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Abstract: With economic growth and improved living standards, the incidence of metabolic diseases
such as diabetes mellitus caused by over-nutrition has risen sharply worldwide. Elevated blood
glucose and complications in patients seriously affect the quality of life and increase the economic
burden. There are limitations and side effects of current hypoglycemic drugs, while probiotics,
which are safe, economical, and effective, have good application prospects in disease prevention and
remodeling of intestinal microecological health and are gradually becoming a research hotspot for
diabetes prevention and treatment, capable of lowering blood glucose and alleviating complications,
among other things. Probiotic supplementation is a microbiologically based approach to the treatment
of type 2 diabetes mellitus (T2DM), which can achieve anti-diabetic efficacy through the regulation of
different tissues and metabolic pathways. In this study, we summarize recent findings that probiotic
intake can achieve blood glucose regulation by modulating intestinal flora, decreasing chronic
low-grade inflammation, modulating glucagon-like peptide-1 (GLP-1), decreasing oxidative stress,
ameliorating insulin resistance, and increasing short-chain fatty acids (SCFAs) content. Moreover,
the mechanism, application, development prospect, and challenges of probiotics regulating blood
glucose were discussed to provide theoretical references and a guiding basis for the development of
probiotic preparations and related functional foods regulating blood glucose.

Keywords: probiotics; blood glucose regulation; type 2 diabetes mellitus; gut microbiota; insulin
resistance; intestinal flora

1. Introduction

With the improvement of people’s living standards, a series of changes in dietary struc-
ture and lifestyle have occurred, leading to a rapid increase in the prevalence of metabolic
diseases. Globally, the number of people with diabetes is expected to be 643 million by 2030
and 783 million by 2045 [1]. Diabetes mellitus is divided into three categories: type 1 dia-
betes mellitus (T1DM), type 2 diabetes mellitus (T2DM), and gestational diabetes mellitus
(GDM), with the most significant number of patients suffering from T2DM, accounting for
about 90% of the total number of diabetic patients, which has now become a major global
crisis [2,3]. Diabetes-related complications such as macrovascular lesions, microangiopathy,
and tumors have become the leading cause of death and disability among diabetic patients
in the country. Therapeutic measures at this stage cannot cure diabetes but can delay the
onset and mitigate complications [4]. Currently, insulin therapy is effective but costly, and
IDF data show that there are about 450 million people with diabetes worldwide, and the
annual treatment cost is as high as USD 670 billion. There are many hypoglycemic drugs
such as metformin, miglitol, acarbose, and glyburide, but each has different toxicity and
side effects such as hypoglycemia, body mass increase, edema, nausea, etc. [5,6]. There-
fore, most of the current research on T2DM has focused on exploring novel therapeutic
approaches without toxic side effects.
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Probiotics are a class of active microorganisms beneficial to the host. They can effec-
tively colonize the human intestinal tract, improving the intestinal microecosystem when
ingested in certain quantities, thus regulating the body’s intestinal flora. Probiotic therapy
has good application prospects in disease prevention and remodeling of intestinal health
due to its low cost, high safety, and reliability [7,8]. According to statistics, the global market
of probiotic foods, dietary supplements, and probiotic raw materials is growing at 15% to
20% per year. Probiotics and their products have been shown to improve barrier function,
reduce inflammation levels, and enhance immunomodulation. They are considered eco-
nomical and safe alternatives for treating chronic diseases [9–12]. Some probiotics and their
main functions are shown in Table 1. In recent years, some studies have found that intesti-
nal flora and homeostasis play an essential role in the treatment of T2DM, and progress has
been made in both clinical studies and scientific research. For example, the results of clinical
studies have shown that probiotics can regulate blood glucose in patients with T2DM and
that probiotics reduce blood glucose and inflammatory responses by improving intestinal
flora, leaky gut, and endotoxemia in patients with T2DM [13,14]. Probiotics in scientific
studies improved T2DM by mediating the gut microbial-SCFA-hormone/inflammatory
pathway in mice [15]. Therefore, probiotics and their products will play an essential role in
improving the health of T2DM patients in the future (Figure 1).

Table 1. Probiotics and their main functions.

Bacterial Genus Probiotics Main Functions Reference

Bifidobacterium

Bifidobacterium infantis

Prevent constipation, regulate blood glucose, inhibit intestinal
pathogens, regulate intestinal balance, reduce cholesterol, promote
the digestion and absorption of nutrients, delay aging, and enhance

the body’s immune activity.
[16–18]

Bifidobacterium longum
Bifidobacterium bifidum
Bifidobacterium breve

Bifidobacterium animalis
(Bifidobacterium lactis)

Bifidobacterium adolescentis

Lactobacillus

Lactobacillus fermentum

Prevent diarrhea and intestinal infections, relieve inflammatory
intestinal diseases, regulate blood glucose, improve insulin

resistance, increase SCFA levels, inhibit the growth of pathogenic
bacteria, and reduce cholesterol levels.

