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Abstract: Gracilaria lamaneiformis, a red seaweed, is an abundant source of bioactive polysaccharides
with significant health-promoting properties. Nevertheless, the broad application of G. lamaneiformis
in the nutraceutical and pharmaceutical sectors remains constrained due to the absence of compre-
hensive data. This review provides a detailed examination of the preparation methods, structural
characteristics, and biological activities of G. lamaneiformis polysaccharides (GLPs). We explore both
conventional and advanced extraction techniques, highlighting the efficiency and yield improvements
achieved through methods such as microwave-, ultrasonic-, and enzyme-assisted extraction. The
structural elucidation of GLPs using modern analytical techniques, including high-performance liquid
chromatography, gas chromatography, and nuclear magnetic resonance spectroscopy, is discussed,
providing comprehensive insights into their molecular composition and configuration. Further-
more, we critically evaluate the diverse biological activities of GLPs, including their antioxidant,
anti-inflammatory, antitumor, and gut microbiota modulation properties. This review underscores
the therapeutic potential of GLPs and suggests future research directions to fully harness their
health benefits.
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1. Introduction

The growing interest in marine resources for bioactive compounds has led to the explo-
ration of various seaweeds [1,2], including Gracilaria lamaneiformis. This red algae species is
widely distributed in coastal regions and has been traditionally valued in different cultures
for its nutritional and medicinal benefits [3]. In China, the cultivation of G. lamaneiformis is
primarily driven by its economic and environmental advantages. As a fast-growing seaweed,
it is often used in integrated multi-trophic aquaculture systems to mitigate the environmental
impact of fish and shrimp farming by absorbing excess nutrients, thereby improving water
quality and the sustainability of aquaculture operations [4,5]. Besides its environmental bene-
fits, G. lamaneiformis is a valuable resource in the food and nutraceutical industries due to its
abundance of bioactive components, particularly polysaccharides [6].

G. lamaneiformis polysaccharides (GLPs) have garnered significant interest due to their
unique structural characteristics and biological functions. The processes of extracting and pu-
rifying GLPs are crucial as they affect yield, purity, and biological efficacy. Traditional thermal
extraction methods are commonly employed but are often inefficient and time-consuming [7].
To overcome these limitations, advanced techniques such as ultrasound-assisted extraction
(UAE), microwave-assisted extraction (MAE), and enzyme-assisted extraction (EAE) have been
developed [8]. These methods aim to enhance extraction efficiency, preserve bioactivity, and
increase the overall yield of polysaccharides. The structural characterization of GLPs involves
analyzing their monosaccharide composition, molecular weight, and structural configuration.
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Techniques like high-performance liquid chromatography (HPLC), gas chromatography (GC),
and nuclear magnetic resonance (NMR) are widely used for this purpose [9]. These analytical
methods provide detailed insights into the molecular structure of GLPs, which is crucial for
understanding their biological activities. GLPs are primarily sulfated galactans, known for
their diverse biological activities, including antioxidant, immunomodulatory, antitumor, and
intestinal effects [10–12]. Understanding these structural features is essential for utilizing the
therapeutic potential of GLPs.

This review aimed to deliver a thorough examination of the preparation, structural
features, and biological activities of GLPs. We explored a range of extraction methods,
including both traditional and innovative techniques. The structural characterization of
GLPs was outlined using contemporary analytical methods, providing insights into their
molecular composition and configuration. Additionally, we critically assessed the biological
activities of GLPs, focusing on their potential therapeutic applications in health and disease
management. This review underscores the notable advancements in GLP research and
suggests future pathways for their development and application.

2. Extraction of GLPs

The extraction of GLPs is essential for their use in various industrial and health-related
applications. Different extraction techniques, each with its own advantages and limitations,
are summarized in Figure 1. The objective of extraction is to break down the cell wall and
solubilize the polysaccharides in aqueous extract. The choice of extraction method, along
with its unique mechanism and operating conditions, significantly affects the yield, purity,
and bioactivity of the extracted polysaccharides. This section provides an overview of
commonly used techniques, including traditional, EAE, MAE, and UAE methods. Under-
standing and optimizing extraction parameters can greatly enhance the process. The most
influential factors are extraction temperature and time, which crucially affect the solubil-
ity of polysaccharides [13]. Higher temperatures generally improve extraction efficiency
by enhancing solvent penetration, reducing viscosity, and increasing the dissolution of
polysaccharides into the solvent [14]. However, excessively high temperatures can degrade
thermolabile polysaccharides, leading to a loss of bioactivity and structural integrity [15].
Therefore, it is essential to balance these factors to maximize yield while preserving the
quality of the polysaccharides.
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Figure 1. The pros and cons of the conventional extraction method and advanced extraction tech-
niques, including microwave-assisted, ultrasonic-assisted, and enzymatic-assisted extraction. Red
indicates the extraction methods, green highlights the advantages of each extraction method, and
grey points out the disadvantages of each extraction method.
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2.1. Traditional Extraction Method

