Physicochemical and Functional Properties of Black Walnut and Sycamore Syrups
Abstract
:1. Introduction
2. Materials and Methods
2.1. Syrup Collection
2.2. Physicochemical Characteristics
2.3. Total Phenolic Content
2.4. Antioxidant Activity
2.5. Antimicrobial Activity
2.6. Non-Targeted Metabolomic Analysis
2.7. Statistical Analysis
3. Results and Discussion
3.1. Physicochemical Properties of Syrups
3.2. Total Phenolic Content
3.3. Antioxidant Activity
3.4. Antimicrobial Properties
3.5. Phenolic and Flavonoid Compound Profiles
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Saengkrajang, W.; Chaijan, M.; Panpipat, W. Physicochemical Properties and Nutritional Compositions of Nipa Palm (Nypa Fruticans Wurmb) Syrup. NFS J. 2021, 23, 58–65. [Google Scholar] [CrossRef]
- Makhlouf-Gafsi, I.; Krichen, F.; Mansour, R.B.; Mokni, A.; Sila, A.; Bougatef, A.; Blecker, C.; Attia, H.; Besbes, S. Ultrafiltration and Thermal Processing Effects on Maillard Reaction Products and Biological Properties of Date Palm Sap Syrups (Phoenix dactylifera L.). Food Chem. 2018, 256, 397–404. [Google Scholar] [CrossRef] [PubMed]
- Julai, K.; Sridonpai, P.; Ngampeerapong, C.; Tongdonpo, K.; Suttisansanee, U.; Kriengsinyos, W.; On-Nom, N.; Tangsuphoom, N. Effects of Extraction and Evaporation Methods on Physico-Chemical, Functional, and Nutritional Properties of Syrups from Barhi Dates (Phoenix dactylifera L.). Foods 2023, 12, 1268. [Google Scholar] [CrossRef] [PubMed]
- Eggleston, G.; Boue, S.; Bett-Garber, K.; Verret, C.; Triplett, A.; Bechtel, P. Phenolic Contents, Antioxidant Potential and Associated Colour in Sweet Sorghum Syrups Compared to Other Commercial Syrup Sweeteners. J. Sci. Food Agric. 2021, 101, 613–623. [Google Scholar] [CrossRef]
- Ozuna, C.; Franco-Robles, E. Agave Syrup: An Alternative to Conventional Sweeteners? A Review of Its Current Technological Applications and Health Effects. LWT 2022, 162, 113434. [Google Scholar] [CrossRef]
- Mohammed, F.; Sibley, P.; Abdulwali, N.; Guillaume, D. Nutritional, Pharmacological, and Sensory Properties of Maple Syrup: A Comprehensive Review. Heliyon 2023, 9, e19216. [Google Scholar] [CrossRef] [PubMed]
- Svanberg, I.; Sõukand, R.; Łuczaj, Ł.; Kalle, R.; Zyryanova, O.; Dénes, A.; Papp, N.; Nedelcheva, A.; Šeškauskaitė, D.; Kołodziejska-Degórska, I.; et al. Uses of Tree Saps in Northern and Eastern Parts of Europe. Acta Soc. Bot. Pol. 2012, 81, 343–357. [Google Scholar] [CrossRef]
- Huron, R. Historical Roots of Canadian Aboriginal and Non-Aboriginal Maple Practices. Geography and Environmental Studies Major Research Papers. 2014. Available online: https://scholars.wlu.ca/cgi/viewcontent.cgi?article=1001&context=ges_mrp (accessed on 30 August 2024).
