 16.77 ± 6.22 efg 12.45 16.77 11.63 ± 0.79 abc 10.20 11.52
4 20 150 70 8.86 ± 0.40 abc 15.34 8.81 13.63 ± 5.95 bc 19.83 13.53
5 30 150 70 7.05 ± 1.07 ab 11.27 6.97 7.27 ± 1.37 ab 6.82 7.05
6 25 150 80 10.31 ± 1.85 abcd 12.01 11.55 12.3 ± 3.79 abc 10.01 9.87
7 25 150 80 13.78 ± 2.94 cdef 12.01 11.55 8.94 ± 2.62 abc 10.01 9.87
8 30 150 90 10.54 ± 0.46 abcd 8.68 10.52 10.06 ± 1.97 abc 3.86 10.03
9 20 160 80 18.96 ± 2.62 g 13.19 18.60 33.52 ± 9.21 e 28.75 33.23
10 25 140 90 11.97 ± 2.67 bcde 11.57 11.96 6.63 ± 1.04 ab 8.06 6.56
11 20 150 90 11.96 ± 0.68 bcde 12.75 11.97 13.19 ± 3.32 bc 13.64 13.03
12 30 160 80 8.72 ± 2.16 abc 9.13 8.71 10.16 ± 1.44 abc 12.04 10.02
13 25 160 90 5.63 ± 1.60 a 9.87 5.55 5.55 ± 0.20 a 9.87 5.57
14 25 150 80 10.7 ± 3.39 abcd 12.01 11.55 8.8 ± 3.38 abc 10.01 9.87
15 25 140 70 17.77 ± 2.47 fg 14.15 17.75 21.21 ± 0.78 d 16.89 20.96

Exp: Experimental values, performed in a random order and expressed as the average of triplicate determinations from different experiments (n = 3). Pred: Predicted values, based on
BBD evaluation. DLM: Deep-Learning Machine. a–g Same letter show no significant difference at p < 0.05, different letter shows significant difference (p < 0.05) in the same column.
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Table 3. Experimental and predicted values of DPPH, FRAP, and yield of Boesenbergia rotunda crude extract obtained by BBD.

Independent Variables Dependent Variables

Point SWE Condition
Y3, DPPH Y4, FRAP Y5, Yield
(µg/mL) (µmol Fe2+/mg) (%)

Run
X1 X2 X3

Exp a Pred b DLM c Exp a Pred b DLM c Exp a Pred b DLM c
(M, % w/v) (T (In), ◦C) (T (Out),

◦C)

1 20 140 80 4.22 ± 0.12 d 3.83 4.10 4.278 ± 0.77 fg 4.30 4.281 36.4 ± 0.96 c 35.22 36.42
2 30 140 80 2.95 ± 1.11 bcd 1.98 2.93 3.216 ± 0.24 de 3.60 3.220 62.72 ± 2.35 hi 59.90 62.80
3 25 160 70 1.95 ± 0.41 abc 2.73 1.93 3.219 ± 0.30 de 3.21 3.221 52.41 ± 1.90 e 51.87 52.53
4 20 150 70 3.21 ± 0.40 cd 3.96 3.20 3.608 ± 1.04 ef 4.00 3.610 45.17 ± 1.69 d 35.67 45.20
5 30 150 70 0.67 ± 0.88 a 2.11 0.70 2.911 ± 0.15 cde 2.94 2.911 67.29 ± 0.46 j 60.34 66.64
6 25 150 80 2.02 ± 0.64 abc 2.60 3.02 1.28 ± 0.26 a 1.84 1.840 57.23 ± 2.09 fg 51.42 56.86
7 25 150 80 3.06 ± 0.38 cd 2.60 3.02 2.161 ± 0.14 bc 1.84 1.840 54.94 ± 1.65 ef 51.42 56.86
8 30 150 90 1.44 ± 0.40 ab 1.23 1.45 1.893 ± 0.22 ab 1.50 1.890 60.93 ± 2.72 gh 67.17 60.93
9 20 160 80 4.14 ± 0.92 d 3.22 4.05 4.829 ± 0.75 g 4.44 4.776 32.21 ± 2.07 b 42.95 32.25

