Empirical Modeling of the Drying Kinetics of Red Beetroot (Beta vulgaris L.; Chenopodiaceae) with Peel, and Flour Stability in Laminated and Plastic Flexible Packaging
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation and Characterization of Whole Beetroot Paste (WBP)
2.3. Drying Kinetics
2.4. Mathematical Modeling
2.5. Effective Diffusion Coefficient (Def) and Activation Energy (Ea)
2.6. Processing and Quality Characterization of Whole Beetroot Flours
2.7. Stability of Flours in Laminated and Plastic Flexible Packaging
2.8. Statistical Treatment
3. Results and Discussion
3.1. Empirical Modeling of Drying Kinetics
3.2. Effective Diffusion Coefficient (Def) and Activation Energy (Ea)
3.3. Quality Characterization of Whole Beetroot Paste (WBP) and Food Flour
3.4. Flour Stability in Laminated and Plastic Flexible Packaging
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Crocetti, A.; Ogleari, C.H.; Gomes, G.; Sare, I.; Campos, F.R.; Balbi, M.E. Determining the chemical composition based on two drying methods to beetroot (Beta vulgaris L.-Família Amaranthaceae) flour production. Acad. Vis. 2017, 17, 4. [Google Scholar] [CrossRef]
- Sun, F.; Dong, X.; Li, S.; Sha, H.; Gao, W.; Bai, X.; Zhang, L.; Yang, H. Genome-wide identification and expression analysis of SUT gene family members in sugar beet (Beta vulgaris L.). Gene 2023, 870, 147422. [Google Scholar] [CrossRef] [PubMed]
- AtlasBig. World Sugar beet Production by Country. 2023. Available online: https://www.atlasbig.com/pt-br/paises-por-producao-de-beterraba-sacarina#:~:text=Em%20todo%20o%20mundo%2C%20279.396,906%20toneladas%20de%20produ%C3%A7%C3%A3o%20anual (accessed on 3 February 2023).
- Wang, X.; Song, B.; Wu, Z.; Zhao, X.; Song, X.; Adil, M.F.; Riaz, M.; Lal, M.K.; Huang, W. Insights into physiological and molecular mechanisms underlying efficient utilization of boron in different boron efficient Beta vulgaris L. varieties. Plant Physiol. Biochem. 2023, 197, 107619. [Google Scholar] [CrossRef] [PubMed]
- Ferreira Neto, J.; De Queirós, M.M.F.; Nobre, R.G.; Pereira Junior, E.B.; Sousa, J.C.; Sousa, J.X. Physicochemical and microbiological characterization of beet irrigated with agro-industrial effluent. Rev. De Agroecol. No Semiárido 2017, 1, 13–23. [Google Scholar] [CrossRef]
- Brazil Companhia de Entrepostos e Armazéns Gerais de São Paulo. Beet: Identification Guide. 2023. Available online: https://ceagesp.gov.br/hortiescolha/hortipedia/beterraba/ (accessed on 3 February 2023).