- Naughton, G.G.; Geyer, W.A.; Chambers, E. Making Syrup from Black Walnut Sap. Trans. Kans. Acad. Sci. 2006, 109, 214–220. [Google Scholar] [CrossRef]
- Mora, M.R.; Dando, R. The Sensory Properties and Metabolic Impact of Natural and Synthetic Sweeteners. Compr. Rev. Food Sci. Food Saf. 2021, 20, 1554–1583. [Google Scholar] [CrossRef]
- Carpio, C.E.; Lange, K.Y. Trends in E-Commerce for the Food Marketing System. CABI Rev. 2015, 1–8. [Google Scholar] [CrossRef]
- Shahbandeh, M. Maple Syrup Average Price Per Gallon U.S. 2022. Available online: https://www.statista.com/statistics/372155/average-price-per-gallon-of-maple-syrup-in-the-us/ (accessed on 24 July 2024).
- Collins-Simmons, S.; Aloi, M.J.; Fotos, K.; Lucero, M.; Totten, J. Adding Farm Value to Appalachia’s Riparian Buffers: Preserving Existing Sycamore Trees. 2024. Available online: https://projects.sare.org/wp-content/uploads/Sycamore-primer_FINAL-20240313-1.pdf (accessed on 30 August 2024).
- Hammonds, T. Tapping Walnut Trees for a Novel and Delicious Syrup—Cornell Small Farms 2016. Available online: https://smallfarms.cornell.edu/2016/01/tapping-walnut-trees/ (accessed on 29 August 2024).
- Rechlin, D.M.; Aloi, D.M.J.; Collins-Simmons, S.; Fotos, K.; Lucero, M. Making Walnut Syrup for Fun or Profit. Available online: https://mapleresearch.org/pub/tapping-walnut-trees-making-walnut-syrup-for-fun-or-profit/ (accessed on 29 August 2024).
- Bi, W.; Gao, Y.; Shen, J.; He, C.; Liu, H.; Peng, Y.; Zhang, C.; Xiao, P. Traditional Uses, Phytochemistry, and Pharmacology of the Genus Acer (Maple): A Review. J. Ethnopharmacol. 2016, 189, 31–60. [Google Scholar] [CrossRef]
- Liu, Y.; Rose, K.N.; DaSilva, N.A.; Johnson, S.L.; Seeram, N.P. Isolation, Identification, and Biological Evaluation of Phenolic Compounds from a Traditional North American Confectionery, Maple Sugar. J. Agric. Food Chem. 2017, 65, 4289–4295. [Google Scholar] [CrossRef]
- Gad, H.A.; Ramadan, M.F.; Farag, M.A. Authentication and Quality Control Determination of Maple Syrup: A Comprehensive Review. J. Food Compos. Anal. 2021, 100, 103901. [Google Scholar] [CrossRef]
- Ajandouz, E.H.; Leopold, T.; Ore, F.; Benajiba, A.; Puigserver, A. Effects of pH on Caramelization and Maillard Reaction Kinetics in Fructose-Lysine Model Systems. J. Food Sci. 2001, 66, 926–931. [Google Scholar] [CrossRef]
- Ben Thabet, I.; Besbes, S.; Masmoudi, M.; Attia, H.; Deroanne, C.; Blecker, C. Compositional, Physical, Antioxidant and Sensory Characteristics of Novel Syrup from Date Palm (Phoenix dactylifera L.). Food Sci. Technol. Int. 2009, 15, 583–590. [Google Scholar] [CrossRef]
- Asghar, M.; Yusof, Y.; Mokhtar, M.; Ya’acob, M.; Mohd Ghazali, H.; Chang, L.-S.; Manaf, Y. Effect of Processing Method on Vitamin Profile, Antioxidant Properties and Total Phenolic Content of Coconut (Cocos nucifera L.) Sugar Syrup. Int. J. Food Sci. Technol. 2020, 55, 2762–2770. [Google Scholar] [CrossRef]
- Kaškonienė, V.; Maruska, A.; Kornysova, O.; Charczun, N.; Ligor, M.; Buszewski, B. Quantitative and Qualitative Determination of Phenolic Compounds in Honey. Cheminė Technol. 2009, 3, 74–80. [Google Scholar]
- Oboh, F.; Iyare, L.; Idemudia, M. Physico-Chemical and Nutritional Characteristics, and Antimicrobial Activity of Oil Palm Syrup, Raffia Palm Syrup and Honey. IOSR J. Pharm. Biol. Sci. 2016, 11, 73–78. [Google Scholar] [CrossRef]
- CFR—Code of Federal Regulations Title 21. Available online: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=168.140 (accessed on 24 July 2024).