10 25 140 90 0.67 ± 0.25 a 2.46 0.68 2.637 ± 0.52 bcd 2.65 2.639 53.7 ± 1.15 ef 50.98 53.70
11 20 150 90 3.03 ± 1.22 cd 3.09 3.00 3.247 ± 0.27 de 3.22 3.251 44.36 ± 2.11 d 42.50 44.41
12 30 160 80 2.13 ± 1.52 abc 1.37 2.11 2.38 ± 0.14 bcd 2.36 2.380 65.89 ± 1.63 ij 67.62 66.00
13 25 160 90 1.31 ± 0.68 a 1.85 1.32 2.177 ± 0.30 bc 2.59 2.181 56.55 ± 2.21 f 58.70 56.60
14 25 150 80 4.05 ± 0.56 d 2.60 3.02 2.076 ± 0.53 abc 1.84 1.840 58.19 ± 0.68 fg 51.42 56.86
15 25 140 70 4.13 ± 1.17 d 3.34 4.02 4.666 ± 0.42 g 4.25 4.672 23.34 ± 0.68 a 44.14 23.46

a Experimental values, performed in a random order and expressed as the average of triplicate determinations from different experiments (n = 3). b Predicted values, based on BBD
evaluation. c Deep-Learning Machine. a–j Same letter show no significant difference at p < 0.05, different letter shows significant difference (p < 0.05) in the same column.
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Table 4. Model summary and analysis of variance (ANOVA) of TPC and TF Boesenbergia rotunda crude extract.

Source Sum of
Squares df Mean

Square F-Value p-Value Source Sum of
Squares df Mean

Square F-Value p-Value

Model 52.26 3 17.42 1.22 0.3473 not
significant Model 705.63 9 78.40 2.19 0.2012 not

significant
A-X1 33.09 1 33.09 2.32 0.1556 A-X1 259.58 1 259.58 7.24 0.0432
B-X2 5.78 1 5.78 0.4059 0.5371 B-X2 11.86 1 11.86 0.3309 0.5900
C-X3 13.39 1 13.39 0.9404 0.3530 C-X3 41.91 1 41.91 1.17 0.3289

AB 28.30 1 28.30 0.7898 0.4149
AC 2.61 1 2.61 4.87 0.7981
BC 18.06 1 18.06 2.74 0.5095
A2 119.53 1 119.53 1.88 0.1274
B2 128.84 1 128.84 1.64 0.1164
C2 80.37 1 80.37 2.39 0.1945

Residual 156.62 11 14.24 Residual 179.18 5 35.84

Lack of Fit 149.40 9 16.60 4.59 0.1915 not
significant Lack of Fit 171.32 3 57.11 14.54 0.0650 not

significant
Pure Error 7.23 2 3.61 Pure Error 7.85 2 3.93
Cor Total 208.88 14 Cor Total 884.81 14

Std.Dev = 3.77
R-Squared = 0.2502

Mean = 12.01
R-Squared = 0.0457

C.V. % = 3.42
Adeq Precision = 3.4153

Std.Dev = 5.99
R-Squared = 0.7975

Mean = 13.71
R-Squared = 0.4330

C.V. % = 43.66
Adeq Precision = 5.0921
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Table 5. Model summary and analysis of variance (ANOVA) of DPPH and FRAP Boesenbergia rotunda crude extract.