The traditional extraction of polysaccharides from G. lemaneiformis typically involves a
straightforward and widely used hot water extraction process. In this method, dried and
ground algae are submerged in hot water at temperatures ranging from 90 ◦C to 100 ◦C
for an extended period. For example, G. lemaneiformis powder is soaked and extracted
using hot water at 90 ◦C with a solid-to-liquid ratio of 1:45 for a duration of 4 h [16]. Acid
solutions, such as citric acid (pH 2.0) at a solid-to-liquid ratio of 1:50 (w/v) at 100 ◦C for
3 h, are also used in extraction [17]. Additionally, alkali solutions are employed; semi-dried
pieces of G. lemaneiformis are soaked in alkali solution (0.3 mol/L NaOH) at 25 ◦C for 2 h
before being extracted with cold water three times, each extraction lasting for 2 h [12]. The
heat in the extraction process facilitates the breakdown of cell walls and the extracting
polysaccharides into the water. This method is advantageous due to its simplicity, cost-
effectiveness, and minimal need for specialized equipment, making it particularly suitable
for large-scale operations [18]. However, hot water extraction has notable limitations.
It is time-consuming and may not efficiently extract all polysaccharides present in the
biomass [19]. Additionally, the lack of specificity means other soluble components may be
co-extracted, necessitating further purification steps. Despite these limitations, hot water
extraction remains a foundational technique in the initial stages of polysaccharide research
and production.

2.2. Microwave-Assisted Extraction Method

MAE is an advanced technique that utilizes microwave radiation to improve the
extraction of polysaccharides from G. lemaneiformis. The principle behind MAE involves
using microwaves to heat the solvent and biomass simultaneously. Microwaves cause rapid
oscillation of polar molecules, generating heat through friction and dielectric heating [20].
This localized heating disrupts cell walls more efficiently than conventional methods, fa-
cilitating the release of polysaccharides into the solvent [21]. Process parameters, such as
microwave power, exposure time, and solvent type, are carefully controlled to optimize
extraction efficiency and yield. MAE provides several benefits compared to traditional
thermal extraction methods. It considerably shortens extraction time and reduces solvent
usage, making the process eco-friendlier and more cost-effective. For example, comparing
MAE with hot water extraction under the same liquid-to-solid ratio of 1:20 and extraction
temperature of 70 ◦C, the MAE using a 500 W microwave yielded a higher polysaccharide
content (9.6%) than hot water extraction (9.1%). Additionally, MAE required only 20 min,
compared to 60 min for hot water extraction [22]. The rapid and uniform heating provided
by microwaves minimizes the thermal degradation of sensitive polysaccharides, preserv-
ing their bioactivity and structural integrity and ensuring better reproducibility [23,24].
However, the initial setup costs for microwave extraction can be high due to the spe-
cialized equipment required. Additionally, scaling up MAE from the laboratory to an
industrial scale can be challenging due to differences in microwave penetration and heating
uniformity in larger volumes [25,26].

2.3. Ultrasonic-Assisted Extraction Method

UAE is a cutting-edge technique that employs ultrasonic waves to improve the ex-
traction of polysaccharides from G. lemaneiformis. This method involves applying high-
frequency sound waves to a mixture of solvent and biomass, inducing cavitation bubbles
within the liquid [27]. These bubbles collapse rapidly, releasing intense localized energy
that disrupts the algae’s cell walls [28]. This mechanical disruption facilitates the release
of polysaccharides into the solvent. Parameters such as ultrasound frequency, power, and
duration are carefully optimized to maximize extraction efficiency. Tang et al. utilized
UAE to extract G. lemaneiformis polysaccharides using an ultrasonic device at 65 ◦C for
30 min [29]. Furthermore, a combined technique employing ultrasound and microwave-
assisted extraction was applied, with extraction conditions set at 87 ◦C, ultrasonic power of
50 W, microwave power of 800 W, extraction duration of 31.7 min, and a solid-to-water ratio
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of 1.0:60.7, resulting in a polysaccharide yield of 34.8%, compared to 29.7% for hot water
extraction [30]. UAE offers significant benefits over conventional methods. It shortens
extraction time and solvent usage, enhancing cost-effectiveness and environmental sustain-
ability. The cavitation effect ensures efficient disruption of cell walls and improves solvent
penetration, leading to higher yields. Moreover, the lower temperatures used in UAE help
to preserve the bioactive and structural stability of thermally sensitive polysaccharides.
However, the initial investment in ultrasonic equipment may be prohibitive for smaller
operations considering adopting this technology.

2.4. Enzymatic-Assisted Extraction Method

EAE leverages specific enzymes to dismantle the cell walls of G. lemaneiformis, facili-
tating the release of polysaccharides in a mild and efficient manner. This process involves
cell-wall-degrading enzymes, such as cellulases, amylase, hemicellulases, and pectinases,
which hydrolyze the complex carbohydrates and proteins that make up the algal cell
walls [31,32]. The enzymatic action disrupts the structural integrity of the cells, allowing
polysaccharides to be solubilized and extracted into the surrounding solvent [33]. Key
extraction parameters include the type and concentration of enzymes, temperature, and pH
to maximize enzymatic activity. For example, enzymatic extraction using a thermostable
α-amylase from Thermococcus sp. HJ21 at a high temperature of 95 ◦C and pH 5 resulted in a
yield of G. lemaneiformis polysaccharides reaching 49.15% on a dry weight [34]. Additionally,
some reports indicate that extraction efficiency can be increased by adding enzymes to the
initial hot water extract mixture, supplementing with 1% papain and 0.5% cellulase (w/v)
and incubating at 60 ◦C for 2 h to obtain more polysaccharides [16]. Chen et al. reported
that the H2O2-assisted cellulase extraction of agar from G. lemaneiformis preserves the sul-
fate content, achieving about 3.56%, which is higher than the 1.80% sulfate content obtained
with traditional alkali-extracted agar [35]. The benefits of enzymatic extraction include
its high specificity, targeting only cell wall components and minimizing the extraction of
unwanted substances, thus improving the purity of the polysaccharides [36]. Additionally,
enzymatic extraction operates under mild conditions, which helps preserve the bioactivity
and structural integrity of the polysaccharides, making them suitable for sensitive applica-
tions such as pharmaceuticals and nutraceuticals. However, the cost of enzymes and the
need for the careful control of process parameters can be seen as limitations [37].