- Rahman, M.; Rahman, M.R. Ph in Food Preservation. In Handbook of Food Preservation; CRC Press: Boca Raton, FL, USA, 2020; pp. 323–332. ISBN 978-1-4987-4048-7. [Google Scholar]
- Lertittikul, W.; Benjakul, S.; Tanaka, M. Characteristics and Antioxidative Activity of Maillard Reaction Products from a Porcine Plasma Protein–Glucose Model System as Influenced by pH. Food Chem. 2007, 100, 669–677. [Google Scholar] [CrossRef]
- Karseno, E.; Yanto, T.; Setyawati, R.; Haryanti, P. Effect of pH and Temperature on Browning Intensity of Coconut Sugar and Its Antioxidant Activity. Food Res. 2017, 2, 32–38. [Google Scholar] [CrossRef]
- Phetrit, R.; Chaijan, M.; Sorapukdee, S.; Panpipat, W. Characterization of Nipa Palm’s (Nypa Fruticans Wurmb.) Sap and Syrup as Functional Food Ingredients. Sugar Tech 2019, 22, 191–201. [Google Scholar] [CrossRef]
- Ramadan, M.F.; Gad, H.A.; Farag, M.A. Chemistry, Processing, and Functionality of Maple Food Products: An Updated Comprehensive Review. J. Food Biochem. 2021, 45, e13832. [Google Scholar] [CrossRef]
- United States Standards for Grades of Maple Sirup (Syrup). Available online: https://www.federalregister.gov/documents/2015/01/29/2015-01618/united-states-standards-for-grades-of-maple-sirup-syrup (accessed on 24 July 2024).
- Ober, L. A Consumer’s Guide to Pure Maple Syrup. Available online: https://ohioline.osu.edu/factsheet/anr-101 (accessed on 23 July 2024).
- Matta, Z.; Chambers, E.; Naughton, G. Consumer and Descriptive Sensory Analysis of Black Walnut Syrup. J. Food Sci. 2006, 70, S610–S613. [Google Scholar] [CrossRef]
- Plotnikova, I.V.; Zharkova, I.M.; Magomedov, G.O.; Magomedov, M.G.; Khvostov, A.A.; Miroshnichenko, E.N. Forecasting and Quality Control of Confectionery Products with the Use of “Water Activity” Indicator. IOP Conf. Ser. Earth Environ. Sci. 2021, 640, 062003. [Google Scholar] [CrossRef]
- Kermasha, S.; Goetghebeur, M.; Dumont, J. Determination of Phenolic Compound Profiles in Maple Products by High-Performance Liquid Chromatography. J. Agric. Food Chem. 1995, 43, 708–716. [Google Scholar] [CrossRef]
- Thériault, M.; Caillet, S.; Kermasha, S.; Lacroix, M. Antioxidant, Antiradical and Antimutagenic Activities of Phenolic Compounds Present in Maple Products. Food Chem. 2006, 98, 490–501. [Google Scholar] [CrossRef]
- Susanti, S.; Kumoro, A.C.; Suzery, M.; Oku, H. The Effect of Various Sweeteners on the Physical, Chemical, and Organolepticcharacteristics of Ginger Leaf Extract Syrup. Food Res. 2023, 7, 164–169. [Google Scholar] [CrossRef] [PubMed]
- Pham-Huy, L.A.; He, H.; Pham-Huy, C. Free Radicals, Antioxidants in Disease and Health. Int. J. Biomed. Sci. IJBS 2008, 4, 89–96. [Google Scholar] [CrossRef]
- Kedare, S.B.; Singh, R.P. Genesis and Development of DPPH Method of Antioxidant Assay. J. Food Sci. Technol. 2011, 48, 412–422. [Google Scholar] [CrossRef]
- Hwang, I.G.; Kim, H.Y.; Woo, K.S.; Lee, J.; Jeong, H.S. Biological Activities of Maillard Reaction Products (MRPs) in a Sugar–Amino Acid Model System. Food Chem. 2011, 126, 221–227. [Google Scholar] [CrossRef]