[19–24]

Lactobacillus casei
Lactobacillus plantarum
Lactobacillus rhamnosus

Lactobacillus reuteri
Lactobacillus paracasei

Lactobacillus acidophilus
Lactobacillus crispatus

Lactobacillus bulgaricus
Lactobacillus gasseri

Lactobacillus helveticus
Lactobacillus johnsonii
Lactobacillus salivarius

Lactobacillus sakei

Lactococcus
Lactococcus Lactis subsp. Lactis

Regulate immunity and produce antimicrobial substances. [25,26]Lactococcus Lactis subsp. Cremoris
Lactococcus Lactis subsp. Diacetylactis

Streptococcus Streptococcus thermophiles Regulate immunity and improve intestinal microenvironment. [27]

Leuconostoc Leuconostoc mesenteroides
subsp. Mesenteroides

Regulate immunity, inhibit harmful bacteria, and improve
intestinal microenvironment. [28–30]

Bacillus Bacillus coagulans Relieve and treat diarrhea, constipation, and indigestion. [31]

Propionibacterium
Propionibacterium freudenreichii

subsp. Shermanii Regulate immunity, promote intestinal flora balance, and
anti-inflammatory. [32,33]

Propionibacterium acidpropionici

Pediococcus
Pediococcus acidilactici Enhance immunity, promote intestinal flora balance,

anti-inflammatory, and inhibit pathogenic bacteria. [34–36]Pediococcus pentosaceus

Saccharomyces
Kluyveromyces marxianus Enhance immunity, anti-inflammatory, and inhibit the growth of

pathogenic bacteria. [37–39]Saccharomyces cerevisiae
Saccharomyces boulardii

Staphylococcus

Staphylococcus fleurettii

As a starter and enrich the flavor of the product. [40–42]
Staphylococcus hominis
Staphylococcus aureus

Staphylococcus carnosus
Staphylococcus vitulinus
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This paper reviews the mechanism of action, application, development trend, prospects,
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basis for the development of microecological agents for regulating blood glucose (Figure 2).
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Figure 2. Schematic representation of the topic.

2. Methods

This review was conducted by electronically searching the literature using the Web
of Science. A total of 1599 papers that focused on probiotics and blood glucose from 2014
to 2024 were collected. The publication trend of the review topic keywords is shown in
Figure 3. The keywords co-occurrence network illustrated the progress in research on the
role and mechanism of probiotics supplementation in blood glucose regulation (Figure 4).
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3. Pathogenesis and Research Status of T2DM

As we all know, diabetes is a chronic metabolic disease that occurs when the body
cannot effectively use or produce insulin. The typical feature of diabetes mellitus is that
the body cannot maintain normal blood sugar levels, mainly manifested as irritable thirst,
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excessive eating, polyuria, weight loss, and so on [43]. This chronic metabolic disorder
has become a global health problem due to the severe harm it causes to human health [44].
Accelerated urbanization, aging, and lifestyle changes have led to an increase in the rate
of obesity, which in turn increases the prevalence of diabetes mellitus and cardiovascular
diseases [45]. T2DM is considered as an intestinal disorder that predominates in diabetic
patients and is mainly caused by disturbances in glucose metabolism regulated by pancre-
atic β-cells [46]. Insulin is a peptide hormone secreted by the pancreas by the β-cells which
regulates the uptake of glucose in the corpuscular circulation by activating hepatocytes
and myocytes as a source of energy or by storing it in the form of glycogen in hepatocytes
or skeletal muscle cells. Due to insulin resistance, reduced insulin receptor function and
instability of pancreatic β-cells result in the inability of the cells to take up blood glucose,
which in turn leads to T2DM [47] (Figure 5). In addition to this, during the formation
as well as development of diabetes mellitus, dysbiosis of intestinal flora and endotoxins
produced by harmful flora further trigger inflammatory response, oxidative stress, and
destruction of pancreatic β-cells leading to T2DM and complications.
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of islet β-cell. This significantly reduces the level of insulin circulating in the blood. In addition,
peripheral tissue insulin resistance impairs insulin action, and reduced insulin levels and action can
lead to hyperglycemia and hyperlipidemia.

T2DM also leads to many complications in addition to the typical symptoms, such
as heart disease, stroke, kidney failure, amputation, loss of vision, nerve damage, and
increased risk of premature death, with cardiovascular disease being the leading cause
of morbidity and mortality in diabetic patients [48–50]. In recent years, patients with
T2DM have had an increased risk of death. These complications seriously affect the quality
of life of patients and increase economic and family stress, making the treatment and
prevention of diabetes urgent. The most effective therapeutic measure at this stage is
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insulin, but the cost of insulin therapy is high, and only about 50% of patients with T2DM
receive the required insulin therapy [51]. Moreover, different hypoglycemic agents are
tolerated differently (in terms of glycemic control) and have some side effects. In addition
to increasing exercise, paying attention to diet, and keeping a comfortable mood, there has
been some progress in the research on the use of probiotics to regulate T2DM. However, it
is not without side effects.