2.5. Other Extraction Techniques

Liquid-phase pulsed discharge is a non-thermal technique developed based on elec-
trical breakdown in water. This method generates UV light emission, radical species,
high-amplitude shock waves, and cavitation, all of which promote the release of intra-
cellular polysaccharides [38,39]. Ju and Xi reported the liquid-phase pulsed discharge
extraction of G. lemaneiformis polysaccharides, using an electric field strength of 80 kV/cm
and a flow velocity of 14 mL/min. Although the extraction yields were not significantly
different—140.19 mg/g for hot water extraction and 147.94 mg/g for liquid-phase pulsed
discharge extraction—the latter method offered notable advantages. Specifically, it required
a shorter extraction time (79 min versus 300 min) and operated at a lower temperature
(25 ◦C versus 60 ◦C) [40].

3. Purification of GLPs

Purifying GLPs is vital for producing high-quality, consistent polysaccharide prepa-
rations for research and industrial use. Effective purification methods are essential to
remove impurities that might interfere with the structural analysis and biological evalua-
tion of GLPs. Achieving high-purity polysaccharides is crucial for accurately determining
structure–function relationships, which are key to understanding their biological activi-
ties and ensuring they meet the rigorous quality standards required for pharmaceuticals,
nutraceuticals, and functional foods. A summary of the advantages and disadvantages
of different purification techniques has been shown in Figure 2. Ethanol precipitation is a
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commonly employed technique for purifying GLPs due to its simplicity, cost-effectiveness,
and efficiency in removing contaminants. This process involves adding ethanol to an
aqueous solution of crude polysaccharide extract, resulting in the precipitation of polysac-
charides while smaller molecules and impurities remain dissolved in the ethanol–water
mixture [41,42]. Researchers typically adjust the ethanol concentration to between 30% and
80% to isolate GLP fractions [12,43]. However, ethanol precipitation has limitations, includ-
ing the potential co-precipitation of low molecular weight impurities, which reduces the
overall purity of the final product and necessitates additional purification steps [44,45]. Ad-
ditionally, the requirement for large volumes of ethanol can be both costly and hazardous.
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Figure 2. Summary of the advantages and disadvantages of different purification techniques for
GLPs, including ethanol precipitation, column chromatography, and membrane technology.

Membrane separation techniques use semi-permeable membranes to separate molecules
by size, making them effective for purifying polysaccharides [46,47], including those from G.
lamaneiformis. This method offers several benefits, such as low energy consumption, scalabil-
ity, and the ability to operate at ambient temperatures. Membranes with a molecular weight
cut-off of 1 kDa are typically used to dialyze and remove low molecular weight impurities
from GLPs [48]. Dialysis membranes are commonly used to separate GLPs with varying
molecular weights. Ultrafiltration is another specific membrane purification method that
utilizes membranes with various pore sizes to purify polysaccharides of different molecular
weights [49]. By choosing membranes with particular pore sizes, researchers can effectively
separate polysaccharides according to their size. For instance, membranes with larger pores
(e.g., 100 kDa) can retain high-molecular-weight polysaccharides while allowing smaller
molecules and impurities to pass through. Conversely, membranes with smaller pores
(e.g., 10 kDa) can isolate low-molecular-weight polysaccharides by excluding even smaller
contaminants [50,51]. Membrane separation techniques are continuous processes, making
them suitable for large-scale industrial applications [52]. However, membrane fouling,
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where impurities or the polysaccharides themselves block the membrane pores, can be a
significant drawback, reducing efficiency and increasing maintenance requirements [53].

Chromatographic techniques like ion-exchange chromatography and size-exclusion
chromatography are highly selective and efficient for purifying GLPs, resulting in highly
purified fractions. Ion-exchange chromatography separates GLPs based on their charge
properties [54,55]. By gradually adjusting the ionic strength or pH of the elution buffer,
polysaccharides with different charge densities can be selectively eluted [56]. Neutral and
acidic GLPs are purified using DEAE Sephadex A-50 resin, eluted with distilled water
and 0.3–0.6 mol/L NaCl solution [30]. DEAE-52 and DEAE-Sepharose fast-flow column
resins can also be used to obtain sulfated polysaccharides, eluted with 0.4 mol/L NaCl
solution [57,58]. Size-exclusion chromatography or gel-filtration chromatography purifies
GLPs based on their molecular size [59,60]. Using Sephadex G-100 size-exclusion chro-
matography, eluted with distilled water, results in high-purity homogeneous peaks for
GLPs [61,62]. Despite their effectiveness in achieving high-purity GLPs, these chromato-
graphic techniques present challenges such as high costs for purification materials and the
time-consuming nature of the processes [63].

