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Abstract: Premium green tea is a high-value agricultural product significantly influenced by its
geographical origin, making it susceptible to food fraud. This study utilized nuclear magnetic
resonance (NMR) spectroscopy to perform chemical fingerprint analysis on 78 Longjing tea (LJT)
samples from both protected designation of origin (PDO) regions (Zhejiang) and non-PDO regions
(Sichuan, Guangxi, and Guizhou) in China. Unsupervised algorithms and heatmaps were employed
for the visual analysis of the data from PDO and non-PDO teas while exploring the feasibility of linear
and nonlinear machine-learning algorithms in discriminating the origin of LJT. The findings revealed
that the nonlinear model random forest (92.2%), exhibited superior performance compared to the
linear model linear discriminant analysis (85.6%). The random forest model identified 15 key marker
metabolites for the geographical origin of LJT, such as kaempferol glycoside, glutamine, and ECG.
The results support the conclusion that the integration of NMR with machine-learning classification
serves as an effective tool for the quality assessment and origin identification of LJT.

Keywords: NMR; Longjing tea; protected designation of origin; machine learning

1. Introduction

Longjing tea is a famous Chinese premium green tea, originating from three regions
in Zhejiang Province [1]. According to Chinese national standard (GB/T 18650-2008) [2],
flat green tea produced outside the Xihu area and Qiantang area in Hangzhou City, as well
as the Yuezhou area in Shaoxing City, Zhejiang Province, cannot be marketed under the
label “Longjing Tea” [3]. However, unscrupulous traders often mislabel green tea from
other regions as LJT to deceive consumers and gain higher profits [4]. Since consumers are
willing to pay a premium for LJT with a protected designation of origin (PDO), this leads
to fraudulent behavior in the tea market [5]. Therefore, the development of identification
techniques for the origin of LJT is of great significance for the protection of consumers’
rights and interests as well as for the quality supervision of the market sector.

Traditional tea origin identification differentiates tea based on attributes such as
appearance, aroma, taste, and tea color [6,7]. However, these sensory reviewers require
long-term training, are subjective in their conclusions, and are susceptible to environmental
factors. Therefore, researchers are keen to develop objective tea quality assessment methods
to replace the traditional sensory review. Over the past decade, various methods have been
proposed to determine the geographical origin of tea. These methods include analyzing the
chemical composition, elemental composition, and spectral fingerprints of tea, as well as
by using combinations of these approaches. For instance, Ma et al. employed inductively
coupled plasma mass spectrometry (ICP-MS) to differentiate Biluochun green tea samples
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from three distinct regions [8]. Although the discrimination rate reached 96.4%, the method
requires a complex pre-treatment process that consumes significant sample preparation
time, making it impractical for constructing the large datasets needed for origin traceability.
On the other hand, Yun et al. used head-space gas chromatography-mass spectrometry
(HS-GC/MS) to achieve a 100% origin identification rate for several black teas [9]. However,
mass spectrometry analyses usually take a long time and depend on the experience of the
spectrometry. Many researchers have also tried to differentiate tea origins by analytical
methods such as high-performance liquid chromatography (HPLC) [10] and stable isotope
ratio mass spectrometry (IRMS) [11]. However, these methods are still inefficient and there
is an urgent need to develop faster methods for origin tracing.

NMR spectroscopy is a rapid technique for sample preparation and data acquisition,
offering the advantage of minimal sample processing and consistent data generation. This
makes it applicable to various purposes in determining the origin of food products [12].
For example, Cui et al. achieved a 95.7% origin discrimination rate for four Huajiao origins
using 1H NMR combined with chemometrics [13]. Recently, Cui et al. also achieved a 92.7%
discrimination rate for 219 black tea samples from seven origins using 1H NMR combined
with a machine-learning algorithm [14]. By combining the fast data acquisition capability
of 1H NMR with chemometric analysis methods, it provides a viable solution for tea origin
traceability. Widely used analytical and visual chemometrics methods include principal
component analysis (PCA) and projection to latent structures discriminant analysis (PLS-
DA) [15]. Machinelearning algorithms are increasingly replacing traditional data processing
methods due to their potential to improve discriminant performance, minimize the risk
of overfitting, and eliminate irrelevant features. These algorithms can be categorized as
linear and non-linear. Linear discriminant analysis (LDA) is a commonly used linear
approach in machine learning. It assumes that the data in each category is normally
distributed and has the same covariance matrix, aiming to find linear combinations of
features that best discriminate between multiple categories [16]. However, LDA can only
create linear decision boundaries and may not capture the complex relationships in the data.
In contrast, random forest (RF) is an ensemble learning method that enhances classification
by constructing multiple decision trees during training and outputting the class predictions
of each tree [17]. Because RF combines the predictions of multiple trees, it reduces the
risk of overfitting and has the ability to handle a wide range of input variables without
eliminating any. Moreover, RF can provide feature variables that are more important for
discrimination, which helps to understand the key variables that affect the origin of the
food. Hence, it is valuable to investigate the efficacy of both linear and nonlinear models in
discerning the geographical source of LJT based on metabolite analysis.