- Oliveira, S.P.A.; Albuquerque, T.M.R.; Massa, N.M.L.; Rodrigues, N.P.A.; Sampaio, K.B.; Nascimento, H.M.A.; Lima, M.S.; Conceição, M.L.; Souza, E.L. Investigating the effects of conventional and unconventional edible parts of red beet (Beta vulgaris L.) on target bacterial groups and metabolic activity of human colonic microbiota to produce novel and sustainable prebiotic ingredients. Food Res. Int. 2023, 171, 112998. [Google Scholar] [CrossRef]
- Teixeira, F.; Nunes, G.; Santos, M.M.R.; Candido, C.J.; Dos Santos, E.F.; Novello, D. Cookies added with beetroot peel flour: Physical-chemical and sensory analysis among children. Rev. Da Univ. Val. Do Rio Verde 2017, 15, 472–488. [Google Scholar] [CrossRef]
- Silva, V.M.A.; Ribeiro, V.H.A.; Santos, N.C.; Barros, S.L.; Nascimento, A.P.S.; Almeida, R.L.J. Obtaining and physicochemical characterization of beetroot flour at different temperatures. Cad. De Pesqui. 2019, 2, 73–81. [Google Scholar]
- Farias, J.L.R.; Oliveira, J.C.; Pinto, E.P.; Bravo, C.E.C. Processing of beet husks into flour: Physical-chemical and bioactive characteristics. Braz. J. Dev. 2020, 6, 81129–81135. [Google Scholar] [CrossRef]
- Araújo Filho, D.G.D.; Eidam, T.; Borsato, A.V.; Raupp, D.D.S. Processamento de produto farináceo a partir de beterrabas submetidas à secagem estacionária. Acta Sci. Agron. 2011, 33, 207–214. [Google Scholar] [CrossRef]
- Bassetto, R.Z.; Samulak, R.; Misugi, C.; Barana, A.; Rosso, N. Utilization of Red Beet Root (Beta vulgaris L.) Processing Waste to Produce Cookies. Rev. Verde De Agroecol. E Desenvolv. Sustentável 2013, 8, 20. Available online: https://www.gvaa.com.br/revista/index.php/RVADS/article/view/1782/1521 (accessed on 20 June 2024).
- Silva, F.C.; Silva Neto, F.D.E.S.; Silva, M.M.; de Souza, B.A.; Araújo, D.S.; Souza, L.C.; Lemos, T.O.; Pereira, A.L.F.; Abreu, V.K.G. Physicochemical and technological functional properties of Talinun paniculatum flour for food applications. Geintec-Rev. Gestão Inovação E Tecnol. 2021, 11, 5849–5864. [Google Scholar] [CrossRef]
- Saeidy, S.; Nasirpour, A.; Barekat, S. Effect of sugar beet fiber and different hydrocolloids on rheological properties and quality of gluten-free muffins. J. Sci. Food Agric. 2022, 103, 1404–1411. [Google Scholar] [CrossRef] [PubMed]
- Oliveira Neto, J.O.; Oliveira, E.N.A.; Feitosa, B.F.; Germano, A.M.L.O.; Feitosa, R.M. Use of banana peel in the elaboration of candymariola type. Científica 2018, 4, 199–206. [Google Scholar] [CrossRef]
- Sucheta; Rai, S.K.; Chaturvedi, K.; Yadav, S.K. Evaluation of structural integrity and functionality of commercial pectin based edible films incorporated with corn flour, beetroot, orange peel, muesli and rice flour. Food Hydrocoll. 2019, 91, 127–135. [Google Scholar] [CrossRef]
- Umami, Z.; Rahmawati, L.; Puspa, A. Snack bar formulation with addition of beetroot (Beta vulgaris L.) flour to help relieve symptoms of pre-menstrual syndrome for adolescents. Curr. Dev. Nutr. 2021, 5, 610. [Google Scholar] [CrossRef]
- Almeida, R.F.; Moreno, I.F.; Machado, A.P.O.; Meireles, M.A.A.; Silva, L.K.F.; Batista, E.A.C. Araticum (Annona crassiflora Mart.): A critical review for the food industry. Food Res. Int. 2024, 184, 114241. [Google Scholar] [CrossRef] [PubMed]
