Enzymatic Interesterification of Coconut and Hemp Oil Mixtures to Obtain Modified Structured Lipids
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Chemicals
2.2. Enzymatic Interesterification
2.3. Determination of Fatty Acid Composition
2.4. Determination of Positional Distribution of Fatty Acids on sn-2 and sn-1,3 Positions of TAGs
- sn-1,3 is the content of a given fatty acid in sn-1 and sn-3 positions [%];
- FA in TAG is the content of the given fatty acid in the starting triacylglycerols (TAGs) [%];
- FA in sn-2 MAG is the content of the given fatty acid in sn-2 monoacylglycerols (MAGs) [%].
2.5. Determination of Acid Value
2.6. Determination of Peroxide Value
2.7. Determination of Oxidation Time
2.8. Statistical Analysis
3. Results and Discussion
3.1. Fatty Acid Composition of Oil Samples
3.2. Positional Distribution of Fatty Acids on sn-2 and sn-1,3 Positions of Triacylglycerols
3.3. Acid Value of Oil Samples
3.4. Peroxide Value
3.5. Oxidation Time
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mensink, R.P.; Sanders, T.A.; Baer, D.J.; Hayes, K.C.; Howles, P.N.; Marangoni, A. The increasing use of interesterified lipids in the food supply and their effects on health parameters. Adv. Nutr. 2016, 7, 719–729. [Google Scholar] [CrossRef]
- Singh, P.K.; Chopra, R.; Garg, M.; Dhiman, A.; Dhyani, A. Enzymatic interesterification of vegetable oil: A review on physicochemical and functional properties, and its health effects. J. Oleo Sci. 2022, 71, 1697–1709. [Google Scholar] [CrossRef] [PubMed]
- Sivakanthan, S.; Madhujith, T. Current trends in applications of enzymatic interesterification of fats and oils: A review. LWT 2020, 132, 109880. [Google Scholar] [CrossRef]
- Debnath, S.; Prakash, M.; Lokesh, B.R. Lipase-mediated interesterification of oils for improving rheological, heat transfer properties and stability during deep-fat frying. Food Bioprocess Technol. 2012, 5, 1630–1641. [Google Scholar] [CrossRef]
- Puscas, A.; Muresan, V.; Socaciu, C.; Muste, S. Oleogels in food: A review of current and potential applications. Foods 2020, 9, 70. [Google Scholar] [CrossRef]
- Kadhum, A.A.H.; Shamma, M.N. Edible lipids modification processes: A review. Crit. Rev. Food Sci. Nutr. 2017, 57, 48–58. [Google Scholar] [CrossRef] [PubMed]
- Soumanou, M.M.; Pérignon, M.; Villeneuve, P. Lipase-catalyzed interesterification reactions for human milk fat substitutes production: A review. Eur. J. Lipid Sci. Technol. 2013, 115, 270–285. [Google Scholar] [CrossRef]
- Sivakanthan, S.; Jayasooriya, A.P.; Madhujith, T. Optimization of the production of structured lipid by enzymatic interesterification from coconut (Cocos nucifera) oil and sesame (Sesamum indicum) oil using Response Surface Methodology. LWT 2019, 101, 723–730. [Google Scholar] [CrossRef]
- Henrietta, H.M.; Kalaiyarasi, K.; Raj, A.S. Coconut tree (Cocos nucifera) products: A review of global cultivation and its benefits. J. Sustain. Environ. Manag. 2022, 1, 257–264. [Google Scholar] [CrossRef]