Source Sum of
Squares df Mean

Square F-Value p-Value Source Sum of
Squares df Mean

Square F-Value p-Value

Model 9.15 3 3.05 2.66 0.1002 not
significant Model 13.78 9 1.53 5.37 0.0394 significant

A-X1 6.86 1 6.86 5.98 0.0325 A-X1 3.87 1 3.87 13.56 0.0143
B-X2 0.7442 1 0.7442 0.6486 0.4377 B-X2 0.6006 1 0.6006 2.11 0.2064
C-X3 1.54 1 1.54 1.34 0.2712 C-X3 2.48 1 2.48 8.68 0.0320

AB 0.4809 1 0.4809 1.69 0.2507
AC 0.1079 1 0.1079 0.3785 0.5653
BC 0.2435 1 0.2435 0.8542 0.3978
A2 2.29 1 2.29 8.05 0.0364
B2 4.06 1 4.06 14.23 0.0130
C2 0.3049 1 0.3049 1.07 0.3485

Residual 12.62 11 1.15 Residual 1.43 5 0.2851

Lack of Fit 10.56 9 1.17 1.14 0.5516 not
significant Lack of Fit 0.9532 3 0.3177 1.35 0.4532 not

significant
Pure Error 2.06 2 1.03 Pure Error 0.4723 2 0.2362
Cor Total 21.77 14 Cor Total 15.21 14

Std.Dev = 1.07
R-Squared = 0.4202

Mean = 2.60
R-Squared = 0.2621

C.V. % = 41.22
Adeq Precision = 4.9353

Std.Dev = 0.5339
R-Squared = 0.9063

Mean = 2.97
R-Squared = 0.7376

C.V. % = 17.97
Adeq Precision = 6.7545
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Table 6. Model summary and analysis of variance (ANOVA) of %yield Boesenbergia rotunda crude
extract.

Source Sum of
Squares df Mean Square F-Value p-Value

Model 1430.18 3 476.73 6.20 0.0101 significant
A-X1 1217.46 1 1217.46 15.84 0.0022
B-X2 119.35 1 119.35 1.55 0.2387
C-X3 93.37 1 93.37 1.21 0.2940

Residual 845.68 11 76.88
Lack of Fit 840.10 9 93.34 33.48 0.0293 significant
Pure Error 5.58 2 2.79
Cor Total 2275.86 14

Std.Dev = 8.77
R-Squared = 0.6384

Mean = 51.42
R-Squared = 0.5271

C.V. % = 17.05
Adeq Precision = 7.1552

3.2. Analysis of Response Surface

The independent variable X1 (maltodextrin concentration, % w/v) showed a significant
effect (p < 0.05) on TF, DPPH, FRAP, and yield response, whereas the independent variable
X2 (Inlet temperature, ◦C) showed no significant effect (p > 0.05) on all responses. In
addition, the X3 (Outlet temperature, ◦C) showed a significant effect (p < 0.05) on FRAP
response. Furthermore, the quadratic term for X1 and X2 showed a significant effect on
Y4 response (FRAP). The R2 is useful for checking the model fitness, being in this study
classified as strong for FRAP response (R2 adjust was relatively close to 1) (Tables 4–6).
Considering all response-surface models, the “lack of fit” was significant (p < 0.05) for yield
response but not significant (p > 0.05) for TPC, TF, DPPH, and FRAP response.

3.2.1. Fitting Model

The parameters of the equation were determined through linear and multiple regres-
sion analysis of the experimental results.

Total phenolic contents = 45.27942 − 0.406750X1 − 0.085X2 − 0.129375X3

Total flavonoid contents = 1335.61375 − 5.83042X1 − 18.213 X2 + 3.64454 X3 − 0.0532 X1X2 + 0.01615 X1X3 + 0.02125 X2X3

+ 0.227583 X1
2 + 0.059071 XX2

2 − 0.046654 X3
2

DPPH = 15.31492 − 0.18525X1 − 0.0305X2 − 0.043875X3

FRAP = 284.89475 − 0.412750 X1 − 3.19655 X2 − 0.803425 X3 − 0.006935 X1X2 − 0.003285 X1X3 + 0.002467 X2X3

+ 0.031535 X1
2 + 0.010484 X2

2 − 0.002874 X3
2

Yield = −95.52675 + 2.46725X1 + 0.386250X2 + 0.341625X3

The RSM model was used to generate 3D contour plots in order to represent graphically
the relationship between independent (maltodextrin concentration, inlet temperature,
outlet temperature) and dependent variables (TPC, TF, DPPH, FRAP, Yield). As shown in
Figures 1–5.
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3.2.2. Total Phenolic Contents