- Feitosa, B.F.; Oliveira, E.N.A.; Oliveira Neto, J.O.; Oliveira, D.B.; Feitosa, R.M. Kinetics of drying waste from fruit pulp processing agroindustry. Energ. Na Agric. 2019, 34, 134–141. [Google Scholar] [CrossRef]
- Almeida, R.F.; Bevilaqua, G.C.; Machado, A.P.O. Design, construction and application of a low-cost solar dryer: A kinetic study of Araticum pulp drying. J. Food Process. Preserv. 2022, 46, e17200. [Google Scholar] [CrossRef]
- Hidangmayum, K.S.; Hulle, N.R.; Rao, P.S. Effect of high pressure pretreatment on the drying characteristics of the beetroot (Beta vulgaris) cubes. J. Agric. Food Res. 2023, 11, 100493. [Google Scholar] [CrossRef]
- Šoronja-Simović, D.; Zahorec, J.; Šereš, Z.; Griz, A.; Sterniša, M.; Smole Možina, S. The food industry by-products in bread making: Single and combined effect of carob pod flour, sugar beet fibers and molasses on dough rheology, quality and food safety. J. Food Sci. Technol. 2022, 59, 1429–1439. [Google Scholar] [CrossRef]
- Šoronja-Simović, D.; Zahorec, J.; Šereš, Z.; Maravić, N.; Smole Možina, S.; Luskar, L.; Luković, J. Challenges in determination of rheological properties of wheat dough supplemented with industrial by-products: Carob pod flour and sugar beet fibers. J. Food Meas. Charact. 2021, 15, 914–922. [Google Scholar] [CrossRef]
- Cappa, C.; Lucisano, M.; Mariotti, M. Influence of Psyllium, sugar beet fibre and water on gluten-free dough properties and bread quality. Carbohydr. Polym. 2013, 98, 1657–1666. [Google Scholar] [CrossRef]
- Cui, R.; Fei, Y.; Zhu, F. Physicochemical, structural and nutritional properties of steamed bread fortified with red beetroot powder and their changes during breadmaking process. Food Chem. 2022, 383, 132547. [Google Scholar] [CrossRef] [PubMed]
- Djordjević, M.; Šoronja-Simović, D.; Nikolić, I.; Djordjević, M.; Šereš, Z.; Milašinović-Šeremešić, M. Sugar beet and apple fibres coupled with hydroxypropylmethylcellulose as functional ingredients in gluten-free formulations: Rheological, technological and sensory aspects. Food Chem. 2019, 295, 189–197. [Google Scholar] [CrossRef] [PubMed]
- Simić, S.; Petrović, J.; Rakić, D.; Pajin, B.; Lončarević, I.; Jozinović, A.; Fišteš, A.; Nikolić, S.; Blažić, M.; Miličević, B. The influence of extruded sugar beet pulp on cookies’ nutritional, physical and sensory characteristics. Sustainability 2021, 13, 5317. [Google Scholar] [CrossRef]
- Gouvea, I.F.S.; Maciel, M.P.R.; Carvalho, E.E.N.; Boas, B.M.V.; Nachtigall, A.M. Physical and chemical characterization of beet stalk flour. Braz. J. Dev. 2020, 6, 15814–15823. [Google Scholar] [CrossRef]
- Association of Official Analytical Chemists. Official Methods of Analysis, 20th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 2016; ISBN 0935584870. [Google Scholar]
- Almeida, R.L.J.; Santos, N.C.; Silva, V.M.A.; Ribeiro, V.H.A.; Barros, E.R.; Cavalcante, J.A.; Queiroga, A.P.R.; Luíz, M.R.; Nascimento, A.R.B.; Nunes, J.S. Influence of thickness on the drying kinetics of beet slices. Res. Soc. Dev. 2020, 9, e18942940. [Google Scholar] [CrossRef]
