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Abstract: Despite the high global production of beetroot (Beta vulgaris L.), its peel is often discarded.
Transforming beetroot into flour can reduce waste, improve food security, and decrease environmental
pollution. However, large-scale feasibility depends on understanding drying kinetics and optimal
storage conditions. This study aimed to investigate the effects of different temperatures in the
convective drying of whole beetroot and evaluate the influence of laminated flexible and plastic
packaging on flour stability over two months. Drying kinetics were analyzed using five models,
with the Page and Logarithm models showing the best fit (R2 > 0.99). Def values (1.27 × 10−9 to
2.04 × 10−9 m2 s−1) increased with rising temperatures while drying time was reduced (from 820 to
400 min), indicating efficient diffusion. The activation energy was 29.34 KJ mol−1, comparable to
other plant matrices. Drying reduced moisture and increased ash concentration in the flour. The flour
showed a good water adsorption capacity and low cohesiveness, making it marketable. Laminated
packaging was more effective in controlling physicochemical parameters, reducing hygroscopicity,
and maintaining quality over 60 days. In summary, the Page model can predict beetroot drying
kinetics effectively, and laminated packaging can control flour stability.

Keywords: storage; food waste; drying kinetics; physicochemical properties; agro-industrial waste

1. Introduction

Beetroot (Beta vulgaris L.; Chenopodiaceae) is a vegetable primarily composed of water,
carbohydrates, vitamins, and minerals. This vegetable has three biotypes with significant
economic importance: sugar beets, fodder beets, and horticultural beets [1,2]. Sugar beets
are used as an industrial raw material for sugar production. In addition to being more
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widespread in most countries, their production is estimated at 280 million tons per year [3,4].
Brazil primarily produces the horticultural biotype (red beetroot), especially the cultivar
Early Wonder [5]. The beetroot cultivation area in Brazil is approximately 18 thousand
hectares, with each hectare annually yielding about 30 tons of this vegetable [6].

Despite the high production of beetroot, its peel is an agro-industrial by-product
that is often discarded, generating economic impacts [7]. Beetroot peel is a source of
fibers, calories, and natural pigments such as betalains, which have antioxidant properties
and help prevent cardiovascular and neurodegenerative diseases [8–10]. Therefore, the
complete utilization of beetroot in the form of food flour can be a viable alternative to food
waste, food insecurity, and environmental pollution [11–14].

Flour is an industrial product that requires low-cost production and has high market
acceptance [15–18]. However, the feasibility of integrating whole beetroot into this large-
scale process depends on understanding its drying kinetics, including the application of
empirical mathematical models and other factors such as effective diffusion coefficient (Def)
and activation energy (Ea) [19–21]. Currently, the beetroot flour market is still a limited,
costly, and poorly consolidated segment. This alternative product offers health benefits to
consumers, which are associated with its antioxidants, fibers, and minerals, such as iron
and potassium [22,23].

Techno-scientific research has focused on the application of sugar beet flour in gluten-
free products such as baking doughs [8,22–27]. Meanwhile, other studies are limited to
obtaining the flour and evaluating its physicochemical parameters [1,9,10,13,28]. It is worth
noting that the increase in veganism and vegetarianism can also boost the demand for
beetroot flour as a natural ingredient in plant-based and meat-alternative products. It is
important to note that there are no studies in the literature that have evaluated the drying
kinetics of whole beetroot nor the storage stability of the resulting flour under different
packaging conditions.

Therefore, this study aimed to evaluate the effects of different temperatures on the
convective drying of whole red beetroot, as well as determine the drying kinetics and
analyze it in terms of mathematical modeling, Def, and Ea. This study also aimed to
evaluate, for the first time, the influence of packaging on the stability of the flour over
60 days of storage.

2. Materials and Methods
2.1. Materials

The raw material used was horticultural beetroot (B. vulgaris L.), selected without
mechanical damage and at full physiological maturation. In other words, complete physio-
logical ripeness was determined based on several factors: the uniform deep red color of the
root, the firmness of the flesh, and the size of the beetroot, which typically ranged between
5 and 10 cm in diameter. These criteria are indicators that the beetroot has reached full
maturity, ensuring optimal pigment concentration and nutrient content. It was acquired
from three distinct batches at a farmers’ market in the city of Pau dos Ferros, Rio Grande
do Norte, Brazil (Latitude: 6◦6′9′′ S, Longitude: 38◦12′33′′ W).