When taking the TPC value obtained from dried fingerroot extract, the relationship
with the independent variables is found by using Stepwise regression analysis, which can
display results in the form of regression analysis. Details are shown in Table 4.

The table showing the results of the regression analysis determines the second-order
mathematical model. This can be used to create a mathematical model or mathematical
equation for predicting the dependent variable (response) by taking the values of the
factors obtained from the analysis of the coefficients of the regression equation of the said
dependent variable and writing them in the form The linear model equation is shown in
Equation (1), which has an R2 value of 0.2502.

Y1 = 45.27942 − 0.406750X1 − 0.085X2 − 0.129375X3 (1)

The reduced second-order mathematical model in Equation (1) is used as a function to
determine the appropriate conditions for drying using a linear model solution, which helps
to find the optimum condition that provides the highest amount of total phenolic contents.
The results of the experiment show that the drying conditions were at a maltodextrin
concentration of 20% w/v, an inlet temperature of 160 ◦C, and an outlet temperature of
80 ◦C, which results in the highest amount of phenolic compound When compared with
the values calculated from model predictions at the same condition, it was found that the
number of phenolic compounds was equal to 18.96 µg GAE/mg of dried fingerroot extract.
When calculating the most suitable conditions for drying to obtain the highest number of
phenolic compounds, a prediction by the model found that a maltodextrin concentration of
20% w/v, an inlet temperature of 150 ◦C, and an outlet temperature of 70 ◦C resulted in the
number of phenolic compounds equal to 15.34 µg GAE/mg of dried fingerroot extract.
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3.2.3. Total Flavonoid Contents

When taking the TF value obtained from dried fingerroot extract, the relationship with
the independent variables was found using stepwise regression analysis, which can display
results in the form of regression analysis. Details are shown in Table 4.

The results of the regression analysis can determine the second-order mathematical
model, which can be used to create a mathematical model or mathematical equation for
predicting the dependent variable (response) by taking the values of the factors obtained
from the analysis of the coefficients of the regression equation of the said dependent variable
and writing them in the form. The quadratic model equation is shown in Equation (2),
which has an R2 value of 0.7975.

Y1 = 1335.61375 − 5.83042X1 − 18.213 X2 + 3.64454 X3 − 0.0532 X1X2 + 0.01615 X1X3 + 0.02125 X2X3

+ 0.227583 X1
2 + 0.059071 X2

2 − 0.046654 X3
2 (2)

The reduced second-order mathematical model in Equation (2) is used as a function to
determine the appropriate conditions for drying. A non-linear model solution can be used
to find the optimum condition that provides the highest amount of total flavonoid contents.
The results of the experiment show that the drying conditions were at a maltodextrin
concentration of 20% w/v, an inlet temperature of 160 ◦C, and an outlet temperature of
80 ◦C, resulting in the highest number of flavonoid compounds. When compared with
the values calculated from model predictions under the same conditions, the number of
flavonoid compounds was found to be 33.52 µg GE/mg of dried fingerroot extract. When
calculating the optimum drying conditions that resulted in the highest flavonoid content
from a prediction by the model, it was found that the drying conditions at a maltodextrin
concentration of 20% w/v, an inlet temperature of 160 ◦C, and an outlet temperature
of 80 ◦C in the number of flavonoid compounds equaled to 28.75 µg GE/mg of dried
fingerroot extract.

3.2.4. DPPH Assay

When taking the IC50 value obtained from dried fingerroot extract, the relationship
with the independent variables was found using stepwise regression analysis, which can
display results in the form of regression analysis. Details are shown in Table 5.