4. Structural Characterization of GLPs

Structural characterization is vital in studying GLPs as it provides insights into their
functional properties, biological activities, and potential applications. This analysis includes
determining the monosaccharide composition, glycosidic linkages, molecular weight, and
chain conformation of the polysaccharides [64,65]. Chromatography methods like HPLC
and GC, along with spectroscopy techniques such as Fourier transform infrared spectrom-
eter, multi-angle laser light scattering (MALLS), and NMR, are essential for obtaining
detailed structural characterization.

4.1. Monosaccharide Composition

Monosaccharide composition is a vital structural feature of GLPs, offering key insights
into the types and proportions of monosaccharides present. To determine this composition,
polysaccharides are initially hydrolyzed into their constituent monosaccharides. These
monosaccharides are then separated and quantified using chromatographic techniques,
such as HPLC or GC [66,67]. For example, polysaccharides from G. lamaneiformis are hy-
drolyzed with trifluoroacetic acid at 100 ◦C for 2 h. The resulting monosaccharide solution
is subjected to PMP derivatization and analyzed by HPLC. This analysis revealed that GLPs
are predominantly composed of galactose (82.76%), rhamnose (9.01%), mannose (6.25%),
and glucose (1.97%) [68]. In another study, GLPs were hydrolyzed using 4 mol/L TFA at
105 ◦C for 2 h. The resulting hydrolyzed product was derivatized with hydroxylamine
hydrochloride and pyridine, followed by acetylation with acetic anhydride. Subsequent
analysis by GC revealed the monosaccharide composition of GLPs, showing molar ratios
of 45.84% galactose, 35.17% glucose, 18.12% xylose, and 0.33% mannose [58].

The anhydrogalactose residues are one of the main monosaccharide components
in GLPs. However, they are acid- abile and easily converted to galactose residues or
5-hydroxymethyl-furfural under strong acid hydrolysis conditions [69]. For this reason,
a reductive hydrolysis using the methylmorpholine–borane complex under mild acidic
conditions is employed, which is suitable for converting GLPs into monosaccharides. After
hydrolysis into monosaccharide components, the resulting alditols are acetylated and
then subsequently analyzed by GC [70]. The results showed that different red seaweed
polysaccharides had varying monosaccharide compositions. Porphyra haitanensis, Gracilaria
blodgettii, and Gracilaria chouae consisted of anhydrogalactose and galactose with molar
ratios of 1:1.4, 1:1.5, and 1:1.6, respectively. In contrast, G. lemaneiformis and Eucheuma
galetinae had relatively high amounts of galactose, with molar ratios of 1:3.0 and 1:3.1,
respectively [71].
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4.2. Molecular Weight

Determining the molecular weight of GLPs is typically conducted using HPLC coupled
with a size-exclusion column. In this method, polysaccharide molecules are separated based
on their size as they move through a column packed with porous beads. The molecular
weight is calculated using a series of dextran standards with known molecular weights.
A study determined that a low molecular weight GLP had an average molecular weight
of 2.7 × 103 Da using the HPLC dextran calibration method [72]. Additionally, HPLC has
been used to investigate the impact of various extraction and degradation methods on the
molecular weight of GLPs. Liao et al. utilized HPLC to detect GLPs that had molecular
weightw of 1.2189 × 105 Da, and their two degradation products, with molecular weights of
57.02 × 103 Da and 14.29 × 103 Da, respectively [73]. Chen et al. used HPLC to determine
the molecular weight of GLPs. The GLPs extracted enzymatically had larger molecular
weights of 1.936 × 106 Da, compared to the alkali-extracted GLPs, which had molecular
weights of 7.91 × 105 Da [35].

High-performance size-exclusion chromatography coupled with MALLS is a sophisti-
cated method for determining the molecular weight of GLPs without the need for dextran
calibration. This technique not only provides precise and accurate molecular weight mea-
surements but also determines the radius of gyration and intrinsic viscosity, giving a
detailed understanding of the polysaccharide’s chain conformation. Using HPSEC-MALLS
combined with a viscometer, Veeraperumal et al. found that the molecular weight and
intrinsic viscosity of GLPs were 1.570 × 105 Da and 133.94 mL/g, respectively. Furthermore,
the exponent α of the Mark–Houwink equation [η] = kMwα for GLPs in sodium nitrate
solution was calculated to be 0.737, indicating that GLP has a flexible chain in investigated
aqueous solution [57].

4.3. Glycosidic Linkages

The glycosidic linkages of GLPs involve identifying the specific connections between
monosaccharide units in the polysaccharide chain. Methylation analysis, followed by
gas chromatography–mass spectrometry (GC–MS), is commonly used to determine these
linkage positions. For instance, Shi et al. used this method to confirm that GLP consists of
linear linkages of 1,3-linked galactopyranose and 1,6-linked galactopyranose [30]. Similarly,
Bajwa et al. found that Gracilariopsis sp. polysaccharides contained a significant amount
of 3-linked galactopyranose (40%) and 4-linked anhydro-galactopyranose (27%) through
methylation analysis [74].