- Thao, B.T.T.; Vo, T.T.K.; Tran, T.Y.N.; Le, D.T.; Tran, T.T.; Bach, L.G.; Dao, T.P. Application of mathematical techniques to study the moisture loss kinetics and polyphenol degradation kinetics of mango (Mangifera indica L.) slices during heat pump drying by pilot equipment. LWT 2023, 176, 114454. [Google Scholar] [CrossRef]
- Page, G.E. Factors Influencing the Maximum Rates of Air Drying Shelled Corn in Thin Layers. M.Sc. Thesis, Purdue University, West Lafayette, IN, USA, 1949. [Google Scholar]
- Midilli, A.; Kucuk, H.; Yapar, Z. A new model for single-layer drying. Dry. Technol. 2002, 20, 1503–1513. [Google Scholar] [CrossRef]
- Lewis, W.K. The rate of drying of solid materials. J. Ind. Eng. Chem. 1921, 13, 427–432. [Google Scholar] [CrossRef]
- Henderson, S.M. Progress in developing the thin layer drying equation. Trans. ASAE 1974, 17, 1167–1168. [Google Scholar] [CrossRef]
- Chandra, P.K.; Singh, R.P. Applied Numerical Methods for Food and Agricultural Engineers; CRC Press: Boca Raton, FL, USA, 1995; p. 512. ISBN 9780849324543. [Google Scholar]
- Ameri, B.; Hanini, S.; Boumahdi, M. Influence of drying methods on the thermodynamic parameters, effective moisture diffusion and drying rate of wastewater sewage sludge. Renew. Energy 2020, 147, 1107–1119. [Google Scholar] [CrossRef]
- Tonon, R.V.; Brabet, C.; Hubinger, M.D. Application of spray drying to obtain functional products with high added value from açaí. Soc. Incl. 2013, 6, 70. [Google Scholar]
- Wells, J.I. Pharmaceutical Preformulation: The Physicochemical Properties of Drug Substances; Ellis Horwood: Chichester, UK, 1988; ISBN 0-7458-0276-1. [Google Scholar]
- Lannes, S.C.D.S.; Medeiros, M.L. Processing of cupuaçu chocolate milk by spray-dryer. Braz. J. Pharm. Sci. 2003, 39, 115–123. [Google Scholar] [CrossRef]
- Freudig, B.; Hogekamp, S.; Schubert, H. Dispersion of powders in liquids in a stirred vessel. Chem. Eng. Process. Process Intensif. 1999, 38, 525–532. [Google Scholar] [CrossRef]
- Cano-Chauca, M.; Stringheta, P.C.; Ramos, A.M.; Cal-Vidal, C. Effect of the carriers on the microstructure of mango powder obtained by spray drying and its functional characterization. Innov. Food Sci. Emerg. Technol. 2005, 6, 420–428. [Google Scholar] [CrossRef]
- Eastman, J.E.; Moore, C.O. Cold-Water-Soluble Granular Starch for Gelled Food Composition. U.S. Patent 4,465,702, 14 August 1984. [Google Scholar]
- Baldwin, A.J. Insolubility of milk powder products—A minireview. Dairy Sci. Technol. 2010, 90, 169–179. [Google Scholar] [CrossRef]
- Achor, M.; Oyeniyi, J.; Musa, M.; Gwarzo, M. Physicochemical properties of cassava starch retrograded in alcohol. J. Appl. Pharm. Sci. 2015, 5, 126–131. [Google Scholar] [CrossRef]
- Silva, F.A.Z.; Azevedo, C.A.V. The assistat software version 7.7 and its use in the analysis of experimental data. Afr. J. Agric. Res. 2016, 11, 3733–3740. [Google Scholar] [CrossRef]
- Oliveira, M.T.R.; Berbert, P.A.; Martinazzo, A.P. Evaluation of mathematical models in the description of convection drying curves of Pectis brevipedunculata (Gardner) Sch. Beep. Braz. J. Med. Plants 2013, 15, 1–12. [Google Scholar] [CrossRef]