- Dayrit, F.M. The properties of lauric acid and their significance in coconut oil. J. Am. Oil Chem. Soc. 2015, 92, 1–15. [Google Scholar] [CrossRef]
- Eshak, E.S.; Yamagishi, K.; Iso, H. Dietary fat and risk of cardiovascular disease. In Encyclopedia of Cardiovascular Research and Medicine; Vasan, R.S., Sawyer, D.B., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; Volume 1–4, pp. 60–89. [Google Scholar] [CrossRef]
- Siri-Tarino, P.W.; Sun, Q.; Hu, F.B.; Krauss, R.M. Saturated fatty acids and risk of coronary heart disease: Modulation by replacement nutrients. Curr. Atheroscler. Rep. 2010, 12, 384–390. [Google Scholar] [CrossRef]
- Bryś, J.; Górska, A.; Ostrowska-Ligęza, E.; Wirkowska-Wojdyła, M.; Bryś, A.; Brzezińska, R.; Dolatowska-Żebrowska, K.; Małajowicz, J.; Ziarno, M.; Obranović, M.; et al. Human milk fat substitutes from lard and hemp seed oil mixtures. Appl. Sci. 2021, 11, 7014. [Google Scholar] [CrossRef]
- Oomah, B.D.; Busson, M.; Godfrey, D.V.; Drover, J.C.G. Characteristics of hemp (Cannabis sativa L.) seed oil. Food Chem. 2002, 76, 33–43. [Google Scholar] [CrossRef]
- Liang, J.; Aachary, A.A.; Thiyam-Holländer, U. Hemp seed oil: Minor components and oil quality. Lipid Technol. 2015, 27, 231–233. [Google Scholar] [CrossRef]
- Siudem, P.; Wawer, I.; Paradowska, K. Rapid evaluation of edible hemp oil quality using NMR and FT-IR spectroscopy. J. Mol. Struct. 2019, 1177, 204–208. [Google Scholar] [CrossRef]
- Basturk, A.; Javidipour, I.; Boyaci, I.H. Oxidative stability of natural and chemically. J. Food Lipids 2007, 14, 170–188. [Google Scholar] [CrossRef]
- Maduko, C.O.; Park, Y.W.; Akoh, C.C. Characterization and oxidative stability of structured lipids: Infant milk fat analog. J. Am. Oil Chem. Soc. 2008, 85, 197–204. [Google Scholar] [CrossRef]
- Dollah, S.; Abdulkarim, S.M.; Ahmad, S.H.; Khoramnia, A.; Ghazali, H.M. Enzymatic interesterification on the physicochemical properties of Moringa oleifera seed oil blended with palm olein and virgin coconut oil. Grasas Aceites 2015, 66, e073. [Google Scholar] [CrossRef]
- Moore, M.A.; Akoh, C.C. Enzymatic interesterification of coconut and high oleic sunflower oils for edible film application. JAOCS. J. Am. Oil Chem. Soc. 2017, 94, 567–576. [Google Scholar] [CrossRef]
- Kowalska, M.; Woźniak, M.; Krzton-Maziopa, A.; Tavernier, S.; Pazdur, Ł.; Żbikowska, A. Development of the emulsions containing modified fats formed via enzymatic interesterification catalyzed by specific lipase with various amount of water. J. Dispers. Sci. Technol. 2019, 40, 192–205. [Google Scholar] [CrossRef]
- Yan, Q.; Duan, X.; Liu, Y.; Jiang, Z.; Yang, S. Expression and characterization of a novel 1,3-regioselective cold-adapted lipase from Rhizomucor endophyticus suitable for biodiesel synthesis. Biotechnol. Biofuels 2016, 9, 86. [Google Scholar] [CrossRef]
- PN-EN ISO 5509:2001; Vegetable and Animal Oils and Fats. Preparation of Fatty Acid Methyl Esters. Polish Committee for Standardization: Warsaw, Poland, 2001.