Based on the table showing the results of the regression analysis, the second-order
mathematical model can be determined and used to create a mathematical model or
mathematical equation for predicting the dependent variable (response) by taking the
values of the factors obtained from the analysis of the coefficients of the regression equation
of the said dependent variable and writing them in the form. The linear model equation is
shown in Equation (3), which has an R2 value of 0.4202.

Y1 = 15.31492 − 0.18525X1 − 0.0305X2 − 0.043875X3 (3)

The reduced second-order mathematical model in Equation (3) is used as a function to
determine the appropriate conditions for drying using a linear model solution and find the
optimum condition with the highest IC50 value. The results of the experiment show that
the drying conditions using maltodextrin concentrations of 20 % w/v, inlet temperatures of
140, and an outlet temperature of 80 ◦C result in the highest IC50 value. When compared
with the values calculated from model predictions at the same conditions, it was found that
the IC50 value was equal to 4.22 µg/mg of dried fingerroot extract, which, when calculating
the most suitable conditions for drying, resulted in the highest IC50 value from the model
prediction. It was found that the drying condition at a maltodextrin concentration of
20.191% w/v, an inlet temperature of 147.227 ◦C, and an outlet temperature of 70.352 ◦C
resulted in an IC50 value of 3.99748 µg/mg of dried fingerroot extract.
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3.2.5. FRAP Assay

When taking the FRAP value obtained from dried fingerroot extract, the relationship
with the independent variables was found using stepwise regression analysis, which can
display results in the form of regression analysis. Details are shown in Table 5.

Based on the table showing the results of the regression analysis, the second-order
mathematical model can be determined and used to create a mathematical model or
mathematical equation for predicting the dependent variable (response) by taking the
values of the factors obtained from the analysis of the coefficients of the regression equation
of the said dependent variable and writing them in the form The quadratic model equation
is shown in Equation (4), which has an R2 value of 0.9063.

Y1 = 284.89475 − 0.412750 X1 − 3.19655 X2 − 0.803425 X3 − 0.006935 X1X2 − 0.003285 X1X3 + 0.002467 X2X3

+ 0.031535 X1
2 + 0.010484 X2

2 − 0.002874 X3
2 (4)

The reduced second-order mathematical model in Equation (4) is used as a function to
determine the appropriate conditions for drying. A non-linear model solution is used to
find the optimum condition with the highest FRAP value. The results of the experiment
showed that the drying conditions were at a maltodextrin concentration of 20% w/v, an
inlet temperature of 160 ◦C, and an outlet temperature of 80 ◦C, resulting in the highest
FRAP value. When compared with the values calculated from model predictions at the
same conditions, it was found that the FRAP value was equal to 4.829 µmol Fe2+/mg dried
fingerroot extract when calculating the most appropriate conditions for drying, resulting in
the highest FRAP value from the model prediction. It was found that drying conditions
with a maltodextrin concentration of 20% w/v, an inlet temperature of 160 ◦C, and an outlet
temperature of 80 ◦C resulted in a FRAP value of 4.44 µmol Fe2+/mg of substance dried
fingerroot extract.

3.2.6. Yield Percentage and Moisture Contents

The moisture content of the dried fingerroot and fingerroot extract was determined to
be 6.49 ± 0.13% and 5.73 ± 0.14%, respectively. When taking the yield percentage obtained
from dried fingerroot extract, the relationship with the independent variables can be found
using stepwise regression analysis, which can display results in the form of regression
analysis. Details are shown in Table 6.

From the table showing the results of the regression analysis, the second-order mathe-
matical model can be used and determined to create a mathematical model or mathematical
equation for predicting the dependent variable (response) by taking the values of the
factors obtained from the analysis of the coefficients of the regression equation of the said
dependent variable and writing them in the form The linear model equation is shown in
Equation (5), which has an R2 value of 0.9063.