NMR spectroscopy is a powerful tool for investigating detailed structural information
about polysaccharides, including the sequence of monosaccharides and the types of glyco-
sidic linkages present. Studies have shown that the chemical structure of GLPs is primarily
composed of galactose. For example, Li et al. described GLPs as having a linear back-
bone of β-(1→3)- and α-(1→4)-linked galactopyranose residues and anhydro-galactose
units [43]. Similarly, Wang et al. described a GLP backbone consisting of alternating
α-(1→3)-galactopyranose and β-(1→4)-galactopyranose units [72]. Another study investi-
gated the chemical structure of GLP using various NMR techniques, including 1H NMR,
13C NMR, COSY, HSQC, and HMBC, revealing that the structure consists mainly of glucose
and galactose, specifically →4)-α-D-Glcp-(1→4)-α-D-Glcp-(1→4)-β-D-Galp-(1→6)-α-D-
Glcp-(1→6)-α-D-Glcp-(1→ [75].

5. Biological Activities of GLPs
5.1. Antioxidant Activities

GLPs possess a multitude of bioactive properties, with their antioxidant activity being
one of the most reported. GLPs exhibit robust antioxidant activities through several well-
documented mechanisms, primarily by scavenging free radicals—unstable molecules that
cause significant cellular damage through oxidative stress [76,77]. The biological activities,
related mechanisms of action, and structural information of GLPs are summarized in
Table 1. Reactive oxygen species (ROS), including superoxide anions, hydroxyl radicals,
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and hydrogen peroxide, as well as reactive nitrogen species such as nitric oxide and
peroxynitrite, are pivotal in the onset and progression of various diseases, including cancer,
cardiovascular disorders, and neurodegenerative conditions [78,79]. GLPs can donate
hydrogen atoms or electrons to these reactive species, neutralizing them and mitigating
their harmful effects. Wang et al. demonstrated the radical scavenging activities of GLPs
in vitro using assays such as the superoxide radical assay, hydroxyl radical assay, DPPH
(2,2-diphenyl-1-picrylhydrazyl) radical scavenging assay, and reducing power assay [80].
In another study, the scavenging ability of GLPs showed an IC50 of 9.62 mg/mL for ABTS
(2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonic acid)) radicals, 23.85 mg/mL for DPPH,
4.97 mg/mL for ferric ion, and 3.56 mg/mL for superoxide radicals [81]. Additionally, in cell
culture studies on human keratinocyte cells (HaCaTs) exposed to H2O2, a common inducer
of oxidative stress, GLPs significantly reduced ROS levels and increased the expression
of Nrf-2/Keap-1, a key transcription factor regulating antioxidant responses [81]. This
radical scavenging capability of GLPs is crucial for maintaining cellular homeostasis and
preventing oxidative damage to tissue and organ proteins, lipids, and nucleic acids.

In addition to directly neutralizing free radicals, GLPs enhance the body’s antioxidant
defense systems by upregulating the activity of endogenous antioxidant enzymes, including
superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx). SOD
catalyzes the dismutation of superoxide radicals into oxygen and hydrogen peroxide,
which CAT then breaks down into water and oxygen. GPx further reduces hydrogen
peroxide to water, using glutathione as a substrate. By increasing the levels and activity of
these enzymes, GLPs bolster the cellular antioxidant defense mechanism, enhancing the
overall capacity to detoxify harmful ROS. Fang et al. investigated the antioxidant activity
of GLPs in in vitro cell culture assays and reported that GLPs alleviated H2O2-induced
oxidative injury in human fetal lung fibroblast 1 cells by protecting them from oxidative
damage and increasing the activities of SOD, CAT, and GPx [82].

Aging and diabetes are strongly connected to oxidative stress, which occurs when
there is a disparity between the production of ROS and the body’s ability to counteract
them with antioxidant defenses [83,84]. Antioxidant enzyme activity typically declines
with age and chronic hyperglycemia, exacerbating oxidative damage [85,86]. In vivo
studies indicate that GLPs can mitigate oxidative stress related to both aging and diabetes.
Zhang et al. found that GLPs markedly restored the levels of antioxidant enzymes—SOD,
CAT, and GSH-Px—in the serum and brain of D-galactose-induced aging mice in a dose-
dependent manner [87]. Similarly, in streptozotocin-induced diabetic mice, GLP treatment
significantly increased the levels of SOD, GSH-Px, and CAT [88]. In addition, ultraviolet
(UV) radiation in the environment can induce oxidative stress in living organisms. UV
radiation, particularly UVA (320–400 nm) and UVB (280–320 nm) wavelengths, penetrates
the skin and interacts with cellular components, generating ROS. In an in vitro assay, UVB-
induced damage decreased intracellular levels of GSH and SOD in HaCaT cells, while
GLP treatment increased these levels, demonstrating that GLPs protected the cells from
UVB-induced damage [89].