- Singh, A.S.; Jones, A.M.P.; Saxena, P.K. Variation and Correlation of Properties in Different Grades of Maple Syrup. Plant Foods Hum. Nutr. Dordr. Neth. 2014, 69, 50–56. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Seeram, N.P. Maple Syrup Phytochemicals Include Lignans, Coumarins, a Stilbene, and Other Previously Unreported Antioxidant Phenolic Compounds. J. Agric. Food Chem. 2010, 58, 11673–11679. [Google Scholar] [CrossRef] [PubMed]
- Kitts, D.D. Antioxidant and Functional Activities of MRPs Derived from Different Sugar–Amino Acid Combinations and Reaction Conditions. Antioxidants 2021, 10, 1840. [Google Scholar] [CrossRef] [PubMed]
- Huszczynski, S.M.; Lam, J.S.; Khursigara, C.M. The Role of Pseudomonas Aeruginosa Lipopolysaccharide in Bacterial Pathogenesis and Physiology. Pathogens 2019, 9, 6. [Google Scholar] [CrossRef]
- Shore, A.C.; Coleman, D.C. Staphylococcal Cassette Chromosome Mec: Recent Advances and New Insights. Int. J. Med. Microbiol. IJMM 2013, 303, 350–359. [Google Scholar] [CrossRef]
- Breijyeh, Z.; Jubeh, B.; Karaman, R. Resistance of Gram-Negative Bacteria to Current Antibacterial Agents and Approaches to Resolve It. Molecules 2020, 25, 1340. [Google Scholar] [CrossRef]
- Maisuria, V.B.; Hosseinidoust, Z.; Tufenkji, N. Polyphenolic Extract from Maple Syrup Potentiates Antibiotic Susceptibility and Reduces Biofilm Formation of Pathogenic Bacteria. Appl. Environ. Microbiol. 2015, 81, 3782–3792. [Google Scholar] [CrossRef] [PubMed]
- Elmasri, W.A.; Zhu, R.; Peng, W.; Al-Hariri, M.; Kobeissy, F.; Tran, P.; Hamood, A.N.; Hegazy, M.F.; Paré, P.W.; Mechref, Y. Multitargeted Flavonoid Inhibition of the Pathogenic Bacterium Staphylococcus Aureus: A Proteomic Characterization. J. Proteome Res. 2017, 16, 2579–2586. [Google Scholar] [CrossRef]
- Jahanban-Esfahlan, A.; Ostadrahimi, A.; Tabibiazar, M.; Amarowicz, R. A Comprehensive Review on the Chemical Constituents and Functional Uses of Walnut (Juglans spp.) Husk. Int. J. Mol. Sci. 2019, 20, 3920. [Google Scholar] [CrossRef]
- Ho, K.-V.; Lei, Z.; Sumner, L.W.; Coggeshall, M.V.; Hsieh, H.-Y.; Stewart, G.C.; Lin, C.-H. Identifying Antibacterial Compounds in Black Walnuts (Juglans nigra) Using a Metabolomics Approach. Metabolites 2018, 8, 58. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, M.A.; Mansoor, A.A.; Gross, A.; Ashfaq, M.K.; Jacob, M.; Khan, S.I.; Hamann, M.T. Methicillin-Resistant Staphylococcus Aureus (MRSA)-Active Metabolites from Platanus Occidentalis (American sycamore). J. Nat. Prod. 2009, 72, 2141–2144. [Google Scholar] [CrossRef]
- Takó, M.; Kerekes, E.B.; Zambrano, C.; Kotogán, A.; Papp, T.; Krisch, J.; Vágvölgyi, C. Plant Phenolics and Phenolic-Enriched Extracts as Antimicrobial Agents against Food-Contaminating Microorganisms. Antioxidants 2020, 9, 165. [Google Scholar] [CrossRef] [PubMed]
- Abedi, F.; Razavi, B.M.; Hosseinzadeh, H. A Review on Gentisic Acid as a Plant Derived Phenolic Acid and Metabolite of Aspirin: Comprehensive Pharmacology, Toxicology, and Some Pharmaceutical Aspects. Phytother. Res. PTR 2020, 34, 729–741. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.S.; Malhotra, S.; Subban, R. Anti-Inflammatory and Analgesic Agents from Indian Medicinal Plants Inflammatory Activity. 2008. Available online: https://www.semanticscholar.org/paper/Anti-inflammatory-and-Analgesic-Agents-from-Indian-Singh-Malhotra/81c7c529d32aaaa51cfd49dc04b29858cf6e9b27 (accessed on 29 August 2024).