- Panchariya, P.C.; Popovic, D.; Sharma, A.L. Thinlayer modelling of black tea drying process. J. Food Eng. 2002, 52, 349–357. [Google Scholar] [CrossRef]
- Carlesso, V.O.; Berbert, P.A.; Silva, R.F.; Detmann, E. Assement of thin-layer drying models of yellow passion fruit seeds. Rev. Bras. De Sementes 2007, 29, 28–37. [Google Scholar] [CrossRef]
- Perez, L.G.; Oliveira, F.M.N.; Andrade, J.S.; Moreira Filho, M. Drying kinetics of cupuaçu pulp (Theobroma grandiflorum) pre-dehydrated by immersion-impregnation. Rev. Ciência Agronômica 2013, 44, 102–106. [Google Scholar] [CrossRef]
- Geankoplis, C.J. Transport Processes and Unit Operations; Continental Publishing Company S.A. de C.V-CECSA: Mexico City, Mexico, 1998; Volume 3, p. 1008f. [Google Scholar]
- Felizardo, M.P.; Merlo, G.R.F.; Maia, G.D. Modeling drying kinetics of Jacaranda mimosifolia seeds with variable effective diffusivity via diffusion model. Biosyst. Eng. 2021, 205, 234–245. [Google Scholar] [CrossRef]
- Goneli, A.L.D.; Corrêa, P.C.; Afonso Júnior, P.C.; Oliveira, G.H.H. Drying kinetics of peeled coffee beans in a thin layer. Rev. Bras. De Armazenamento 2009, 11, 64–73. [Google Scholar]
- Feitosa, B.F.; Almeira, R.L.J.; Santos, N.C.; Oliveira, E.N.A.; Lermen, M.S.B.S.; Monteiro, S.S.; Lima, E.G.; Cavalcanti, M.T.; Araújo, J.S.F.; Borges, G.S.C. Effects of different temperatures on electric oven drying of myrtle (Eugenia gracillima Kiaersk.) seeds modified by High Hydrostatic Pressure (HHP). LWT-Food Sci. Technol. 2023, 189, 115554. [Google Scholar] [CrossRef]
- Li, H.; Xie, L.; Ma, Y.; Zhang, M.; Zhao, Y.; Zhao, X. Effects of drying methods on drying characteristics, physicochemical properties and antioxidant capacity of okra. LWT-Food Sci. Technol. 2019, 101, 630–638. [Google Scholar] [CrossRef]
- Dhurve, P.; Kumar Arora, V.; Kumar Yadav, D.; Malakar, S. Drying kinetics, mass transfer parameters, and specific energy consumption analysis of watermelon seeds dried using the convective dryer. Mater. Today Proc. 2022, 59, 926–932. [Google Scholar] [CrossRef]
- Koukouch, A.; Idlimam, A.; Asbik, M.; Sarh, B.; Izrar, B.; Bostyn, S.; Bah, A.; Ansari, O.; Zegaoui, O.; Amine, A. Experimental determination of the effective moisture diffusivity and activation energy during convective solar drying of olive pomace waste. Renew. Energy 2017, 101, 565–574. [Google Scholar] [CrossRef]
- Barbosa, F.F.; Melo, E.C.; Santos, R.H.S.; Rocha, R.P.; Martinazzo, A.P.; Radünz, L.L.; Gracia, L.M.N. Evaluation of mathematical models for prediction of thinlayer drying of brazilian lemon-scented verbena leaves (Lippia alba (mill) n.e. Brown). Rev. Bras. De Prod. Agroindustriais 2007, 9, 73–82. [Google Scholar] [CrossRef]
- Horuz, E.; Bozkurt, H.; Karataş, H.; Maskan, M. Simultaneous application of microwave energy and hot air to whole drying process of apple slices: Drying kinetics, modeling, temperature profile and energy aspect. Heat Mass Transf. 2017, 54, 425–436. [Google Scholar] [CrossRef]
- Brazilian Food Composition Table Beet. Available online: http://www.tbca.net.br/base-dados/int_composicao_alimentos.php?cod_produto=C0015B (accessed on 3 February 2023).