4. The Role and Mechanism of Probiotics in Blood Glucose Regulation

Some studies have shown that probiotics regulate blood glucose by regulating intesti-
nal flora balance, intestinal immunity, microbial-gut-brain axis, microbial-gut-hepatic axis,
and other pathways (Figure 6) [52,53]. Research on the mechanism of probiotic action on
host blood glucose regulation is gradually deepening, and the existing mechanisms of
action may include the following pathways: (1) Probiotics can form a biological immune
barrier with intestinal mucosa to maintain the balance of intestinal flora [54]. (2) Probiotics
can reduce insulin resistance and repair oxidative damage to pancreatic β-cells to regulate
blood glucose [55]. (3) Probiotics attach to the intestinal mucosa through adhesins on their
surface, constituting a biological barrier and releasing immune factors, thus enhancing
the body’s immune function [56]. (4) Probiotics may reduce oxidative stress by decreas-
ing chronic low-grade inflammation [57]. (5) Probiotics may increase autonomic activity
and regulate the activity of enzymes related to glucolipid metabolism [58]. (6) Probiotics
can produce substances such as bacteriocins, which protect the pancreatic islets, promote
the function of pancreatic islets, and inhibit α-glucosidase, playing a key role in regulat-
ing blood glucose [59]. (7) The peptides produced during the proliferation of probiotics
can inhibit the activity of postsynaptic neurons through the brain-gut axis and improve
metabolism [60].
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4.1. Probiotics Regulate Blood Glucose by Improving Intestinal Flora

The gut microbiota is widely recognized as one of the most important components
in maintaining homeostasis. It is closely associated with health and disease in humans
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and other mammals, and many diseases are accompanied by disorders of the gut micro-
biota [61]. More and more studies have shown that the development of T2DM is related
to host genetics and environmental factors, and intestinal flora, as a significant environ-
mental factor, is closely associated with the occurrence and development of T2DM [62].
Probiotics can colonize the human intestinal tract, improve human intestinal flora, regulate
metabolism, and maintain the balance of the intestinal system. Probiotics alleviate and
treat diabetes by improving the intestinal barrier function, changing the intestinal flora,
increasing the content of SCFAs, decreasing oxidative stress and antioxidant effects, inhibit-
ing the activity of enzymes related to glucose absorption, increasing the activity of bile
salt hydrolase, and absorption or adsorption of cholesterol. The parts are interrelated and
work together to achieve anti-diabetic efficacy [63–65]. Probiotic complexes reduce E. coli
and lipopolysaccharide levels and improve intestinal barrier function by increasing levels
of SCFA-producing bacteria and SCFAs [66]. Park et al. [67] found that treatment with
Lactobacillus flexneri HY7601 and Lactobacillus plantarum KY1032 resulted in reduced body
weight gain and changes in the intestinal flora of obese mice fed a high-fat diet. The probi-
otic blend, VSL#3, has been shown to inhibit weight gain and insulin resistance by altering
the composition of the gut flora [68]. The combination of probiotics has a more pronounced
effect on blood glucose regulation by improving the intestinal SCFA-producing flora, which
in turn plays a role. Therefore, probiotics can have a preventive effect on the occurrence
and development of metabolic diseases such as diabetes by improving the composition of
intestinal flora, increasing beneficial bacteria, and inhibiting harmful bacteria.

4.2. Probiotics Regulate Blood Glucose by Regulating Glucagon-like Peptide-1

Glucagon-like peptide-1 (GLP-1) is a peptide composed of 31 amino acids, which
is an enteric hypoglycemic hormone. When the human body eats, intestinal probiotics
can utilize nutrients related to their metabolism to produce a variety of metabolites and
stimulate the secretion of GLP-1 from intestinal L-cells, which helps to maintain blood
glucose balance in the body, reduce food intake, inhibit obesity, and alleviate T2DM among
other things [69,70]. Long-term obesity not only destroys the function of pancreatic β-
cells and leads to abnormalities in glucose and lipid metabolism but also increases the
synthesis of Dipeptidyl peptidase-IV (DPP-IV) in the body and promotes the degradation
of GLP-1 [71,72]. Therefore, diet-induced obesity may be a pre-sign of T2DM. Probiotics can
influence the metabolites of the intestinal flora to activate metabolic pathways in the host
and stimulate the secretion of GLP-1 from intestinal L-cells, which in turn alleviates T2DM
and enhances the antioxidant capacity of host cells by increasing the levels of peroxide
dismutase in vivo. This contributes to the scavenging of free radicals in vivo and reduces
the incidence of complications from T2DM [73,74]. Figure 7 demonstrates that probiotic
bacteria stimulate GLP-1 secretion in host cells by producing metabolites to stimulate the
secretion of GLP-1 after the mitigating effect on T2DM. When the nutrients ingested by the
body from the outside stimulate the signaling molecules on the intestinal cells, the intestinal
L-cells will secrete and release GLP-1, which can repair the function of pancreatic β-cells.
While doing this, it can also stimulate pancreatic β-cells to divide, gradually restoring
their number and promoting insulin secretion back to the average level [75]. However,
the gut is not the only source of GLP-1. It is also secreted in the brain. Recent studies
have found that strains such as Lactobacillus paracasei 1F-20, Lactobacillus fermentum F40-4,
and Bifidobacterium animalis subsp. paracasei promote the secretion of GLP-1 and peptide
YY (PYY) by up-regulating the glucagon gene (GCG) and PYY genes in stanniocalcin-1
(STC-1) cells. Their metabolites can be regulated by peroxisome proliferator-activated
receptor-α (PPARα), sterol regulatory element binding protein-1C (SREBP-1C), patatin-
like phospholipase domain containing 3 (PNPLA3), and other regulatory genes reaching
the liver to improve lipid accumulation and increase glucose uptake by up-regulating
PI3K/AKT activity to restore the insulin signaling system [76]. Acetic acid, propionic acid,
and butyric acid are SCFAs that play important probiotic roles in the human body [77].
Studies have shown that fecal levels of acetic acid and butyric acid were significantly
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elevated after fecal transplantation interventions, which led to activation of the GLP-1
pathway by SCFAs and elevated GLP-1 protein expression in colonic tissues, thereby
ameliorating glycolipid disorders [78]. In the future, by exploring the mechanism of action
of probiotics and their metabolites on host intestinal cells and regulating their continuous
production of GLP-1, we can further clarify the remission effect of probiotics on T2DM and
finally provide universal, safe, and effective remission for T2DM patients and promote
human health.
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and enhances the antioxidant capacity of host cells by increasing the content of peroxide dismutase
in the body, which helps to clear free radicals and reduce the occurrence of T2DM complications.