- Srinivasulu, C.; Ramgopal, M.; Ramanjaneyulu, G.; Anuradha, C.M.; Suresh Kumar, C. Syringic Acid (SA)—A Review of Its Occurrence, Biosynthesis, Pharmacological and Industrial Importance. Biomed. Pharmacother. Biomed. Pharmacother. 2018, 108, 547–557. [Google Scholar] [CrossRef]
- Olatunde, A.; Mohammed, A.; Ibrahim, M.A.; Tajuddeen, N.; Shuaibu, M.N. Vanillin: A Food Additive with Multiple Biological Activities. Eur. J. Med. Chem. Rep. 2022, 5, 100055. [Google Scholar] [CrossRef]
- Sandulovici, R.C.; Gălăţanu, M.L.; Cima, L.M.; Panus, E.; Truţă, E.; Mihăilescu, C.M.; Sârbu, I.; Cord, D.; Rîmbu, M.C.; Anghelache, Ş.A.; et al. Phytochemical Characterization, Antioxidant, and Antimicrobial Activity of the Vegetative Buds from Romanian Spruce, Picea abies (L.) H. Karst. Molecules 2024, 29, 2128. [Google Scholar] [CrossRef] [PubMed]
- Benali, T.; Bakrim, S.; Ghchime, R.; Benkhaira, N.; El Omari, N.; Balahbib, A.; Taha, D.; Zengin, G.; Hasan, M.M.; Bibi, S.; et al. Pharmacological Insights into the Multifaceted Biological Properties of Quinic Acid. Biotechnol. Genet. Eng. Rev. 2022, 1–30. [Google Scholar] [CrossRef]
- Bittencourt, J.A.H.M.; Neto, M.F.A.; Lacerda, P.S.; Bittencourt, R.C.V.S.; Silva, R.C.; Lobato, C.C.; Silva, L.B.; Leite, F.H.A.; Zuliani, J.P.; Rosa, J.M.C.; et al. In Silico Evaluation of Ibuprofen and Two Benzoylpropionic Acid Derivatives with Potential Anti-Inflammatory Activity. Molecules 2019, 24, 1476. [Google Scholar] [CrossRef]
- Avila, P.E.S.; de Sena, C.B.C.; de Matos Machi, B.; Pinto, L.C.; Montenegro, R.C.; dos Santos Borges, R.; Bastos, G.d.N.T.; do Nascimento, J.L.M. Study of Anti-Inflammatory and Analgesic Properties of 3-Benzoyl-Propionic Acid. Pará Res. Med. J. 2017, 1, 1–17. [Google Scholar] [CrossRef]
- Rechlin, M. Sycamore Sap and Syrup Field Trial. North American Maple Syrup Council. 2019. Available online: https://mapleresearch.org/wp-content/uploads/wvsycamore.pdf. (accessed on 28 August 2024).