This study investigated the application of 1H NMR-based methods combined with
machine-learning algorithms in LJT origin identification. By analyzing the metabolic
fingerprints of 78 samples from four major LJT-producing regions in China (Zhejiang,
Guizhou, Sichuan, and Guangxi), linear (LDA) and non-linear (RF) machine-learning
models for origin discrimination were developed. In addition, potential chemical markers
for distinguishing LJT origin were revealed. The results of the study can be applied to the
origin traceability of LJT and provide a new approach for the quality control of LJT.

2. Materials and Methods
2.1. Longjing Tea Sample Preparation

A total of 78 Longjing tea samples were collected from reliable suppliers
(Figure 1a). These samples originated from various regions in China, including Zhe-
jiang (42), Guizhou (12), Sichuan (9), and Guangxi (15). The samples were processed from
the raw materials of three varieties of Camellia sinensis (Quntizhong, Longjing 43, and
Wuniuzao), and their detailed information is shown in Table S1. The authenticity of the
samples was confirmed by our collaborators. After the collection of samples, they were
transferred to the laboratory in vacuum-sealed packages.
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Figure 1. Geographical origin and characteristic 1H NMR profiles of LJT samples. (a) Samples of LJT
were gathered based on their designated geographical source. (b) Comparative 1H NMR spectra of
LJT extracts sourced from diverse geographical regions. (c) 1H NMR spectrum of LJT depicted in a
representative manner.

The extraction procedure follows the methodology outlined by Cui et al. [14]. Initially,
all tea samples underwent grinding for a duration of 30 s utilizing an IKA A11basic grinder
(manufactured in Germany). Following this, the samples were sifted through a 3 mm
mesh sieve. Subsequently, 200 mg of each processed sample was blended with 3 mL of
methanol-d4, which contained 0.03% Tetramethylsilane (TMS), and subjected to ultrasonic
extraction at 600 W for 10 min. This was followed by centrifugation for 5 min at 15,000× g.
Next, 600 µL of the supernatant was carefully collected and transferred into an NMR tube
with a diameter of 5 mm. Each tea sample was prepared three times, then measured, and
the average was calculated.

2.2. NMR Spectroscopy Detection

NMR detection was conducted in accordance with established methods [14]. All
spectra were recorded using a 600 MHz NMR spectrometer (Bruker BioSpin GmbH, Rhein-
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stetten, Germany) equipped with an ultra-low temperature probe. We employed a standard
Bruker pulse sequence, with a spectral width spanning from −2 to 14 ppm, a center fre-
quency set at 3600 Hz, and a test temperature maintained at 298 K. The observations were
conducted at a frequency of 600 MHz, utilizing a pulse width of 10.25 µs. Each spectrum
was acquired over a duration of 4.00 s, with a delay of 1 s between scans, and a total of
31 scans were performed. Corrections for spectral shifts were made based on the TMS
signal (δ = 0 ppm) in the 1H NMR spectra. Prior to Fourier transformation, an exponential
plus weighting function, corresponding to a linewidth of 0.3 Hz, was implemented.

Regions corresponding to methanol (3.31–3.34 ppm) and TMS (0 ppm) were ex-
cluded from the analysis. Signal assignments were verified by comparing with litera-
ture sources [13] and cross-referenced using the Human Metabolome Database (HMDB;
http://www.hmdb.ca/ (accessed on 5 July 2024)).

2.3. Data Analysis

Phase and baseline corrections were applied to the 1H NMR spectra in the MestReNova
software (Version 14.0) using the Whitakker smoothing algorithm, and a displacement
calibration was performed based on the TMS internal standard at 0.0 ppm. Data reduction
was performed using rectangular bins (0.04 ppm) generated in the MestReNova software,
with each bin integrated by summing all intensities within that bin. The bin width of
0.04 ppm represents a compromise between maintaining sufficient data resolution and
minimizing the effects of loss of spectral information and peak drift to ensure accurate peak
integration. The overall intensity of the spectra was normalized using MestReNova.