- Siol, M.; Dudek, A.; Bryś, J.; Mańko-Jurkowska, D.; Gruczyńska-Sękowska, E.; Makouie, S.; Palani, B.K.; Obranović, M.; Koczoń, P. Chromatographic and thermal characteristics and hydrolytic and oxidative stability of commercial pomegranate seed oil. Foods 2024, 13, 1370. [Google Scholar] [CrossRef] [PubMed]
- AOCS. Official Method Te 1a-64; Acid Value Official Methods and Recommended Practices of the AOCS; AOCS: Urbana, IL, USA, 2009. [Google Scholar]
- AOCS. Official Method Cd 8b-90; Peroxide Value Acetic Acid-Isooctane Method Official methods and Recommended Practices of the AOCS; AOCS: Urbana, IL, USA, 2009. [Google Scholar]
- Bryś, A.; Bryś, J.; Mellado, Á.F.; Głowacki, S.; Tulej, W.; Ostrowska-Ligęza, E.; Koczoń, P. Characterization of oil from roasted hemp seeds using the PDSC and FTIR techniques. J. Therm. Anal. Calorim. 2019, 138, 2781–2786. [Google Scholar] [CrossRef]
- Sivakanthan, S.; Jayasooriya, L.J.P.A.P.; Madhujith, W.M.T. Optimization of enzymatic interesterification of coconut (Cocos nucifera) and Sesame (Sesamum indicum) oils using Thermomyces lanuginosus lipase by response surface methodology. Trop. Agric. Res. 2017, 28, 457–471. [Google Scholar] [CrossRef]
- Woźniak, M.; Kowalska, M. A Brief Review of the Literature on Animal and Vegetable Fats with Particular Emphasis on Mutton Tallow and Hemp Oil®. Postęp. Tech. Przetwórstwa Spoży. 2022, 2, 108–119. [Google Scholar]
- Silalahi, J. Nutritional values and health protective properties of coconut oil. Indones. J. Clin. Pharm. 2020, 3, 1–12. [Google Scholar] [CrossRef]
- Lawrence, G.D. Perspective: The saturated fat-unsaturated oil dilemma: Relations of dietary fatty acids and serum cholesterol, atherosclerosis, inflammation, cancer, and all-cause mortality. Adv. Nutr. 2021, 12, 647–656. [Google Scholar] [CrossRef]
- Reena, M.B.; Lokesh, B.R. Hypolipidemic effect of oils with balanced amounts of fatty acids obtained by blending and interesterification of coconut oil with rice bran oil or sesame oil. J. Agric. Food Chem. 2007, 55, 10461–10469. [Google Scholar] [CrossRef]
- Punvichai, T.; Wachiratreeyakul, T.; Chanasriphum, A.; Kritsanapuntu, S.; Chotimarkorn, C.; Detarun, P. Developing a soft margarine with modified fatty acid profile having low trans fatty acids. Int. J. Food Sci. Technol. 2023, 58, 5896–5903. [Google Scholar] [CrossRef]
- Devi, A.; Khatkar, B.S. Physicochemical, rheological and functional properties of fats and oils in relation to cookie quality: A review. J. Food Sci. Technol. 2016, 53, 3633–3641. [Google Scholar] [CrossRef]
- Brzezińska, R.; Bryś, J.; Giers, O.; Bryś, A.; Górska, A.; Ostrowska-Ligęza, E.; Wirkowska-Wojdyła, M. Quality evaluation of plant oil blends interesterified by using immobilized Rhizomucor miehei lipase. Appl. Sci. 2022, 12, 11148. [Google Scholar] [CrossRef]
- Mitsou, E.; Theochari, I.; Gad, E.; Vassiliadi, E.; Karpenisioti, E.; Koulis, G.; Martakos, I.; Pissaridi, K.; Thomaidis, N.S.; Xenakis, A.; et al. Enzymatic modification of triglycerides in conventional and surfactant-free microemulsions and in olive oil. Colloids Surf. A Physicochem. Eng. Asp. 2022, 647, 129170. [Google Scholar] [CrossRef]
- Kardash, E.; Tur’yan, Y.I. Acid value determination in vegetable oils by indirect titration in aqueous-alcohol media. Croat. Chem. Acta 2005, 78, 99–103. [Google Scholar]
- Nasirullah; Shariff, R.; Shankara Shetty, U.; Yella, R.S. Development of chemically interesterified healthy coconut oil blends. Int. J. Food Sci. Technol. 2010, 45, 1395–1402. [Google Scholar] [CrossRef]
- Codex-ALINORM 09/32/17; Codex Standard for Named Vegetable Oils; Codex Alimentarius 2009. Food and Agriculture Organization: Rome, Italy, 2009.