Y1 = −95.52675 + 2.46725X1 + 0.386250X2 + 0.341625X3 (5)

The reduced second-order mathematical model in Equation (5) is used as a function
to determine the appropriate conditions for drying using a linear model solution, and
the optimum condition with the highest percentage yield is found. The results of the
experiment showed that the drying conditions were at a maltodextrin concentration of
30% w/v, an inlet temperature of 160 ◦C, and an outlet temperature of 80 ◦C in the highest
percentage yield. When compared with the values calculated from model predictions
at the same conditions, it was found that the percentage yield was equal to 65.89 when
calculating the most appropriate conditions for drying, resulting in the highest percentage
yield from the model prediction. It was found that drying conditions with a maltodextrin
concentration of 30% w/v, an inlet temperature of 150 ◦C, and an outlet temperature of
90 ◦C resulted in a percentage yield of 67.18.
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3.3. Data Acquisition and Preprocessing for Deep-Learning Machines

Optimizing extraction conditions within a laboratory setting can be a cumbersome
and time-consuming endeavor, particularly when multiple variables are involved, each
possessing various levels. The Box–Behnken design serves as a prevalent strategy to stream-
line this process by minimizing the required number of experiments. However, recent
advancements in deep-learning machines (DLMs) have demonstrated their superiority
over Response Surface Methodology (RSM) in achieving superior optimization outcomes
(Figures 6–10).
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4. Discussion

Building upon research on fingerroot (Alpinia galanga), this study investigates two
crucial stages: extraction and drying. The first study focused on optimizing the microwave-
assisted extraction (MAE) process to maximize the total phenolic and flavonoid contents in
fingerroot extracts. Here, water extraction yielded significantly higher phenolic content
(up to 18.96 µg of GAE/mg extract) compared to ethanol extraction, aligning with findings
by [38,39]. Additionally, optimized MAE conditions (20% (w/v) maltodextrin, microwave
500 W, 160 ◦C inlet temperature, 80 ◦C outlet temperature) resulted in the highest overall
phenolic contents.

From previous research, this study explores the impact of drying parameters on a pre-
extracted fingerroot extract obtained using 57% ethanol. Interestingly, a combination of 20%
maltodextrin, a 160 ◦C inlet temperature, and an 80 ◦C outlet temperature during the drying
process resulted in the highest levels of preserved phenolic and flavonoid compounds.
However, other drying conditions (variations in maltodextrin concentration and inlet and
outlet temperatures) yielded extracts with the strongest free-radical scavenging activity
(FRAP values). This observation underscores the intricate relationship between drying
parameters and the retention of bioactive compounds within the fingerroot extract. These
findings align with the ongoing efforts to identify factors influencing the potential health
benefits of fingerroot, as previously explored by Kanjanasirirat et al. [38].

This research investigates a critical aspect of fingerroot preservation—the drying
process—with the aim of maximizing its health benefits. While this research lies on optimiz-
ing drying parameters (such as maltodextrin concentration and inlet/outlet temperature)
to retain the highest levels of beneficial compounds (phenolics, flavonoids) and free-radical
scavenging activity within pre-extracted fingerroot extracts, a complementary study by
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Fahrudin et al. [40] explores the impact of different drying methods (freeze drying, oven
drying, sun drying) on the overall quality of fingerroot powder. Notably, [40] investi-
gate aspects such as moisture content, color, solubility, and morphology, which provide a
broader perspective on the influence of drying on fingerroot beyond the specific bioactive
compounds targeted in the present study. This comprehensive approach underscores the
importance of considering various drying techniques and their multifaceted effects on
fingerroot quality.