PCA and sparse PLS discriminant analysis (sPLS-DA) were performed utilizing the
MetaboAnalyst 5.0 online platform (https://www.metaboanalyst.ca (accessed on 5 July
2024)). To mitigate data overfitting and ensure the robustness of supervised analyses,
permutation testing (n = 2000) and cross-validation techniques were applied. Additionally,
heatmap generation and hierarchical clustering (HC) were conducted using MetaboAn-
alyst 5.0, with inter-group similarities assessed through Pearson distance metrics. The
violin chart was drawn according to the relative value of the peak intensity obtained by the
spectral division box.

All machine-learning procedures were executed in MATLAB R2021b (Mathworks,
Waltham, MA, USA). The tea samples were divided into a training set (52 samples) and
a test set (26 samples) with a 2:1 ratio. To enhance algorithm reliability, a 5-fold cross-
validation strategy was employed. Linear Discriminant Analysis (LDA) provided optimal
separation by projecting high-dimensional data into a discriminant vector space, thereby
extracting classification information and reducing dimensionality. Random forest (RF), an
ensemble method, aggregates multiple decision trees through bagging, which involves
creating numerous subsets and combining several decision trees. Each subset is randomly
sampled with replacement, and certain features are randomly selected as inputs, with the
final classification result based on the majority vote. In this study, a random forest with
5000 trees was used to achieve superior classification performance. The efficacy of the
machine-learning algorithms was evaluated using a confusion matrix.

3. Results and Discussion
3.1. Metabolomic Analysis of Longjing Tea

In this study, the metabolite composition of 78 LJT samples from four regions was
assessed using 1H NMR. The 1H NMR spectra of LJT samples from Zhejiang, Guizhou,
Sichuan, and Guangxi are depicted in Figure 1b. Preliminary comparative analysis revealed
that LJT from Zhejiang and Guizhou exhibited heightened peaks in the high-field region
(0.8–3.5 ppm, corresponding to amino acids) compared to those originating from Sichuan
and Guangxi. In the mid-to-low field region (3.5–5.5 ppm, corresponding to carbohydrates),
Zhejiang and Sichuan samples displayed similar peaks. In the low-field region above
6 ppm (aromatic compounds), Guizhou and Guangxi samples had higher peaks than those

http://www.hmdb.ca/
https://www.metaboanalyst.ca
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from Zhejiang and Sichuan. These findings suggest that the compound composition of LJT
samples varied in different regions.

A representative 1H NMR spectrum of LJT samples can be observed in Figure 1c.
Based on previously reported chemical shifts and combined with public metabolomics
databases [14,18–20], 30 metabolites were identified (Table 1). LJT extracts contain a
diverse array of compounds, including tea polyphenols such as epigallocatechin gallate
(EGCG), epicatechin (EC), epigallocatechin (EGC), and epicatechin gallate (ECG). Moreover,
they also encompass caffeine and amino acids like theanine, isoleucine, and leucine, as
well as organic acids including quinic acid, malic acid, and succinic acid. Additionally,
these extracts are characterized by the presence of carbohydrates such as α-glucose, β-
glucose, and sucrose. In prior research, it has been observed that the bitter taste and
astringency of green tea can be attributed to the existence of EGCG and ECG, which may
be influenced by factors like the type and quality of tea leaves. The umami flavor of green
tea is primarily attributed to the presence of theanine, which exhibits a strong correlation
with the timing of raw material harvest. This suggests that using 1H NMR for metabolite
fingerprinting analysis can reflect differences in the quality of the raw materials used in
LJT from different regions.

Table 1. Thirty major metabolites were identified through the detection of 1H NMR signals in
methanol extracts obtained from LJT samples originating from four distinct geographical locations.