4.3. Probiotics Regulate Blood Glucose by Lowering Inflammation Levels

T2DM is associated with elevated levels of pro-inflammatory cytokines, chemokines,
and inflammatory proteins. Therefore, low-grade systemic inflammation is believed to
play a vital role in the development of T2DM and its associated complications [79,80]. The
results of the latest clinical trial studies have also shown that the levels of interleukin-6
(IL-6), tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β) are significantly higher
in T2DM patients than in normal subjects [81]. Studies have shown that diabetic patients
have increased intestinal permeability, which correlates with the persistently low level
of chronic inflammation present in their intestines, and that the intestinal mucus layer
serves as an important barrier that prevents intestinal bacteria from invading the mucosa
and causing inflammation [82,83]. Probiotics may ameliorate inflammation by exerting
a positive effect on the dysfunction of the epithelial cells and mucosal immune system
that form the basis of inflammation. Probiotics alleviate the body’s symptoms in patients
with prediabetes and T2DM by reducing inflammation and modulating immunity [84,85].
Amar et al. [86] in their study of the effects of probiotics on bacterial translocation and glu-
cose metabolism in high-fat diet-induced diabetic mice, found that Bifidobacterium animalis
Lactobacillus 420 application was able to alter the bacterial translocation in the early stages
of diabetes and reduce cytokines in tissues TNF-α, IL-1β, plasminogen activator inhibitor-1
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(PAI-1), and IL-6 expression. Lactobacillus plantarum JY039 extracellular polysaccharide and
Lactobacillus paracasei JY062 alleviated T2DM by balancing pro-inflammatory factor IL-6,
TNF-α, and anti-inflammatory factor Interleukin-10 (IL-10) to reduce inflammation [87].
In addition, probiotics can maintain the stability of the intra-immune environment by
balancing pro-inflammatory and anti-inflammatory immune responses, in which SCFAs
play an important role in regulating T-cell function and exerting anti-inflammatory effects.
The effects of probiotics on inflammatory pathways, weight gain, and glucose metabolism
in animals are primarily attributed to the production of SCFAs, which promote the gen-
eration and differentiation of regulatory T-cells by directly activating G-protein-coupled
receptors and inhibiting histone deacetylase which are potent anti-inflammatory factors.
The inflammatory response is alleviated by inhibiting the release of pro-inflammatory
factors in lamina propria macrophages [88–90].

4.4. Probiotics Regulate Blood Glucose by Improving Oxidative Stress

Oxidative damage and antioxidant capacity play essential roles in the pathogenesis
of diabetes. Hyperglycemia can directly cause reactive oxygen species (ROS) to increase,
and these oxygen free radicals induce oxidative stress, which in turn damages the endoge-
nous antioxidant defense system [91–93]. The intake of probiotics can reduce markers of
inflammation and oxidative stress, and improve blood glucose and insulin metabolism [94].
Zhang et al. [95] reported that the effect of probiotics on glucose metabolism could be
achieved by reducing oxidative stress. Yadav et al. [96,97] showed that probiotics can
improve the antioxidant content of glutathione, superoxide dismutase, catalase, and glu-
tathione peroxidase in diabetic rats by inhibiting lipid peroxidation, thereby reducing
oxidative damage, increasing insulin secretion, reducing glycosylated hemoglobin level,
and reducing intestinal absorption of glucose. This can restore blood glucose to normal
levels and ease the development of T2DM.