This research investigates the optimal drying conditions for preserving the valuable
bioactive compounds in fingerroot extract (likely fingerroot) using a spray-drying technique.
The study identified that a combination of 20% maltodextrin, 160 ◦C inlet temperature,
and 80 ◦C outlet temperature yielded the highest levels of phenolics, flavonoids, and
FRAP value, indicating strong overall antioxidant activity. Interestingly, a broader range
of drying conditions (20–30% maltodextrin, 140–150 ◦C inlet temperature, 70–80 ◦C outlet
temperature) resulted in the highest IC50 value, suggesting maximized free-radical scav-
enging activity. Furthermore, the use of response-surface methodology allowed for slight
adjustments in drying parameters to target specific bioactive compounds.

While the reference itself describes the current study, the DPPH assay method used to
measure IC50 values likely originates from the work of [41]. Other references like [41–44],
although not directly cited here, offer valuable insights into spray-drying optimization for
various materials. By comparing their findings on factors like carrier material (maltodextrin)
and temperature with this study on fingerroot extract, future research can establish broader
trends in spray drying-optimization for bioactive compound preservation.

Overall, this study effectively utilizes spray drying to optimize fingerroot extract pro-
duction by identifying drying conditions that maximize the retention of valuable bioactive
compounds and antioxidant activity. This approach aligns with existing research and paves
the way for further exploration of spray-drying parameters for different materials.

Researchers are exploring Deep Learning (DL) for drying process optimization. In
Zhang et al. [45], a Deep-Learning Machine (DLM) was applied to identify drying con-
ditions that maximize the yield and bioactivity of extracted fingerroot compounds. In
this study, researchers focused on developing a Deep-Learning Model Predictive Control
(DL-MPC) system to optimize drying efficiency in a complex paddy drying system. While
this fingerroot experiment aimed to improve product quality, the paddy drying research
prioritized reducing computational cost and achieving faster control compared to tradi-
tional methods. Both studies leverage deep learning for drying process optimization but
in different ways. The fingerroot experiment employed a Deep-Learning Machine (DLM)
to predict optimal drying conditions based on factors like temperature and maltodextrin
concentration. The good agreement between predicted and actual results validates the
DLM’s effectiveness for this specific application. Meanwhile, the paddy drying research
proposes a Deep-Learning Model Predictive Control (DL-MPC) system. This system uses
deep-learning models to forecast future drying behavior and optimize control decisions,
like adjusting air temperature, in real time. Notably, the research emphasizes the signifi-
cant reduction in computational time compared to traditional methods, making DL-MPC
suitable for online control in industrial drying settings. Both studies achieved positive
outcomes using deep learning for drying process optimization. The fingerroot experiment
identified ideal drying conditions (20% maltodextrin, 150 ◦C inlet temperature, 70 ◦C outlet
temperature) that maximized extract yield and antioxidant activity. This success highlights
the potential of Deep-Learning Machines (DLMs) for optimizing fingerroot extraction
processes. In the paddy drying research, researchers implemented a Deep-Learning Model
Predictive Control (DL-MPC) system for a complex multistage drying system. This system
achieved significant improvements in computational speed compared to traditional meth-
ods. Field tests further confirmed the effectiveness of the DL-MPC controller in maintaining
consistent moisture content in the paddy and achieving smoother control over the drying
process compared to manual adjustments. Despite both studies utilizing deep learning
for drying process optimization, their focus and goals differed. The fingerroot experiment
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aimed to maximize the yield and bioactivity (TPC, TF, DPPH, FRAP) of extracted com-
pounds from a specific botanical material—fingerroot. Here, the DLM identified optimal
drying conditions based on factors like temperature and maltodextrin concentration. In
contrast, the paddy drying research dealt with optimizing efficiency in a complex mul-
tistage drying system for a staple crop—paddy rice. Their primary goal was to reduce
computational cost and improve control speed compared to traditional methods. Here, the
Deep-Learning Model Predictive Control (DL-MPC) system focused on optimizing drying
efficiency (reducing drying time and energy consumption) while ensuring the paddy rice
maintains the desired moisture content.