No. Metabolite Chemical Shift, in ppm (Multiplicity)

1 Leucine 0.97(d)
2 Isoleucine 1.03, 1.98
3 Theanine 1.10, 2.13, 2.37, 3.19, 3.72
4 Threonine 1.36, 4.23
5 Alanine 1.46 (d), 3.84
6 Arginine 1.68 (m), 1.90 (m)
7 Lysine 1.71 (m), 1.87 (m)
8 Glutamine 2.01
9 Quinic acid 2.05 (m), 3.54 (dd), 4.04 (dd)
10 Acetic acid 2.07
11 Glutamic acid 2.12 (m)
12 Chlorogenic acid 2.17 (m), 5.33 (m)
13 Malic acid 2.37 (dd), 2.63 (dd)
14 Succinic acid 2.52 (s)
15 EGC 2.62, 4.27, 6.06, 6.55, 6.80
16 EGCG 2.72, 3.08, 5.56, 6.59, 6.92
17 ECG 3.08, 4.81, 6.50, 6.95
18 Caffeine 3.22 (s), 3.38 (s), 3.77 (s)
19 Sucrose 3.43, 3.65, 3.70, 4.08, 4.23
20 α-glucose 3.50, 5.16 (d)
21 Theogallin 2.20, 3.84, 4.20
22 Serine 3.83, 3.97 (m)
23 Fructose 3.56, 4.13
24 β-glucose 3.58, 4.58
25 Rutin 4.52 (d), 5.11 (d), 6.39 (d)
26 EC 6.04, 6.11, 6.50, 6.87, 6.99
27 Quercetin glycoside 6.88, 7.63
28 Kaempferol glycoside 6.96
29 Gallic acid 7.07 (s)
30 Theobromine 7.81

3.2. PCA and sPLS-DA Analysis of Longjing Tea Origin

To evaluate the classification accuracy of LJT, PCA was employed using 1H NMR chem-
ical fingerprints. Additionally, it helped in visualizing the distinction between different
groups and the variability within each group (Figure 2a). Given that principal components
(PCs) are formed by linearly combining the original variables, the visualization of PCA is
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limited in its ability to capture the entirety of variance [21]. The PCA results indicated an
overlap among samples in the PCA score plot, with notable similarities between samples
from Guangxi and Guizhou, likely due to their geographical proximity. Interestingly, simi-
larities were also observed between samples from Zhejiang and Sichuan, suggesting that
geographical factors significantly influence tea quality [22].
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(b) of all 78 LJT samples.

To conduct a more in-depth analysis of the variations in metabolites among the four
regions where LJT is produced, we utilized a supervised model known as sPLS-DA to com-
pare and contrast the distinct groups. The sPLS-DA results indicated that distinguishing
the four production areas remained challenging (Figure 2b). This difficulty was primar-
ily manifested in the high similarity between samples from Sichuan and Zhejiang, with
some samples from Guangxi and Guizhou also overlapping with those from Zhejiang.
Previous studies have demonstrated that using supervised models for origin identifica-
tion can be challenging when samples exhibit highly overlapping or similar metabolite
characteristics, posing challenges for the model in recognizing an adequate number of
sufficient distinguishing features [23]. LJT from different production areas contains similar
primary metabolites; although the concentrations of these metabolites may vary, these
differences remain insufficient for the sPLS-DA model to accurately distinguish between
the production areas.

3.3. Hierarchical Clustering of Longjing Tea Origins

Heatmap and hierarchical clustering analyses were employed to visualize the metabo-
lites of LJT sourced from various geographical origins (Figure 3). Hierarchical clustering
was performed based on the mean values of 25 metabolites selected by ANOVA across sam-
ples from four origins. The grouping of LJT samples by origin revealed three hierarchical
branches. The first branch includes samples from Guangxi and Guizhou; the second branch
comprises samples from Guangxi, Guizhou, and Sichuan; and the third branch indicates
that Zhejiang differs from the other three origins. The hierarchical clustering roughly
corresponds to the geographical proximity of the origins. LJT from Zhejiang exhibits com-
paratively elevated levels of polyphenols, amino acids, and alkaloids in comparison to other
regions. Conversely, Zhejiang demonstrates relatively diminished concentrations of certain
organic acids (such as acetic acid, succinic acid, and chlorogenic acid) and sucrose when
compared to the aforementioned regions. The main flavor components of tea are amino
acids (umami), flavonoids (bitter and astringent), and alkaloids (bitter) [24]. Therefore,
the differences in these substances in the LJT provide clues for origin discrimination and
quality assessment.
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3.4. Machine-Learning Algorithm for Longjing Tea Origins