4.5. Probiotics Regulate Blood Glucose by Improving Insulin Resistance

Probiotics can improve insulin sensitivity in patients. The binding of SCFAs produced
by them to their receptors can significantly reduce fasting blood glucose, fasting plasma
insulin, and insulin resistance index levels. In addition, mixed probiotic supplementa-
tion can reduce hepatic transaminases and insulin resistance levels, among others [92,98].
Siebler et al. [99] demonstrated that oral administration of Bifidobacterium bifidum reduced
intestinal endotoxin concentration, improved glucose tolerance, and alleviated insulin
resistance in an animal model, thereby regulating blood glucose.

4.6. Probiotics Regulate Blood Glucose by Raising Adiponectin Levels

Adiponectin is an endogenous bioactive polypeptide or protein secreted by adipocytes,
and its level is positively correlated with insulin, which can reflect the efficacy and prognosis
of T2DM to a certain extent [100]. Compared with healthy people, adiponectin levels in
T2DM patients are reduced, and the reduction is more obvious in T2DM patients with
complications such as atherosclerosis [101]. Adiponectin improves insulin resistance and
protects β-cells by increasing insulin sensitivity. Clinically, it shows hypoglycemic and anti-
inflammatory potential, alleviating insulin resistance and enhancing glucose metabolism,
which are therapeutic targets for diabetes [102,103].

4.7. Probiotics Regulate Blood Glucose by Increasing Levels of SCFAs

By regulating the intestinal microenvironment, probiotics can increase the abundance
of SCFA-producing bacteria and inhibit the growth of other pathogenic bacteria such as
Escherichia coli in the intestine, thereby increasing the content of SCFAs in the intestine [104,105].
This can help diabetic patients maintain blood glucose balance and effectively relieve
T2DM (Figure 8). SCFAs, including butyric acid, acetic acid, and propionic acid, are
produced when gut bacteria ferment dietary fiber. SCFAs have a profound effect on insulin
sensitivity and energy metabolism, altering the levels of several intestinal peptides involved
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in glucose metabolism, intestinal barrier function, and energy homeostasis. For example,
butyric acid and propionic acid can inhibit weight gain in obese mice induced by high-fat
diets, and acetic acid can reduce food intake in healthy mice [106,107]. The influence of
probiotics on metabolic diseases may be partly due to the metabolic regulation of their
metabolites—SCFAs and bile acids (BAs). In addition to providing energy substances for
the body, SCFAs also play an essential role in regulating insulin sensitivity and energy
metabolism [108]. The effects of probiotics on inflammatory pathways, weight gain, and
glucose metabolism in animals are primarily attributable to SCFA production [109]. It has
been found that SCFAs directly bind to free fatty acid receptor 2 (FFAR2) in mouse’s white
adipose tissue as a signaling molecule, inhibiting insulin signal transduction in adipose
cells, thereby inhibiting fat accumulation and increasing energy consumption in the liver
and muscle [110]. On the other hand, SCFAs as an essential nutrient in the intestinal mucosa
promote the growth and differentiation of intestinal epithelial cells and up-regulate the
expression of the intestinal tight junction protein gene and proglucagon glucagon-like
peptide-2 (GLP-2) gene in intestinal L-cells, thus strengthening the tight junction between
intestinal epithelium, reducing intestinal permeability, and improving intestinal barrier
function. This reduces bacterial translocation and endotoxemia, thereby controlling obesity
and T2DM [111].
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5. Application of Probiotics to Control Blood Glucose

Currently, in experimental and clinical studies, probiotics may regulate blood glucose
in T2DM through a combination of the following pathways: production of substances
such as bacteriocins, decreasing inflammation, regulating the intestinal flora, increasing
the content of SCFAs, enhancing immunity, and improving insulin resistance. In animal
models (Table 2), probiotics can lower blood glucose and prevent damage to pancreatic
β-cells by improving inflammation. Lactobacillus and Bifidobacterium have been shown to
improve glucose tolerance and insulin resistance, and Bifidobacterium spp. can improve
glucose homeostasis in mice induced by a high-fat diet [112,113]. In clinical studies (Table 3),
probiotic intervention studies have revealed positive effects on glucose metabolism. Among
them, the hypoglycemic effects of Lactobacillus and Bifidobacterium have been demonstrated
in several studies [114,115].