2.2. Preparation and Characterization of Whole Beetroot Paste (WBP)

The beetroots were subjected to washing under running water, sanitization by im-
mersion (in a 50 ppm sodium hypochlorite solution for 15 min), rinsing under running
water, and grinding in an industrial blender LS6 (Skymsen®, Brusque, Brazil) to obtain a
homogeneous paste. It is worth noting that the grinding was performed on whole beets,
including the peel. This WBP was characterized, in three repetitions, for its physicochemical
parameters: water content (drying in an oven at 105 ◦C for 24 h); ash content (incineration in
a muffle furnace at 550 ◦C for 6.5 h); pH (digital pH meter, previously calibrated with buffer
solutions of pH 4.0 and 7.0); Titratable Total Acidity (TTA) in % citric acid, through titration
with standardized 0.1 N NaOH; and total soluble solids (TSSs), by refractometry [29]. Water
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activity (aw) was analyzed using a portable water activity analyzer LabStart-aw at 30 ◦C
(Novasina®, Lachen, Switzerland).

2.3. Drying Kinetics

The drying of WBP was carried out in an air circulation oven (TE-394/3MP, TECNAL®,
Piracicaba, Brazil) at temperatures of 60, 70, and 80 ◦C, according to Almeida et al. [30]
and Thao et al. [31]. The air velocity was 1.0 m s−1. The paste was spread evenly on
rectangular stainless-steel trays (24.5 × 16.5 cm), forming a thin layer with a thickness of
0.5 cm. During drying, the trays were weighed at regular time intervals until the mass
readings became constant.

2.4. Mathematical Modeling

From the experimental drying data, the moisture ratio (MR) values were calculated ac-
cording to Equation (1) [29]. The empirical mathematical models of Page [32] (Equation (2)),
Midilli [33] (Equation (3)), Lewis [34] (Equation (4)), Two terms [35] (Equation (5)), and
Logarithm [36] (Equation (6)) were calculated using the Quasi-Newton method. The coeffi-
cient of determination (R2) (Equation (7)), Mean Square Deviation (MSD) (Equation (8)),
and reduced chi-square (χ2) (Equation (9)) were adopted as criteria to evaluate the fit of the
models to the experimental data.

MR =
(Xt − Xe)

(X 0 − Xe)
(1)

MR = a × exp(−ktn) (2)

MR = a × exp(−ktn) + b × t (3)

MR = exp(−kt) (4)

MR = a × exp(k0t) + b × exp(−k1t) (5)

MR = a × exp(−kt) + c (6)

R2 =
∑N

i=1

[
(MR exp − MRpre)

(
MRpre − MRpre

)]2

∑N
i=1

(
MRexp − MRpre

)2
∑N

i=1
(

MRpre − MRexp
)2 (7)

MSD =

√
∑
(

MRpre − MRexp
)2

N
(8)

X2 =
1

N − n

N

∑
i=1

(
MRpre − MRexp

)2 (9)

where (1) Xt, Xe, and X0 are the moisture content at time t, the equilibrium moisture content,
and the moisture content in t = 0, respectively; (2)–(6) t is the drying time (min); k is the
drying constant (min−1); n, b, c, and a are constant in the models; (7)–(9) MRexp and MRexp
are the ratios of the experimental moisture content in the times and its average, respectively;
MRpre and MRpre are the ratios of the moisture content predicted by the equation in the
times and its average, respectively; N is the number of observations made during the
experiment; and n is the constant number in the model.

2.5. Effective Diffusion Coefficient (Def) and Activation Energy (Ea)

The data were fitted to Fick’s diffusion model, considering the flat plate geometric
shape with a five-term approximation, as shown in Equations (10) and (11).

ln
(

X
X0

)
= ln

(
8
π2

)
− π2

4L2 De f × t (10)
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α = − π2

4L2 ×De f (11)

where Def is the effective diffusion coefficient; L is the characteristic length (half the thickness

of the sample); and α is the slope of the linear fit of the ln
(

X
X0

)
data as a function of time.

In relation to the dependence of Def on temperature, the expression described by
Arrhenius was applied (Equation (12)).