To enhance the categorization of LJT samples originating from diverse sources, a range
of classification algorithms with varying attributes (linear/non-linear) were examined to
identify the most suitable method for tackling intricate pattern classification issues. LDA,
a well-known linear model, aims to enhance sample discrimination by maximizing inter-
class variance while minimizing intra-class variance [25]. The LDA training set achieved a
classification accuracy of 96.2% (Figure 4a), while the testing set demonstrated an accuracy
rate of 85.6% (Figure 4b). The classification accuracy for Zhejiang reached 85.72%, while the
accuracies for Guangxi, Sichuan, and Guizhou were 60%, 66.67%, and 50%, respectively. RF
is an innovative ensemble technique employed for machine-learning models, particularly
those relying on nonlinear classification trees [26]. The RF algorithm builds numerous
classification trees by randomly picking variables (columns) and data instances (rows),
subsequently combining the outcomes of these trees for the purpose of classification or
regression. The optimized RF model was utilized to distinguish LJT from four distinct
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sources (Figure 4c,d). In comparison to LDA, RF exhibited superior classification accuracy,
achieving a discrimination rate of 100% for the training set and 92.3% for the testing set
(Figure 4). Among the samples, those from Guizhou exhibited the highest classification
error rate, while Zhejiang and Sichuan samples had the lowest. Specifically, one sample
from Guangxi and one from Guizhou were misclassified as Zhejiang. Both of these samples
originate from tea plant varieties transplanted from Zhejiang, indicating that the variety
of raw material significantly impacts the final tea quality. This finding is consistent with
previous research, where Cui et al. reported that the raw material used in tea processing is a
major factor affecting origin-related quality differences [14]. The absence of misclassification
between Sichuan and Zhejiang LJTs, which have similar dimensions, suggests that climatic
conditions are not the primary determinant of tea’s chemical composition. Comparing the
prediction results of nonlinear algorithms with those of linear algorithms, it was found that
nonlinear algorithms outperform linear algorithms in terms of predictive accuracy [14].
This finding is consistent with previous research, which indicates that metabolite levels in
teas from different origins cannot be easily classified using simple linear methods due to the
complex interplay of factors such as tea plant varieties, climate, management practices, and
processing methods [27]. To enhance the differentiation of quality characteristics among
origins, advanced machine-learning algorithms are essential.
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of RF. (d) Testing set of RF. The darker the green and blue colours in the matrix squares, the higher
the accuracy rate.
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3.5. Metabolite Biomarkers Differentiating Longjing Tea Origins

Through RF analysis (Figure 5), 15 potential chemical markers distinguishing LJT
samples originating from various locales have been meticulously identified. Directly
measuring the impact of each feature on the accuracy of the model is what mean decrease
accuracy aims to achieve [28]. This is accomplished by rearranging the sequence of feature
values and assessing the influence of changes in order on model accuracy. A higher average
reduction in accuracy suggests a stronger influence of the variable on RF predictions.
In terms of ranking, the metabolite that holds the utmost significance in distinguishing
between the four production areas is Kaempferol glycoside. Previous research has indicated
that variations in cultivation environments could potentially exert a substantial influence on
the structural alterations observed in specific flavonoid metabolites within LJT of identical
varieties [29]. It has been proposed that geographical origin has less impact on flavonoid
metabolites compared to cultivation variety. Consistent with this, our study found that the
content of Kaempferol glycoside is primarily dependent on the genetic characteristics of the
tea plant, with less impact from the cultivation variety on quercetin glycoside. Quercetin
glycoside and kaempferol glycoside contribute to the mild astringency of the tea brew
and enhance the bitterness of caffeine, making them important components of the tea
flavor [30]. Our study discovered that LJT from Zhejiang has lower levels of kaempferol
glycoside compared to other regions, while quercetin glycoside content is higher than in
other regions (Figure 5a). This may be due to the predominant use of specific varietal
materials, although the high taste threshold of flavonoid glycosides makes it difficult for
assessors or consumers to detect taste differences in the tea infusion. Previous research has
utilized glutamine, a prominent umami amino acid found in tea, as a significant indicator
for differentiating between various types of green tea [31]. Recent studies have shown that
extended processing time and heating temperature reduce glutamine content [32]. Our
study found that glutamine levels are lower in Zhejiang samples compared to other regions,
possibly due to different processing conditions and temperatures, indicating that processing
methods are a significant factor affecting the quality of LJT from different origins.