In addition, in recent years, consumers have increasingly favored probiotic prepara-
tions and functional foods containing probiotics that improve gastrointestinal health and
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other functions in the market. Due to the advantages of mild hypoglycemic effect, stable
nature, and remarkable effect, probiotics for blood glucose regulation have broad market
application prospects. Fruits and vegetables are rich in dietary fiber, vitamins, and various
phytochemicals. Dietary modification based on fruits and vegetables is undoubtedly an
important direction for the prevention and treatment of T2DM and other chronic diseases.
Fermented foods can provide us with more probiotics and prebiotics than other types of
supplements. Carrots contain hypoglycemic substances and are a good dietary supplement
for diabetics. Xiong et al. [116] prepared fermented carrot juice using Lactobacillus plantarum
NCU116, which has a hypoglycemic function. Carrot juice fermented with probiotics can
not only preserve the fermented flavor, but also meet the basic requirements of modern
human healthcare. Johansson et al. [117] applied Lactobacillus reuteri 180, which has a hy-
poglycemic effect on fermented fruit juice. In addition, probiotics can also cooperate with
drugs or traditional Chinese medicine to play a role in lowering blood glucose. Studies have
found that the combination of probiotics and metformin can enhance the hypoglycemic
effect of metformin by regulating intestinal flora and up-regulating intestinal SCFAs [118].
Jang et al. [119] showed that fermented red ginseng with oral probiotics could reduce
fasting blood glucose, improve glucose tolerance, and alleviate symptoms of diabetic mice.
Flavonoids, alkaloids, polysaccharides, terpenes, and polyphenols in probiotics-fermented
fruit juice have an auxiliary hypoglycemic effect.

Table 2. Experimental study on the effect and mechanism of probiotics on diabetes mellitus.

Probiotics Animal Model Dosage Duration Results Reference

Lactobacillus plantarum
HAC01

STZ-induced C67BL/6J
mice, T2DM 1 × 109 CFU/mL 10 weeks

Insulin-positive β-cells area of
the islet ↑

FBS, HbA1c, OGTT and
HOMA-IR ↓

Lee et al. [120]

Lactiplantibacillus plantarum
Y15

STZ-induced C57BL/6J
mice, T2DM 3 × 108 CFU/mL 6 weeks

Proinflammatory factors
and LPS ↓

SCFA-producing bacteria ↑
Regulated the expression of

genes related to inflammation
and insulin signaling pathways

Liu et al. [121]

Lactobacillus gasseri Western diet–induced
C57BL/6J mice, T2DM 1 × 109 CFU/mL 8 weeks

Serum glutathione and
bilirubin ↑

Blood glucose, blood lipids ↓
Rodrigues et al. [122]

Lactobacillus plantarum
CGMCC 8198

High fat diet–induced
Kunming mice, T2DM 0.2 mL/10 g 8 weeks

Harmful bacteria, blood
glucose, and blood lipids ↓

Immunity ↑
Jiang et al. [123]

Akkermansia muciniphila STZ-induced SD
rats, T2DM 1 × 1010 CFU/mL 4 weeks

HDL-C ↑
Liver glycogen, plasminogen
activator inhibitor-1, TNF-α,

LPS, malondialdehyde, GLP-1
↓

Zhang et al. [124]

Lactobacillus reuteri
GMNL-263

STZ-induced Wistar
rats, T2DM 1 × 109 CFU/mL 4 weeks

Activate the IGF1R cells’
survival pathway ↑

Cells apoptosis via the IGF1R
survival pathway in diabetic

rats ↓

Koay et al. [125]

Lactobacillus sakei Probio-65
and Lactobacillus plantarum

Probio-093

High fat diet–induced
C57BL/6J male

mice, T2DM
0.25 mg/g/day 8 weeks

α-glucosidase, α-amylase,
blood glucose, and body

weight ↓
Regulated the intestinal flora

Gulnaz et al. [126]

Lactobacillus fermentum
TKSN041

STZ-induced Wistar
male rats, T2DM — —

Blood glucose, tissue damage;
body weight, blood lipids, and

inflammation levels ↓
Zhou et al. [127]

Lactobacillus fermentum
MCC2759 and Lactobacillus

fermentum MCC2760

STZ-induced Wistar
rats, T2DM 1 × 109 CFU/mL 12 weeks OGTT, Insulin, IL-10, ZO-1,

GLP-1 ↓ Archer et al. [128]

CFU, colony-forming unit; FBS, fasting blood glucose; HbA1c, glycated hemoglobin; OGTT, oral glucose tolerance
test; HOMA-IR, homeostasis model assessment of insulin resistance; LPS, lipopolysaccharides; HDL-C, high-
density lipoprotein cholesterol; IGF1R, insulin-like growth factor 1 receptor; ZO-1, zona occludens protein-1;
—, Not reported; ↑, rise; ↓, decline.



Foods 2024, 13, 2719 12 of 21

Table 3. Clinical studies on the effect and mechanism of probiotics on diabetes.

Probiotics Sample Dosage Duration Results Reference

Bifidobacterium bifidum and
Lactobacillus acidophilus 20 patients with T2DM 1 × 108 CFU/mL 2 weeks HDL-C ↑

Fasting glycemia ↓ Moroti et al. [129]

Lactobacillus paracasei HII01 50 patients with T2DM 50 × 109 CFU/d 12 weeks FBS, LPS, TNF-α, IL-6 and
hsCRP ↓ Toejing et al. [14]

Lactobacillus acidophilus,
Lactobacillus casei, and
Bifidobacterium bifidum

60 patients with TDM 2 × 109 CFU 12 weeks Blood glucose and insulin
sensitivity ↓ Soleimain et al. [130]