- Pasa, C.; Lovatto, P.B.; Hoeltz, M.; Engel, B.; Rohlfes, A.L.B.; Lobo, E.A. Evaluation of the efficiency of non-commercialized organic beetroot in flour production: Sustainabilit y model for family agribusiness in brazil. Rev. Em Agronegócio E Meio Ambiente 2017, 10, 127–143. [Google Scholar] [CrossRef]
- Almeida, R.F.; Gomes, M.H.G.; Kurozawa, L.E. Enzymatic hydrolysis improves the encapsulation properties of rice bran protein by increasing retention of anthocyanins in microparticles of grape juice. Food Res. Int. 2024, 180, 114090. [Google Scholar] [CrossRef] [PubMed]
- Almeida, R.F.; Gomes, M.H.G.; Kurozawa, L.E. Rice bran protein increases the retention of anthocyanins by acting as an encapsulating agent in the spray drying of grape juice. Food Res. Int. 2023, 172, 113237. [Google Scholar] [CrossRef]
- United States Pharmacopeia. Bulk Density and Tapped Density of Powders, 37th ed.; United States Pharmacopeia: Rockville, MD, USA, 2014. [Google Scholar]
- Santhalakshmy, S.; Bosco, S.J.D.; Francis, S.; Sabeena, M. Effect of inlet temperature on physicochemical properties of spray-dried jamun fruit juice powder. Powder Technol. 2015, 274, 37–43. [Google Scholar] [CrossRef]
- Saifullah, M.; Yusof, Y.A.; Chin, N.L.; Aziz, M.G. Physicochemical and flow properties of fruit powder and their effect on the dissolution of fast dissolving fruit powder tablets. Powder Technol. 2016, 301, 396–404. [Google Scholar] [CrossRef]
- Franco, T.S.; Perussello, C.A.; Ellendersen, L.N.; Masson, M.L. Effects of foam mat drying on the physicochemical and microstructural properties of yacon juice powder. LWT-Food Sci. Technol. 2016, 66, 503–513. [Google Scholar] [CrossRef]
- Feitosa, R.M.; Figueiredo, R.M.F.; Queiroz, A.J.M.; Silva, R.M.; Silva, R.C.; Oliveira, E.A.N. Influence of drying adjuvant in different proportions on myrtle pulp. In Challenges of Agroindustry in Brazil; Dantas, C.O., da Silva Filho, C.R.M., Neto, J.F.S., de Medeiros, J.A., Eds.; 2016; Volume 1, pp. 1005–1008. [Google Scholar]
- Jayasundera, M.; Adhikari, B.; Adhikari, R.; Aldred, P. The effects of proteins and low molecular weight surfactants on spray drying of model sugar-rich foods: Powder production and characterisation. J. Food Eng. 2011, 104, 259–271. [Google Scholar] [CrossRef]
- Jayasundera, M.; Adhikari, B.; Adhikari, R.; Aldred, P. The effect of protein types and low molecular weight surfactants on spray drying of sugar-rich foods. Food Hydrocoll. 2011, 25, 459–469. [Google Scholar] [CrossRef]
- Jayasundera, M.; Adhikari, B.; Howes, T.; Aldred, P. Surface protein coverage and its implications on spray-drying of model sugar-rich foods: Solubility, powder production and characterisation. Food Chem. 2011, 128, 1003–1016. [Google Scholar] [CrossRef]
- Villanova, J.C.O.; Lima, T.H.; Patrício, P.S.; Pereira, F.V.; Ayres, E. Synthesis and characterization of acrylic beads prepared by suspension polymerization aiming at application as a pharmaceutical excipient for direct compression. New Chem. 2012, 35, 124–131. [Google Scholar] [CrossRef]
Model | T (°C) | Constants | R2 | MSD | X2 (×10−4) | |||||
---|---|---|---|---|---|---|---|---|---|---|
a | b | k | k1 | n | c | |||||
Page | 60 | - | - | 0.000230 | - | 1.494825 | - | 0.99864 | 0.0194 | 4.0333 |
70 | - | - | 0.001131 | - | 1.281114 | - | 0.99322 | 0.0396 | 17.0401 | |
80 | - | - | 0.000346 | - | 1.598761 | - | 0.99816 | 0.0227 | 5.6476 | |