5.2. Immuno-Modulatory Activity

The immune system is essential for overall health and well-being, serving as the body’s
primary defense against pathogens and disease [90]. It consists of a complex network of
cells, tissues, and organs that work together to detect and neutralize harmful invaders
such as bacteria, viruses, fungi, and parasites [91]. GLPs have demonstrated significant
immunomodulatory activities by activating macrophages. These cells are vital to the innate
immune system, as they detect, engulf, and destroy pathogens and apoptotic cells, thereby
enhancing the body’s immune responses [92]. Ren et al. reported that treatment with
GLPs has been shown to increase the phagocytic capability of RAW264.7 cells and increase
the production of nitric oxide and ROS. Additionally, GLPs stimulate the secretion of
pro-inflammatory cytokines such as tumor necrosis factor-alpha (TNF-α) and interleukin-6
(IL-6), further amplifying the immune response [58]. Proinflammatory cytokines such as
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tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), and interleukin-6 (IL-6) are
produced by immune cells, including macrophages, dendritic cells, and T-lymphocytes, in
response to pathogens or cellular damage [93,94]. These cytokines are crucial mediators of
the immune response, promoting inflammation to defend against infections and injuries.
However, the overproduction or prolonged presence of proinflammatory cytokines can
lead to chronic inflammation, contributing to the progression of various inflammatory
diseases such as rheumatoid arthritis, inflammatory bowel disease, and cardiovascular
diseases [95,96]. Thus, maintaining a balanced cytokine response is critical for effective
immune defense while preventing the detrimental effects of chronic inflammation. In a
lipopolysaccharide-induced IEC-6 cell model, GLP co-culture with IEC-6 cells decreased
the release and inhibited the gene expression of TNF-α, IL-6, and IL-1β, demonstrating
significant anti-inflammatory effects [43,97].

Another mechanism of GLP’s immunomodulatory effect involves modulating lym-
phocyte proliferation and differentiation. Lymphocytes, including T cells and B cells, play
pivotal roles in adaptive immunity [98]. In individuals with food allergies, the immune
system mistakenly identifies harmless food proteins as threats [99], triggering the activation
of T-helper 2 (Th2) cells. These cells release cytokines such as IL-4 and IL-13. Liu et al.
investigated GLP’s potential to alleviate food allergies using tropomyosin-sensitized mice.
They found that GLPs significantly reduced Th2-dependent tropomyosin-specific IgE and
IgG1 serum levels and decreased the production of IL-4 and IL-13. The immunosuppres-
sive mechanism may be related to a reduction in p38 MAPK activity, contributing to the
mitigation of food allergy symptoms [11,100,101]. The oligosaccharide derived from GLPs
has been demonstrated to modulate type 1 immunity by suppressing T cell activation, as
evidenced by studies conducted both in vivo and in vitro. In vivo, this oligosaccharide
reduced the production of interferon-gamma (IFN-γ) in mice immunized with ovalbumin.
In vitro, using OT-II CD4+ T cells, the oligosaccharide inhibited mTOR activity, glycolysis,
cell cycle progression, and DNA replication [102].

5.3. Anti-Tumor Activity

The significance of polysaccharides derived from natural resources in cancer research
is notably accentuated by their low or non-toxicity, distinguishing them from many con-
ventional chemotherapeutic agents [103,104]. GLPs exhibit anti-tumor activity primarily
through significant immune modulation. They enhance immune cell activity by stimulating
the proliferation and activation of immune cells such as T lymphocytes, natural killer cells,
and macrophages [105]. Ji et al. investigated the antitumor effects of GLPs on Kunming
mice transplanted with S180 tumor cells in the armpit of the right hind limbs. They found
that GLPs suppressed the aggressive growth of solid S180 tumors by enhancing the prolif-
eration of splenocytes, increasing the cytotoxic activity of natural killer cells, and elevating
the serum cytokine levels of IL-2, IFN-γ, and TNF-α [106]. This cytokine modulation not
only boosts overall immune surveillance and attack on tumor cells but also helps reduce
the immunosuppressive environment often created by tumors [107].

Moreover, GLPs exhibit antitumor activity through the direct inhibition of tumor
growth. Kang et al. reported that GLPs showed inhibitory effects on the growth of
three cancer cell lines: human gastric cancer cell line MKN45, cervical carcinoma cell
line HeLa, and non-small cell lung cancer cell line A549. Their transcriptome analysis
demonstrated that GLPs regulated apoptosis, the cell cycle, nuclear division, and cell
death-related genes [108]. Shi et al. also reported similar findings, demonstrating that GLPs
inhibit the proliferation of various cancer cell lines in vitro. These include human breast
cancer cell MCF-7, human cervical carcinoma cell HeLa, and the human hepatocellular
carcinoma cell HepG2 [30]. Another study demonstrated that GLPs inhibit the proliferation
of various cancer cell lines, including gastric cancer cell line MKN28, human lung cancer
cell line A549, and mouse melanoma cell line B16. This suppression is associated with
the increased expression of the Fas/FasL signaling pathway [62]. Fas (CD95) is a death
receptor located on the cell surface, and its ligand, FasL, binds to it, triggering a cascade of
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events that lead to programmed cell death [109]. GLPs enhance the expression of both Fas
and FasL or increase their interaction. This activation of the Fas/FasL pathway promotes
the formation of the death-inducing signaling complex, which further facilitates apoptosis.
Cai et al. demonstrated that GLPs effectively inhibit tumor growth in a mouse model
bearing colon-26 carcinoma. This anti-tumor effect is primarily mediated through the
induction of ferroptosis and the regulation of ferroptosis-related metabolic pathways [110].
Ferroptosis is a type of programmed cell death characterized by the accumulation of lipid
peroxides, and the depletion of intracellular glutathione is crucial for the antitumor activity
of investigated samples [111]. The study found that GLPs promote ferroptosis by inhibiting
glutathione synthesis and disrupting the function of glutathione peroxidase 4, an enzyme
essential for protecting cells from lipid peroxidation. Additionally, GLPs increase the levels
of 4-hydroxy-2-nonenal, a marker of lipid peroxidation, further driving ferroptosis. This
mechanism highlights the potential of GLPs as a therapeutic agent that leverages ferroptosis
to enhance its efficacy in targeting cancer cells, offering a promising approach for cancer
treatment [110].