- Farmani, J.; Safari, M.; Hamedi, M. Trans-free fats through interesterification of canola oil/palm olein or fully hydrogenated soybean oil blends. Eur. J. Lipid Sci. Technol. 2009, 111, 1212–1220. [Google Scholar] [CrossRef]
- Imran, M.; Nadeem, M. Triacylglycerol composition, physico-chemical characteristics and oxidative stability of interesterified canola oil and fully hydrogenated cottonseed oil blends. Lipids Health Dis. 2015, 14, 138. [Google Scholar] [CrossRef]
- Yazdi, Z.K.; Alemzadeh, I. Improvement of palm oil and sunflower oil blends by enzymatic interestrification. Int. J. Food Sci. Technol. 2011, 46, 1093–1099. [Google Scholar] [CrossRef]
- Rousseau, D.; Marangoni, A.G. The effects of interesterification on physical and sensory attributes of butterfat and butterfat–canola oil spreads. Food Res. Int. 1998, 31, 381–388. [Google Scholar] [CrossRef]
- Tura, M.; Mandrioli, M.; Valli, E.; Toschi, T.G. Quality indexes and composition of 13 commercial hemp seed oils. J. Food Compos. Anal. 2023, 117, 105112. [Google Scholar] [CrossRef]
- Keskinler, B.; Tanriseven, A.; Dizge, N.; Pakdemirli, E. A Process for Removal of Free Fatty Acids from Vegetable Oils. PCT Patent Application WO 2008, 140432, 20 November 2008. [Google Scholar]
- Ottaway, J.M.; Chance Carter, J.; Adams, K.L.; Camancho, J.; Lavine, B.K.; Booksh, K.S. Comparison of spectroscopic techniques for determining the peroxide value of 19 classes of naturally aged, plant-based edible oils. Appl. Spectrosc. 2021, 75, 781–794. [Google Scholar] [CrossRef]
- Aachary, A.A.; Liang, J.; Hydamaka, A.; Eskin, N.A.M.; Thiyam-Holländer, U. A new ultrasound-assisted bleaching technique for impacting chlorophyll content of cold-pressed hempseed oil. LWT 2016, 72, 439–446. [Google Scholar] [CrossRef]
- Golimowski, W.; Teleszko, M.; Marcinkowski, D.; Kmiecik, D.; Grygier, A.; Kwaśnica, A. Quality of oil pressed from hemp seed varieties: ‘Ealina 8FC’, ‘Secueni Jubileu’ and ‘Finola’. Molecules 2022, 27, 3171. [Google Scholar] [CrossRef] [PubMed]
- Kowalski, B.; Ratusz, K.; Kowalska, D.; Bekas, W. Determination of the oxidative stability of vegetable oils by differential scanning calorimetry and Rancimat measurements. Eur. J. Lipid Sci. Technol. 2004, 106, 165–169. [Google Scholar] [CrossRef]
- Ramezan, Y.; Ghavami, M.; Bahmaei, M.; Givianrad, M.H.; Hemmasi, A.H. The application of differential scanning calorimetry as a mean to determine the oxidative stability of vegetable oils and its comparison with Rancimat. Orient. J. Chem. 2015, 31, 1389–1394. [Google Scholar] [CrossRef]
Fatty Acid | Oil Type | Composition [%] | Distribution [%] | |
---|---|---|---|---|
C12:0 | TAG | sn-1,3 | sn-2 | |
CO25HO75 0 | 8.99 ± 0.21 d | 0.64 ± 1.12 f | 95.15 ± 8.40 a | |