Lactobacillus acidophilus,
Lactobacillus casei and

Lactobacillus rhamnosus
54 patients with T2DM 1 × 109 CFU/mL 8 weeks

TGL and HOMA-IR plasma
levels ↑

Serum CRP ↓
Asemi et al. [114]

Lactobacillus acidophilus 136 patients with T2DM 1 × 108 CFU 12 weeks
Blood glucose ↓

Activity of antioxidant
enzymes ↑

Mirmiranpour et al. [131]

Lactobacillus reuteri
DSM 17938 46 patients with T2DM 1 × 1010 CFU/d 12 weeks

FBS, HbA1c, insulin, TC, TG,
LDL-C, CRP ↓

HDL-C ↑
Mobini et al. [132]

Lactobacillus sporogenes 81 patients with T2DM 1 × 108 CFU 8 weeks Serum insulin levels ↓ Tajadadi et al. [133]

hsCRP, high-sensitivity c-reactive protein; TGL, total glutathione level; CRP, C-reactive protein; TC, total choles-
terol; TG, triglycerides. ↑, rise; ↓, decline.

6. Future Development Prospect of Probiotics to Regulate Blood Glucose

There is an increasing interest in the study of probiotic regulation of blood glucose.
Regulation of gut microbiology by probiotics is a potential mechanism. According to
the different properties of probiotics, it is theoretically feasible to select different and
appropriate combinations to regulate gut microecology in diabetic patients. With the
research on the relationship between gut microbes, obesity, and T2DM, we need to focus
on the future screening of potential hypoglycemic probiotics, the development of synthetic
biology, the utilization of the next generation of probiotics, and the application of postbiotics
and paraprobiotics.

6.1. Screening of Potential Hypoglycemic Probiotics

The screening probiotics need to meet the following three core characteristics: safe
and harmless and have a healthy effect on the body, maintain a viable state of bacteria,
and have sufficient quantities. At present, there are two main models for the isolation and
identification of probiotics: (1) In vitro screening model of Caco-2 cells: simulates intestinal
transport in vivo to screen probiotics with excellent performance rapidly and analyzes the
bacterial strain’s adhesion to the intestine and its impact on intestinal barrier function;
(2) Mouse digestive model by gavage: dietary intervention (i.e., adding probiotics to food)
was carried out with the help of sterile mouse model and the function of probiotics was
explained through the apparent changes in mice [134,135]. The relevant research contents
mainly focused on anti-tumor, anti-cancer, diabetes prevention, intestinal inflammation
treatment, and obesity prevention. Wang et al. [136] took the world’s characteristic food-
borne substances as the source of lactic acid bacteria and determined the α-glucosidase
inhibition ability of the strain. Screened Lactobacillus rhamnosus LB1lac10 had the effect of
lowering blood glucose. At the same time, it was determined that the exopolysaccharide
extracellular polysaccharide (EPS1-1) produced by this strain may also act as a natural
α-glycosidase inhibitor to regulate blood glucose concentration, and this strain and its
exopolysaccharide have particular potential in the development of hypoglycemic foods in
the future.

The rapid development of high-throughput sequencing technology in recent years
has made it possible to conduct an in-depth analysis of complex samples of traditional fer-
mented food, soil, feces, and so on, filling the data missing caused by technical defects, and
promoting the comprehensive analysis of microbial community structure characteristics,
functional genes, metabolic pathways, and other information. This lays a foundation for
the efficient screening and development of probiotics and then provides new ideas and
methods for the exploration and development of beneficial microorganisms, especially
those regulating blood glucose [137–139].
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6.2. Development of Synthetic Biology

In recent years, with the development of synthetic biology, the next generation of
microbial therapies focuses on transforming probiotics into “drug synthesis factories” that
can autonomously replicate and detect abnormal conditions to synthesize and release thera-
peutic factors in the human body. The engineering transformation of natural probiotics and
the application of the obtained engineering probiotics to disease monitoring and targeted
therapy is a very effective and feasible strategy with a broad application prospect. The
therapeutic advantages of engineered probiotics are apparent, such as low cost, few side
effects, and simple treatment mode [140]. Studies have shown that engineered symbiotic
bacteria can reprogram intestinal cells into glucose-responsive insulin-secreting cells to
treat diabetes [141]. Zhang et al. [142] constructed optogenetically regulated engineered
Lactobacillus by synthetic biology to achieve controlled secretion of GLP-1 in the organism’s
intestine under in vitro blue-light stimulation, thus exerting a role in regulating blood
glucose. At present, medicine is moving towards the stage of individualized treatment, and
probiotics as carriers can play a pivotal role in this field [143]. In the future, each probiotic
could be used as a tailored biological therapy based on a patient’s specific clinical situa-
tion [144]. With the continuous improvement and development of synthetic biology and
other technologies, the exploration of probiotics will have more significant breakthroughs
in the field of food and biomedicine.