Furthermore, the RF model’s discrimination results are affected by an additional set of
five amino acids (Theanine, Alanine, Lysine, Leucine, and Isoleucine), ranked in descending
order of significance. In green tea, isoleucine, leucine, and lysine contribute to bitterness,
alanine is considered a sweet amino acid, and theanine is regarded as the primary umami
amino acid [33]. The variation in the origin of LJT may result in differences in its taste
due to variances in amino acid composition. Previous research has suggested that certain
amino acids (proline, valine, and glutamic Acid) exhibit stability throughout the processing
stages, whereas others (isoleucine, leucine, lysine, alanine, and theanine) are more prone to
reduction during processing [34]. This suggests that differences in amino acids in LJT may
be primarily influenced by processing, with these six amino acids helping to differentiate
closely related geographic regions. ECG is one of the primary contributors to the bitterness
and astringency of tea infusion [35]. The higher content of ECG in LJT from Zhejiang
compared to other regions is primarily due to the combined effects of cultivar selection,
agronomic practices, and processing methods. Glucose and fructose contribute sweetness
to tea infusion. Prior research has suggested a correlation between the temperature at
which tea leaves grow and the buildup of carbohydrates in them [36]. Our research found
that the glucose and fructose content in tea from Zhejiang and Sichuan is higher compared
to that from Guizhou and Guangxi. This disparity may be attributed to the fact that
LJT from Guizhou and Guangxi is harvested from tea plants grown in southern China,
where the environment features higher light intensity and temperatures, leading to lower
carbohydrate accumulation in the tea plants [37]. Conversely, in the core production area of
LJT, higher quality standards are typically enforced. As a result, only the new shoots from
early spring, just after winter, are collected for processing into LJT. In contrast, in other
regions, new tea shoots are collected and processed throughout both spring and summer,
during which carbohydrate accumulation in tea leaves is lower, resulting in a reduced
sweetness in the tea infusion.
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values for each sample, and the yellow dots represent the within-group average values.

In recent studies, 1H NMR has been recognized as an effective method for assessing the
origin of black tea [14]. Our study reveals that 1H NMR also exhibits considerable potential
in assessing the provenance of green tea. Previous investigations have identified glucose,
sucrose, EGCG, EGC, EC, caffeine, theanine, alanine, and threonine as crucial indicators
for distinguishing the source of green tea [38]. Our study confirms the significance of
glucose, caffeine, and theanine in tea origin identification and reveals that, for LJT, key
distinguishing compounds include kaempferol glycoside, which is significantly affected
by cultivar; glutamine, which is influenced by processing; and ECG, which is impacted by
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multiple factors. RF modeling indicates that the key variables for differentiating the origin
of LJT are predominantly influenced by cultivar and processing methods. The importance
of these variables highlights that the varietal variations play a pivotal role in differentiating
the source of LJT.

In brief, we have devised a quick and uncomplicated technique for determining the
source and assessing the quality of Longjing tea. In contrast to the 40 min digestion period
needed for identifying green tea origin through ICP-MS [8] and the 42 min detection time
required for black tea origin identification using HS-GC/MS [9], our sample preparation
requires only 15 min, followed by a detection time of only 2 min. This significant reduction
in processing time facilitates the establishment of large datasets. In addition, the high
reproducibility of NMR results compared to analytical methods such as LC-MS [39] and
GC-MS [40] enhances the stability of model performance in academic research. Considering
the influence of production and storage years on tea metabolites, more LJT samples from
different years still need to be collected for analysis in practical applications to help optimize
the machine-learning model to ensure the accuracy of the identification results.

4. Conclusions

This study employed a combination of 1H NMR chemical fingerprints and machine-
learning algorithms to analyze 78 Longjing tea samples from four major production regions.
In these samples, a total of 30 metabolites were identified, including tea polyphenols, or-
ganic acids, carbohydrates, and alkaloids. Accurate identification of the origin of Longjing
tea was achieved using 1H NMR chemical fingerprint information combined with a non-
linear algorithm (random forest), achieving an identification rate of 92.3%. The study
thoroughly discussed the impact of raw material cultivar and processing conditions on the
discrimination results. By analyzing the average decrease in random forest classification ac-
curacy, 15 important variables were identified. Kaempferol glycoside, significantly affected
by cultivar; glutamine, influenced by processing; and ECG, impacted by both cultivar and
processing, were identified as major discriminatory factors. The findings suggest that the
utilization of machine-learning algorithms in conjunction with 1H NMR can serve as an
efficient approach to assess the excellence and source of high-grade green teas, thereby
contributing to quality management within the tea industry. This methodology offers
a swift, consistent, and replicable means for certifying the origin of various agricultural
products or food items.
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