5.4. Intestinal Health and Gut Microbiota

The gut microbiota is a diverse population of microorganisms residing in the gastroin-
testinal tract, and it is essential for maintaining intestinal health and overall well-being [112].
A healthy gut ensures efficient digestion and nutrient absorption, supports a robust im-
mune system, and maintains the integrity of the gut barrier, preventing harmful pathogens
and toxins from entering the bloodstream [113,114]. Disruptions in gut health can lead to
various diseases. Conditions like inflammatory bowel disease (IBD), which encompasses
ulcerative colitis and Crohn’s disease, involve the chronic inflammation of the gut lining,
causing severe abdominal pain, diarrhea, and malnutrition [115,116]. Furthermore, gut
dysbiosis has been linked to metabolic diseases such as obesity, type 2 diabetes, heart
disorders, and non-alcoholic fatty liver disease [117–119]. Beyond intestinal and metabolic
health, the gut microbiota also significantly influences mental health through the gut–brain
axis, a bidirectional communication network connecting the central nervous system and the
gastrointestinal tract [120]. Therefore, maintaining a balanced gut microbiota is essential
for promoting intestinal health and preventing disease [121].

Prebiotics are non-digestible food components that positively impact the host by
promoting the growth or activity of specific beneficial microorganisms in the colon [122,123].
GLPs can serve as prebiotics because they remain undigested in the upper gastrointestinal
tract. Studies have shown that GLP resists digestion by simulated gastric conditions,
including exposure to gastric juice containing pepsin, gastric lipase, and HCl at pH 3.0.
Additionally, GLP is not digested by amylase or by components of intestinal juice such as
pancreatin, trypsin, and bile salts [17]. These findings indicate that GLP remains intact in
the upper gastrointestinal tract and may reach the large intestine, where it can be fermented
and utilized by gut microbiota.

The intestinal flora consists of a diverse community of microorganisms, predominantly
from four phyla: Firmicutes, Bacteroidetes, Actinobacteria, and Proteobacteria [124]. GLPs
can be fermented by Bacteroidetes. An in vitro simulated human fecal fermentation assay
showed that GLPs increased Bacteroidete’s relative abundance while decreasing that of
Firmicutes [10]. Bacteroidetes utilize various carbohydrate-active enzymes (CAZymes) to
break down complex polysaccharides. These include glycoside hydrolases, which cleave
glycosidic bonds in polysaccharide chains [125]. CAZymes are categorized by their specific
functions and substrate preferences, allowing Bacteroidetes to degrade a wide range of
polysaccharides such as xylans, glucan, mannan, arabinans, and agarans [64,126]. It has
been established that Bacteroides plebeius possesses an endo-type β-agarase, BpGH16A,
which is part of the glycoside hydrolase (GH) family 16. This enzyme breaks β-1,4-
glycosidic bonds in agarose, generating neoagarooligosaccharides. [127]. Co-culturing
red seaweed polysaccharides with Bacteroides thetaiotaomicron revealed the presence of a
GH16 family enzyme that catalyzes the hydrolysis of β-D-galactopyranose-(1→4)-α-L-
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galactopyranose-β-6-sulfate linkages [128]. Additionally, the bacterium Aquimarina sp.
AD1, which belongs to the Bacteroidetes phylum, contains GH96 family enzymes with
specific activity targeting the α-1,3 linkage in LAα1 → 3G6S of funoran [129]. Bacteroidetes
engage in a synergistic approach to break down complex polysaccharides. For instance,
Bifidobacteria and Lactobacillus further process oligosaccharides that Bacteroidetes initially
degrade. This interspecies cooperation involves exchanging intermediate metabolites,
enhancing the breakdown of dietary fibers and improving the efficiency of carbohydrate
fermentation. This is why GLPs can increase the relative abundance of both Bacteroidetes
spp. and Bifidobacteria spp., while reducing the relative abundance of Escherichia [10].