Sample Code | Syrup Type | Produced in | pH | TSS (°Brx) | Water Activity | Density (g/mL) | ||||
---|---|---|---|---|---|---|---|---|---|---|
WS 1 | Walnut | WV | 5.0 | * 5.0 ± 0.24 B | 68.4 | * 67.4 ± 1.9 A | 0.8245 | * 0.8330 ± 0.01 A | 1.34 | * 1.34 ± 0.01 A |
WS 2 | Walnut | WV | 5.2 | 68.4 | 0.8249 | 1.34 | ||||
WS 3 | Walnut | VA | 4.6 | 67.8 | 0.8465 | 1.34 | ||||
WS 4 | Walnut | VA | 5.3 | 66.1 | 0.8384 | 1.33 | ||||
WS 5 | Walnut | MO | 5.1 | 70.4 | 0.8090 | 1.35 | ||||
WS 6 | Walnut | OH | 5.2 | 65.7 | 0.8397 | 1.33 | ||||
WS 7 | Walnut | NY | 4.9 | 64.9 | 0.8477 | 1.32 | ||||
MS 1 | Maple, Golden | WV | 6.9 | * 6.6 ± 0.41 A | 66.4 | * 66.3 ± 1.6 A | 0.8478 | * 0.8533 ± 0.01 A | 1.34 | * 1.33 ± 0.01 A |
MS 2 | Maple, Amber | WV | 7.0 | 67.5 | 0.8451 | 1.34 | ||||
MS 3 | Maple, Amber | NY | 6.3 | 64.0 | 0.8715 | 1.31 | ||||
MS 4 | Maple, Dark | NY | 6.2 | 67.3 | 0.8489 | 1.33 | ||||
SS 1 | Sycamore | WV | 4.2 | * 4.10 ± 0.16 C | 69.3 | * 68.5 ± 2.29 A | 0.7340 | * 0.7625 ± 0.03 B | 1.35 | * 1.34 ± 0.01 A |
SS 2 | Sycamore | WV | 4.4 | 71.1 | 0.7249 | 1.36 | ||||
SS 3 | Sycamore | WV | 4.1 | 70.2 | 0.7548 | 1.35 | ||||
SS 4 | Sycamore | WV | 4.0 | 68.8 | 0.7512 | 1.34 | ||||
SS 5 | Sycamore | WV | 4.0 | 70.8 | 0.7385 | 1.35 | ||||
SS 6 | Sycamore | WV | 4.0 | 66.3 | 0.8010 | 1.33 | ||||
SS 7 | Sycamore | WV | 4.0 | 65.0 | 0.8038 | 1.32 | ||||
SS 8 | Sycamore | WV | 3.9 | 66.5 | 0.7921 | 1.34 |
Sample Code | Tree Type | L* | a* | b* | Browning Intesity (BI) | |
---|---|---|---|---|---|---|
WS 1 | Walnut | 17.79 ± 0.03 | 0.36 ± 0.06 | 0.75 ± 0.09 | 0.357 | 0.229 ± 0.116 AB |
WS 2 | Walnut | 18.04 ± 0.04 | 2.01 ± 0.09 | 1.10 ± 0.03 | 0.141 | |
WS 3 | Walnut | 17.60 ± 0.34 | 0.54 ± 0.13 | 0.71 ± 0.05 | 0.403 | |
WS 4 | Walnut | 17.99 ± 0.08 | 1.27 ± 0.09 | 1.05 ± 0.02 | 0.163 | |
WS 5 | Walnut | 18.09 ± 0.05 | 0.66 ± 0.02 | 1.16 ± 0.03 | 0.27 | |
WS 6 | Walnut | 17.90 ± 0.01 | 1.58 ± 0.07 | 0.87 ± 0.06 | 0.104 | |
WS 7 | Walnut | 17.88 ± 0.02 | 0.70 ± 0.04 | 0.80 ± 0.08 | 0.165 | |
MS 1 | Maple, Golden | 55.53 ± 0.03 | 0.19 ± 0.10 | 25.34 ± 1.14 | 0.002 | 0.028 ± 0.028 B |
MS 2 | Maple, Amber | 19.51 ± 0.03 | 8.43 ± 0.03 | 3.62 ± 0.03 | 0.058 | |