CO25HO75 2 | 9.26 ± 0.62 d | 4.88 ± 1.63 de | 65.15 ± 9.37 b | |
CO25HO75 6 | 8.99 ± 0.61 d | 3.38 ± 1.07 ef | 75.13 ± 6.26 b | |
CO50HO50 0 | 19.21 ± 1.28 c | 7.43 ± 2.14 d | 74.42 ± 5.72 b | |
CO50HO50 2 | 20.31 ± 0.61 c | 12.94 ± 0.72 c | 57.54 ± 1.07 cd | |
CO50HO50 6 | 18.97 ± 1.03 c | 11.69 ± 2.12 c | 59.06 ± 5.23 cd | |
CO75HO25 0 | 28.56 ± 1.65 ab | 18.25 ± 2.39 b | 57.49 ± 3.13 cd | |
CO75HO25 2 | 29.74 ± 1.23 a | 21.65 ± 0.68 b | 51.38 ± 3.55 d | |
CO75HO25 6 | 26.61 ± 0.63 b | 25.93 ± 1.22 a | 35.05 ± 1.52 e | |
C14:0 | CO25HO75 0 | 4.69 ± 0.02 d | 4.14 ± 0.20 e | 41.18 ± 2.70 a |
CO25HO75 2 | 4.63 ± 0.09 d | 4.78 ± 0.06 e | 31.20 ± 0.50 bc | |
CO25HO75 6 | 4.42 ± 0.20 d | 4.01 ± 0.3 e | 39.62 ± 2.90 a | |
CO50HO50 0 | 9.03 ± 0.24 c | 9.78 ± 0.36 cd | 27.79 ± 0.76 cd | |
CO50HO50 2 | 9.36 ± 0.30 c | 10.64 ± 0.48 c | 24.26 ± 0.98 e | |
CO50HO50 6 | 9.32 ± 0.20 c | 9.23 ± 0.41 d | 34.01 ± 1.51b b | |
CO75HO25 0 | 15.29 ± 0.57 a | 17.31 ± 0.81 a | 24.55 ± 0.70 de | |
CO75HO25 2 | 13.90 ± 0.38 b | 16.09 ± 0.55 b | 22.86 ± 0.52 e | |
CO75HO25 6 | 13.89 ± 0.47 b | 16.80 ± 0.66 ab | 19.34 ± 0.41 f | |
C16:0 | CO25HO75 0 | 7.25 ± 0.007 e | 9.28 ± 0.10 d | 14.70 ± 1.02 d |
CO25HO75 2 | 7.24 ± 0.35 e | 8.18 ± 0.98 d | 14.57 ± 0.97 d | |
CO25HO75 6 | 7.005 ± 0.09 e | 8.54 ± 0.17 e | 18.68 ± 0.54 b | |
CO50HO50 0 | 7.75 ± 0.12 d | 10.52 ± 0.17 c | 9.49 ± 0.08 e | |
CO50HO50 2 | 7.75 ± 0.25 d | 10.04 ± 0.38 c | 13.62 ± 0.47 d | |
CO50HO50 6 | 8.13 ± 0.07 d | 9.32 ± 0.16 d | 23.62 ± 0.60 a | |
CO75HO25 0 | 10.01 ± 0.04 a | 12.50 ± 0.09 a | 16.75 ± 0.24 c | |
CO75HO25 2 | 8.67 ± 0.04 c | 11.27 ± 0.08 b | 13.33 ± 1.07 d | |
CO75HO25 6 | 9.31 ± 0.37 b | 11.34 ± 0.56 b | 18.77 ± 0.73 b | |
C18:0 | CO25HO75 0 | 3.58 ± 0.14 cd | 4.69 ± 0.18 bcde | 12.56 ± 0.03 c |
CO25HO75 2 | 3.58 ± 0.13 cd | 4.63 ± 0.23 bcde | 13.78 ± 1.04 bc | |
CO25HO75 6 | 3.50 ± 0.04 cd | 4.43 ± 0.09 cd | 15.69 ± 0.62 b | |
CO50HO50 0 | 3.67 ± 0.13 cd | 5.08 ± 0.21 bc | 7.76 ± 0.47 d | |
CO50HO50 2 | 3.30 ± 0.02 d | 4.24 ± 0.04 d | 14.24 ± 0.12 bc | |
CO50HO50 6 | 3.75 ± 0.14 bc | 4.47 ± 0.27 bcd | 20.59 ± 1.76 a | |
CO75HO25 0 | 4.59 ± 0.37 a | 5.94 ± 0.53 a | 13.74 ± 0.71 bc | |
CO75HO25 2 | 3.91 ± 0.19 bc | 5.13 ± 0.14 b | 12.40 ± 1.90 c | |
CO75HO25 6 | 4.15 ± 0.27 b | 5.00 ± 0.43 bcd | 19.73 ± 1.73 a | |
C18:1 n-9 | CO25HO75 0 | 12.20 ± 0.22 a | 12.49 ± 0.09 a | 31.70 ± 0.74 bc |
CO25HO75 2 | 12.17 ± 0.22 a | 11.97 ± 0.47 a | 34.40 ± 1.39 ab | |
CO25HO75 6 | 12.06 ± 0.12 a | 12.32 ± 0.21 ab | 31.85 ± 0.47 bc | |
CO50HO50 0 | 10.56 ± 0.27 bc | 11.18 ± 0.40 b | 29.44 ± 0.67 cd | |
CO50HO50 2 | 10.00 ± 0.33 cd | 9.84 ± 0.54 c | 34.37 ± 1.43 ab | |
CO50HO50 6 | 10.92 ± 0.25 b | 11.81 ± 0.52 ab | 27.92 ± 1.51 d | |