6.3. Next-Generation Probiotics

Next-generation probiotics refer to microbial genera and species that have never been
used in the food industry. Candidates have been searched for in health-related gut bacteria,
including strains of the genera Enterococcus faecalis, Clostridium, Bacteroides, and Ackermannia,
as well as genetically modified strains (usually Lactococcus lactis with novel health-beneficial
properties) [145,146]. In recent years, with the gradual deepening of research, the next
generation of probiotics began to appear as a new prevention and treatment tool, and it is
expected to provide a potential targeted pathway and a new direction for the prevention and
treatment of diseases. Akkermansia muciniphila has been extensively studied in the treatment
of metabolic disorders, which can improve insulin resistance and intestinal permeability,
increase the energy consumption of obese mice after pasteurization, and thus alleviate
diabetes [147,148]. Bifidobacterium harzianum improved insulin sensitivity, increased energy
expenditure, increased butyrate production, and regulated gut microbiota composition
in diabetic mice [149]. Pseudomonas hominis, Caulobacter spp., and Pseudomonas spp. can
prevent metabolic disorders and obesity by reducing serum leptin levels and fasting blood
glucose concentration and improving glucose tolerance. They are considered potential
therapeutic targets for T2DM patients [150,151]. Prevotella copr can produce succinic acid in
the TCA circulation to improve prediabetic syndrome [152,153].

Compared with traditional probiotics, the prominent function of next-generation
probiotics is therapeutic, which is worthy of further exploration by researchers. However,
the relevant experiments still remain at the level of animal testing and need to be verified
in human trials. In the future, the next-generation probiotics are expected to be utilized to
develop specific strains of bacteria that can treat diabetes or transplant the relevant strains
into the intestinal tract. We hope to achieve better therapeutic effects and provide a new,
safer, healthier, and more effective way to treat diabetes.

6.4. Postbiotics and Paraprobiotics

Probiotics are “living microbes” that can provide health benefits to their hosts. But
their inactive ingredients are called paraprobiotics, which are more effective alternatives
for susceptible individuals to use [53]. Postbiotics are defined as “inactivated bacteria
and bacterial components that have a beneficial effect on the host”. They include cellular
components, secreted materials, metabolites, and non-viable microorganisms, which play
vital roles in restoring gut microbiota [154]. Due to their potential to replace antibiotics,
post-biologics have been widely used in general food, health food, and gastrointestinal
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therapy [155]. Studies have shown that postbiotics can improve insulin sensitivity, reduce
blood sugar levels, and shorten the course of diabetes [156]. Therefore, postbiotics and
paraprobiotics have recently been used as better alternatives for the treatment and preven-
tion of metabolic diseases and their complications. These are also the directions we need to
study in the future.

7. Current Challenges in the Regulation of Blood Glucose by Probiotics

At present, there are some limitations in the clinical application of these novel live
microbial therapies, and there are some concerns about their use in patients with immune
dysfunction, intestinal barrier dysfunction, and newborns [157]. Given that probiotics are
living microorganisms, many biological and biopharmaceutical barriers limit their clinical
application [158]. The complexity of intestinal flora, the clinical application evaluation
of novel therapeutic methods, and the lack of big clinical data all require further explo-
ration and research in the future [159]. Although some probiotics have achieved good
results in vitro and in vivo, research on genetic information, genetic stability, and safety of
probiotics is not in-depth. Clinical promotion and wide application are still limited, and
more research is needed to understand the impact of gut microbiota on the development
of diabetes.

The results of this study can prove that probiotics improve diabetes, but this may
fluctuate due to different strains and individual differences [160,161]. At the same time,
probiotics may also be resistant to some experimental subjects or have other unfavorable
effects, which need to be comprehensively considered before conducting a comprehensive
study on specific probiotic strains.

In addition, although some progress has been made in the research on the regulation
of blood glucose by probiotics in recent years, the research on how probiotics play a role
and its detailed mechanism is still not perfect. Furthermore, the research on the regulation
of blood glucose by targeted probiotics is still not perfect. Therefore, further studies at the
genetic and molecular levels are needed to develop probiotic products with solid targeting
and precise regulation of blood glucose.

8. Conclusions

As a potential new intervention target for the treatment of diabetes, probiotics may
participate in the regulation of energy metabolism through various mechanisms, namely,
reducing chronic low-grade inflammation, regulating intestinal flora, increasing intestinal
metabolites SCFAs, reducing oxidative stress, increasing bacterial bioactive peptides and
improving insulin resistance, to achieve the purpose of regulating blood glucose. Probiotics
are considered economical and safe alternatives to treat chronic diseases and improve
human health. However, the prevention and alleviation of chronic diseases such as hyper-
glycemia through probiotics and their preparations is often a comprehensive synergistic
effect of multi-factors, multi-links, multi-sites, and multi-mechanisms. The research on
the mechanism of probiotics in lowering blood glucose levels and the interaction between
probiotics and a variety of active substances is still insufficient. In the future, it is still
necessary to strengthen the basic theory related to probiotics and the mechanism of action
at the cellular and molecular levels. Although there are some deficiencies in probiotics
at present, these deficiencies will be improved with the deepening of research and the
development of science and technology. Therefore, the development of probiotics with
blood glucose regulation function and related functional foods is of great significance for
the development of the probiotic industry.
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