Traditional drying methods, such as oven drying, spray drying, and freeze drying,
often struggle to provide precise control over drying conditions, leading to the potential
degradation of bioactive compounds and suboptimal product quality. Empirical methods,
relying on trial-and-error experiments, can be time-consuming and may not offer a system-
atic understanding of the complex relationships between process variables, hindering the
optimization of drying processes.

Advanced optimization techniques offer promising solutions for complex drying
processes. Artificial Neural Networks (ANNs) can model nonlinear relationships but
require substantial data and are often difficult to interpret. Genetic Algorithms (GAs)
explore a wide range of solutions but can be computationally intensive and may get
stuck in local optima. Response-Surface Methodology (RSM) effectively models nonlinear
processes but is limited to a smaller number of variables.

RSM-DLM offers several advantages over traditional methods for drying process
optimization. By combining the strengths of RSM and DLM, RSM-DLM provides a more
comprehensive approach to modeling and optimizing dynamic processes. Additionally,
DLM’s ability to incorporate uncertainty and variability makes the model more robust to
real-world conditions. The flexibility of RSM-DLM allows it to handle a variety of process
variables and constraints. Comparative studies, if available, can further demonstrate the
effectiveness of RSM-DLM compared to other methods in optimizing drying processes.

5. Conclusions

By studying the appropriate drying conditions of dried fingerroot extract, it was found
that factors affecting physical and chemical properties, with a maltodextrin concentration
level of 30% (w/v), will result in the highest amount of dried fingerroot extract. A mal-
todextrin concentration level of 20% (w/v) will make the dried fingerroot extract have the
most yellow color, and an outlet temperature of 90 ◦C will result in the moisture content,
while the amount of free water makes the value minimal. In terms of pH, alkalinity and
solubility were not significantly different (p > 0.05).

The study of the most suitable conditions for drying fingerroot extract found that
drying with a spray dryer obtained the highest amount of active ingredients. Also, the
response-surface methodology was used to find the most suitable conditions for drying the
fingerroot extract. The results from the research can be summarized as follows: The drying
conditions that resulted in the highest number of phenolic compounds were a maltodextrin
concentration of 20% (w/v), an inlet temperature of 160 ◦C, and an outlet temperature of
80 ◦C, which corresponded to the number of flavonoid compounds and the FRAP value.

Meanwhile, the drying conditions using maltodextrin concentrations of 20 and 30%
(w/v), inlet temperatures of 140 and 150 ◦C, and outlet temperatures of 70 and 80 ◦C
resulted in the IC50 value. Also, a prediction by mathematical model found that drying
conditions using a maltodextrin concentration of 20% (w/v), an inlet temperature of 160 ◦C,
and an outlet temperature of 70 ◦C resulted in the highest number of phenolic compounds.

Meanwhile, the drying condition using a maltodextrin concentration of 20% (w/v), an
inlet temperature of 160 ◦C, and an outlet temperature of 78.9 ◦C resulted in the highest
flavonoid compound content. The drying conditions are most suitable for the antioxidant
capacity. Based on the prediction using the model, the details are as follows. The drying
condition using a maltodextrin concentration of 30% w/v, an inlet temperature of 160 ◦C,
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and an outlet temperature of 70 ◦C resulted in the highest IC50 value, while the drying
condition at the concentration level of maltodextrin 20% w/v, an inlet temperature of
140 ◦C, and an outlet temperature of 70 ◦C resulted in the highest FRAP value.

When comparing the stability results of important substances in dried fingerroot
extracts by drying with a spray dryer, it was found that the number of important sub-
stances in the dried fingerroot extract decreased, while the yield of the dried fingerroot
extract increased. Compared to drying with a vacuum oven and freeze dryer, the physical
characteristics of dried fingerroot extracts dried with a vacuum oven and freeze dryer are
lumpy, hard, and insoluble in water but soluble in ethanol. The physical characteristics
of the white fingerroot extract that are dried with a spray dryer will be in the form of a
powder that is soluble in water. Therefore, it is suitable for application in functional food
products.
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