CO75HO25 0 | 10.30 ± 0.57 bc | 11.92 ± 0.82 ab | 22.89 ± 1.04 e | |
CO75HO25 2 | 9.32 ± 0.34 d | 9.29 ± 0.09 c | 33.47 ± 3.15 ab | |
CO75HO25 6 | 9.84 ± 0.44 cd | 9.29 ± 0.73 c | 37.09 ± 2.16 a | |
C18:2 n-6 | CO25HO75 0 | 42.05 ± 0.07 a | 44.43 ± 0.96 a | 31.70 ± 0.74 cd |
CO25HO75 2 | 42.04 ± 0.09 a | 42.16 ± 0.30 a | 34.40 ± 1.39 c | |
CO25HO75 6 | 42.68 ± 0.60 a | 43.66 ± 1.14 ab | 31.85 ± 0.47 c | |
CO50HO50 0 | 30.88 ± 0.91 b | 33.73 ± 1.55 b | 29.44 ± 0.67 d | |
CO50HO50 2 | 28.64 ± 1.38 c | 28.98 ± 2.20 c | 34.37 ± 1.43 c | |
CO50HO50 6 | 30.91 ± 0.87 b | 34.24 ± 1.67 b | 27.92 ± 1.51 d | |
CO75HO25 0 | 18.25 ± 1.07 e | 20.24 ± 1.47 d | 22.89 ± 1.04 d | |
CO75HO25 2 | 18.28 ± 0.73 e | 16.96 ± 0.40 e | 33.47 ± 3.15 b | |
CO75HO25 6 | 20.30 ± 0.74 d | 14.67 ± 1.27 e | 51.87 ± 2.40 a | |
C18:3 n-3 | CO25HO75 0 | 12.66 ± 0.03 a | 12.66 ± 0.03 a | 26.00 ± 1.34 e |
CO25HO75 2 | 12.42 ± 0.26 a | 12.20 ± 0.53 b | 34.53 ± 1.47 bc | |
CO25HO75 6 | 12.57 ± 0.16 a | 13.66 ± 0.26 a | 27.54 ± 0.46 de | |
CO50HO50 0 | 8.94 ± 0.46 b | 9.83 ± 0.78 c | 26.71 ± 2.03 de | |
CO50HO50 2 | 8.11 ± 0.34 c | 7.07 ± 0.55 e | 41.92 ± 2.05 ab | |
CO50HO50 6 | 8.77 ± 0.22 b | 8.68 ± 0.46 d | 34.04 ± 1.79 bc | |
CO75HO25 0 | 4.81 ± 0.36 e | 5.14 ± 0.48 f | 28.81 ± 1.32 de | |
CO75HO25 2 | 5.22 ± 0.24 de | 5.44 ± 0.09 f | 30.45 ± 1.98 cd | |
CO75HO25 6 | 5.83 ± 0.24 d | 5.02 ± 0.42 f | 42.67 ± 2.45 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bandara, R.R.; Louis-Gavet, C.; Bryś, J.; Mańko-Jurkowska, D.; Górska, A.; Brzezińska, R.; Siol, M.; Makouie, S.; Palani, B.K.; Obranović, M.; et al. Enzymatic Interesterification of Coconut and Hemp Oil Mixtures to Obtain Modified Structured Lipids. Foods 2024, 13, 2722. https://doi.org/10.3390/foods13172722
Bandara RR, Louis-Gavet C, Bryś J, Mańko-Jurkowska D, Górska A, Brzezińska R, Siol M, Makouie S, Palani BK, Obranović M, et al. Enzymatic Interesterification of Coconut and Hemp Oil Mixtures to Obtain Modified Structured Lipids. Foods. 2024; 13(17):2722. https://doi.org/10.3390/foods13172722
Chicago/Turabian StyleBandara, Ranahansi Rangadharee, Chloé Louis-Gavet, Joanna Bryś, Diana Mańko-Jurkowska, Agnieszka Górska, Rita Brzezińska, Marta Siol, Sina Makouie, Bharani Kumar Palani, Marko Obranović, and et al. 2024. "Enzymatic Interesterification of Coconut and Hemp Oil Mixtures to Obtain Modified Structured Lipids" Foods 13, no. 17: 2722. https://doi.org/10.3390/foods13172722
APA StyleBandara, R. R., Louis-Gavet, C., Bryś, J., Mańko-Jurkowska, D., Górska, A., Brzezińska, R., Siol, M., Makouie, S., Palani, B. K., Obranović, M., & Koczoń, P. (2024). Enzymatic Interesterification of Coconut and Hemp Oil Mixtures to Obtain Modified Structured Lipids. Foods, 13(17), 2722. https://doi.org/10.3390/foods13172722