Midilli | 60 | 0.735224 | −0.000894 | −0.175843 | - | 0.000001 | - | 0.85066 | 0.1952 | 44.3504 |
70 | 0.738498 | −0.001995 | −0.183674 | - | 0.000000 | - | 0.95599 | 0.0833 | 11.3400 | |
80 | 0.980643 | −0.000052 | 0.000025 | - | 1.648398 | - | 0.99869 | 0.0160 | 4.2172 | |
Lewis | 60 | - | - | 0.003471 | - | - | - | 0.98273 | 0.0687 | 48.9230 |
70 | - | - | 0.004884 | - | - | - | 0.98596 | 0.0569 | 33.6900 | |
80 | - | - | 0.006508 | - | - | - | 0.97654 | 0.0805 | 67.8266 | |
Two terms | 60 | 0.524049 | 0.545877 | 0.003830 | 0.003830 | - | - | 0.98784 | 0.0577 | 38.8660 |
70 | 0.520622 | 0.496003 | 0.005001 | 0.005001 | - | - | 0.98628 | 0.0562 | 35.9094 | |
80 | 0.539035 | 0.539035 | 0.007094 | 0.007098 | - | - | 0.98410 | 0.0664 | 50.7679 | |
Logarithm | 60 | 1.219157 | −0.169168 | 0.002856 | - | - | - | 0.99352 | 0.0422 | 19.3030 |
70 | 1.262024 | −0.274728 | 0.003157 | - | - | - | 0.99521 | 0.0333 | 12.6088 | |
80 | 1.272281 | −0.205391 | 0.005188 | - | - | - | 0.99193 | 0.0474 | 25.8775 |
Parameters | Whole Beet | |
---|---|---|
Paste | Food Flour | |
Physicochemical properties | ||
Water content (%) | 87.40 ± 0.10 | 3.17 ± 0.20 |
Ash (%) | 0.17 ± 0.02 | 6.15 ± 0.28 |
pH | 6.50 ± 0.00 | 6.47 ± 0.06 |
TTA (% Citric acid) | 0.37 ± 0.00 | 0.61 ± 0.00 |
TSS (°Brix) | 10.00 ± 0.00 | 6.69 ± 0.00 |
aw | 0.638 ± 0.030 | - |
Physical properties | ||
B (g cm−3) | - | 0.52 ± 0.02 |
C (g cm−3) | - | 0.56 ± 0.03 |
CIn | - | 8.60 ± 0.28 |
HR | - | 1.09 ± 0.00 |
W (g min−1) | - | 4.75 ± 0.47 |
S (%) | - | 90.33 ± 0.22 |
I (%) | - | 32.62 ± 0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sousa, E.P.d.; Oliveira, E.N.A.d.; Lima, T.L.S.; Almeida, R.F.; Barros, J.H.T.; Lima, C.M.G.; Giuffrè, A.M.; Wawrzyniak, J.; Wybraniec, S.; Coutinho, H.D.M.; et al. Empirical Modeling of the Drying Kinetics of Red Beetroot (Beta vulgaris L.; Chenopodiaceae) with Peel, and Flour Stability in Laminated and Plastic Flexible Packaging. Foods 2024, 13, 2784. https://doi.org/10.3390/foods13172784
Sousa EPd, Oliveira ENAd, Lima TLS, Almeida RF, Barros JHT, Lima CMG, Giuffrè AM, Wawrzyniak J, Wybraniec S, Coutinho HDM, et al. Empirical Modeling of the Drying Kinetics of Red Beetroot (Beta vulgaris L.; Chenopodiaceae) with Peel, and Flour Stability in Laminated and Plastic Flexible Packaging. Foods. 2024; 13(17):2784. https://doi.org/10.3390/foods13172784
Chicago/Turabian StyleSousa, Elisabete Piancó de, Emanuel Neto Alves de Oliveira, Thamirys Lorranne Santos Lima, Rafael Fernandes Almeida, Jefferson Henrique Tiago Barros, Clara Mariana Gonçalves Lima, Angelo Maria Giuffrè, Jolanta Wawrzyniak, Sławomir Wybraniec, Henrique Douglas Melo Coutinho, and et al. 2024. "Empirical Modeling of the Drying Kinetics of Red Beetroot (Beta vulgaris L.; Chenopodiaceae) with Peel, and Flour Stability in Laminated and Plastic Flexible Packaging" Foods 13, no. 17: 2784. https://doi.org/10.3390/foods13172784
APA StyleSousa, E. P. d., Oliveira, E. N. A. d., Lima, T. L. S., Almeida, R. F., Barros, J. H. T., Lima, C. M. G., Giuffrè, A. M., Wawrzyniak, J., Wybraniec, S., Coutinho, H. D. M., & Feitosa, B. F. (2024). Empirical Modeling of the Drying Kinetics of Red Beetroot (Beta vulgaris L.; Chenopodiaceae) with Peel, and Flour Stability in Laminated and Plastic Flexible Packaging. Foods, 13(17), 2784. https://doi.org/10.3390/foods13172784