The gut microbiota breaks down GLPs into smaller carbohydrates and monosaccha-
rides, leading to the production of short-chain fatty acids (SCFAs) [130,131]. The main
SCFAs are acetate, propionate, and butyrate, each contributing uniquely to gut health
and overall physiological functions [132]. Acetate, the most prevalent SCFA, is used by
peripheral tissues for energy and helps regulate cholesterol levels [133]. Propionate, though
less abundant, aids in glucose regulation and is linked to a lower risk of metabolic disor-
ders such as obesity and type 2 diabetes [134]. Butyrate is vital for colon health, serving
as the primary energy source for colonocytes, enhancing gut barrier integrity through
mucus production and tight junction formation and providing anti-inflammatory bene-
fits [135,136]. SCFAs exert their physiological effects through specific receptors on the
surface of various cell types in the gut and other tissues. The primary SCFA receptors
are G-protein coupled receptors (GPCRs), namely, GPR41 (also known as free fatty acid
receptor 3, FFAR3), GPR43 (FFAR2), and GPR109A [137,138]. Research by Han et al. demon-
strated that GLPs alleviated DSS-induced colitis in mice. The study found that an increased
expression of SCFA receptors, such as GPR43, GPR109A, and the olfactory receptor Olfr78,
along with elevated SCFAs levels in feces, indicated substantial SCFA absorption in the
colon. This upregulation significantly enhanced the integrity of intestinal tight junctions,
including zonula occludens-1, claudin-1, and mucin, thereby strengthening the intestinal
barrier. Furthermore, the beneficial effects of SCFAs on the intestinal barrier may be linked
to the presence of bacteria such as Enterorhabdus, Desulfovibrio, Alistipes, and Bacteroides
acidifaciens [139]. SCFAs are also vital in regulating the immune response, maintaining
immune tolerance, and preventing excessive inflammation [140,141]. GLPs can alleviate
DSS-induced colitis by increasing SCFAs levels. Additionally, GLP treatment resulted
in decreased levels of CC chemokine ligand-25 (CCL-25) and CC-chemokine receptor-9
(CCR-9), while CD40 and TGF-β1 levels were elevated [142]. CCR-9, the receptor for
CCL-25, is primarily expressed on T cells that migrate to the gut. By inhibiting CCL-25 and
CCR-9, GLPs reduce the infiltration of inflammatory T cells into the gut, thereby mitigating
intestinal inflammation [143,144]. CD40, a co-stimulatory protein on antigen-presenting
cells, interacts with the CD40 ligand on T cells to activate and proliferate both T cells and B
cells, thus enhancing adaptive immunity [145].

Table 1. Biological activities of GLPs, related mechanisms, and structural information.

Bioactivities Mechanism Ref.

Antioxidant
Radical (hydroxyl, DPPH, and ABTS) scavenging capacity, regulation of

antioxidant enzyme levels (MDA, SOD) in HK-2 cells, and decreases
ROS levels.

[146]

Antioxidant Radical (ABTS, hydroxyl, and nitrite) scavenging capacity. [22]

Antioxidant Decreases senescence-associated β-galactosidase activity and suppression of
p21 and p53 gene expression. [72]

Antitumor Inhibition of tumor cell proliferation in vitro through the apoptosis-related
Fas/FasL signaling pathway. [62]

Antitumor Inhibition of tumor cell proliferation in vitro, enhancement of NK cell
activity, and increases levels of serum cytokines in vivo. [106]
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Table 1. Cont.

Bioactivities Mechanism Ref.

Hypoglycemic Regulation of blood sugar levels. Increases in SOD, GSH-Px, and total
antioxidant capacity. [73]

Hypoglycemic Inhibition of α-glucosidase activity. [147]

Intestinal health Modulation of gut microbiota and increases short-chain fatty acids. [142]

Intestinal health Modulates gut microbiota, increases short-chain fatty acids, and enhances
the expression of tight junction proteins and MUC-2. [17,139]

Anti-influenza virus Inhibits viral replication and decreases viral adsorption ability. [148]

Wound healing
Promotes cell proliferation and migration through activation of the

PI3K/aPKC signaling pathway. Enhances epithelial layer thickness and
collagen deposition in vivo.

[57]

6. Conclusions

GLPs are a promising focus of research due to their diverse and potent biological activi-
ties. This review underscores the significant progress made in extracting and characterizing
GLPs. Traditional thermal extraction methods have been pivotal for isolating these polysac-
charides, but advanced techniques such as UAE, MAE, and EAE have greatly enhanced
yield and extraction efficiency. The structural analysis of GLPs, using techniques like HPLC,
GC, and NMR spectroscopy, has provided detailed insights into their monosaccharide
composition, molecular weight, and structural configurations.

The biological activities of GLPs are well documented, with strong evidence sup-
porting their antioxidant, immunomodulatory, antitumor, and intestinal health properties.
These bioactivities underscore the potential applications of GLPs in health and disease man-
agement. Their antioxidant properties can help prevent oxidative stress-related diseases,
while their anti-inflammatory effects may offer relief for conditions such as inflammatory
bowel disease and ulcerative colitis. The antitumor activities of GLPs, including their
ability to induce apoptosis, inhibit tumor cell proliferation, and modulate immune re-
sponses, highlighting their potential in cancer therapy. Additionally, the prebiotic effects
of GLPs on gut microbiota suggest their potential in improving gut health and managing
metabolic disorders.

Future research should focus on several key areas to fully harness the therapeutic
potential of GLPs. Clinical trials are essential to validate the health benefits observed in
preclinical studies and establish effective dosages for human consumption. Mechanistic
studies are needed to elucidate the pathways through which GLPs exert their biological
effects, aiding in the development of targeted therapies. Moreover, exploring the syner-
gistic effects of GLPs with other bioactive compounds could lead to the development of
more effective functional foods and nutraceuticals. Investigating the sustainability and
scalability of GLP production will also be crucial for their widespread application. Overall,
continued research and development in this field hold great promise for the integration of
GLPs into health and wellness products, contributing to the prevention and treatment of
various diseases.
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