MS 3 | Maple, Amber | 41.27 ± 0.02 | 11.29 ± 0.05 | 36.16 ± 0.03 | 0.023 | |
MS 4 | Maple, Dark | 27.13 ± 0.02 | 17.8 ± 0.03 | 16.48 ± 0.04 | 0.030 | |
SS 1 | Sycamore | 22.18 ± 0.14 | 16.17 ± 0.11 | 8.27 ± 0.10 | 0.109 | 0.417 ± 0.341 A |
SS 2 | Sycamore | 24.22 ± 0.09 | 17.56 ± 0.11 | 11.73 ± 0.11 | 0.153 | |
SS 3 | Sycamore | 17.77 ± 0.05 | 0.72 ± 0.02 | 0.80 ± 0.04 | 0.875 | |
SS 4 | Sycamore | 17.75 ± 0.03 | 0.52 ± 0.06 | 0.82 ± 0.06 | 0.737 | |
SS 5 | Sycamore | 17.80 ± 0.05 | 0.47 ± 0.06 | 0.96 ± 0.02 | 0.853 | |
SS 6 | Sycamore | 20.03 ± 1.27 | 2.60 ± 0.50 | 2.30 ± 0.55 | 0.270 | |
SS 7 | Sycamore | 19.46 ± 0.00 | 7.43 ± 0.19 | 4.37 ± 0.08 | 0.138 | |
SS 8 | Sycamore | 19.38 ± 1.36 | 1.10 ± 0.13 | 1.95 ± 0.49 | 0.20 |
Syrup Type | E. coli | P. aeruginosa | S. aureus | |
---|---|---|---|---|
Black walnut syrups | WS 1 | - | + | - |
WS 2 | - | - | - | |
WS 3 | - | - | +++ | |
WS 4 | - | + | - | |
WS 5 | - | - | +++ | |
WS 6 | - | - | - | |
WS 7 | - | + | - | |
Maple syrups | MS 1 | - | - | - |
MS 2 | - | - | - | |
MS 3 | - | - | - | |
MS 4 | - | - | - | |
Sycamore syrups | SS 1 | - | + | +++ |
SS 2 | - | - | + | |
SS 3 | - | +++ | +++ | |
SS 4 | + | +++ | +++ | |
SS 5 | +++ | + | +++ | |
SS 6 | - | +++ | +++ | |
SS 7 | + | + | +++ | |
SS 8 | + | +++ | +++ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
McHugh, O.; Ayilaran, E.; DeBastiani, A.; Jung, Y. Physicochemical and Functional Properties of Black Walnut and Sycamore Syrups. Foods 2024, 13, 2780. https://doi.org/10.3390/foods13172780
McHugh O, Ayilaran E, DeBastiani A, Jung Y. Physicochemical and Functional Properties of Black Walnut and Sycamore Syrups. Foods. 2024; 13(17):2780. https://doi.org/10.3390/foods13172780
Chicago/Turabian StyleMcHugh, Olivia, Elijah Ayilaran, Anthony DeBastiani, and Yangjin Jung. 2024. "Physicochemical and Functional Properties of Black Walnut and Sycamore Syrups" Foods 13, no. 17: 2780. https://doi.org/10.3390/foods13172780
APA StyleMcHugh, O., Ayilaran, E., DeBastiani, A., & Jung, Y. (2024). Physicochemical and Functional Properties of Black Walnut and Sycamore Syrups. Foods, 13(17), 2780. https://doi.org/10.3390/foods13172780