De f = D0 × exp
(
− Ea

R(T + 273.5)

)
(12)

where D0 is the pre-exponential factor and R is the universal ideal gas constant (8.314 J mol K−1).
The Ea was calculated from the linearization of the equation’s coefficients, applying

the logarithm according to Equation (13) [37].

ln (De f ) = lnD0 −
Ea

R
× 1

(T + 273.15)
(13)

By plotting ln (Def) as a function of the inverse of the absolute temperature (T), the
slope of the linear regression provides −Ea/R.

2.6. Processing and Quality Characterization of Whole Beetroot Flours

The samples dried at 60 ◦C were removed from the trays using a stainless-steel spatula
and ground in a food processor (R12134, Philips®, Amsterdam, The Netherlands) to obtain
the food flour. The quality of the flour was evaluated in three repetitions according to the
Association of Official Analytical Chemists [29]. The physicochemical parameters evaluated
were water content, total solids, ash, pH, TTA, TSS, and aw, as described in Section 2.2.
Additionally, the physical parameters of bulk density (ρB), tapped density (ρC) [38], Carr
index (CIn) [39], Hausner ratio (HR) [40], wettability (W) (adapted from Freudig et al. [41]),
and solubility (S) [42,43] were evaluated, respectively, according to Equations (14)−(19).
Insolubility (I) was determined based on the percentage of material not solubilized after
one minute of stirring [44].

ρB =
w
Vt

(14)

ρC =
w
Vc

(15)

CI(%) =

(
ρC − ρB

ρB

)
× 100 (16)

HR =
ρC
ρB

(17)

W =
w
t

(18)

S =
[(wds

w

)
× 4

]
× 100 (19)

where w is the sample weight (g); Vt is the total volume (cm3); Vc is the occupied volume
(cm3); t is the time (s); and wds is the weight of dissolved solids in the supernatant (g).

2.7. Stability of Flours in Laminated and Plastic Flexible Packaging

The packaging of 20 g of food flour was carried out in laminated and plastic flexible
packaging, equipped with a zip lock and measuring 12 cm in width and 17.5 cm in height,
with a capacity of 100 g. The storage took place at room temperature (average of 25 ± 2 ◦C)
for 60 days. Stability analyses were performed in at least three repetitions at times 0 and
1 (initial), and every 30 days. The evaluated parameters were water content, pH, TSS
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(Association of Official Analytical Chemists, 2016), ρB, ρC, CIn, HR, and W (adapted from
Freudig et al. [41] and Achor et al. [45]), as described in Section 2.6.

2.8. Statistical Treatment

The empirical modeling of drying kinetics was conducted using the software Statistica
7.0 (StatSoft South America, Porto Alegre, Brazil). The stability results of the flours were
analyzed using the software Assistant version 7.7 beta [46], through Analysis of Variance
(ANOVA). A Completely Randomized Design (CRD) experiment with three repetitions was
conducted in a 3 × 2 factorial scheme, with the factors studied being drying temperature
(60, 70, and 80 ◦C) and different packaging (laminated and plastic flexible packaging). The
means were compared by Tukey’s test (p < 0.05).

3. Results and Discussion
3.1. Empirical Modeling of Drying Kinetics

The drying kinetics were studied using five drying models. The constants and statisti-
cal parameters of the drying kinetics (60, 70, and 80 ◦C) of WBP are presented in Table 1. In
terms of engineering processes, an R2 > 0.93 can be considered satisfactory [47]. Therefore,
all the tested models showed acceptable R2 values for predicting the drying kinetic behavior
of WBP. However, the Page and Logarithm models stood out among the others, as they
achieved R2 values above 0.99 at all applied temperatures, with the highest R2 at 60 and
70 ◦C, respectively. The Midilli model performed better at 80 ◦C, with an R2 close to the
ideal. The two-term and Lewis models did not indicate good fits for the drying kinetics of
WBP compared to the other tested models.

Table 1. Fit of empirical mathematical models for the drying of WBP.

Model T (◦C)
Constants

R2 MSD X2

(×10−4)a b k k1 n c

Page
60 - - 0.000230 - 1.494825 - 0.99864 0.0194 4.0333
70 - - 0.001131 - 1.281114 - 0.99322 0.0396 17.0401
80 - - 0.000346 - 1.598761 - 0.99816 0.0227 5.6476

Midilli
60 0.735224 −0.000894 −0.175843 - 0.000001 - 0.85066 0.1952 44.3504
70 0.738498 −0.001995 −0.183674 - 0.000000 - 0.95599 0.0833 11.3400
80 0.980643 −0.000052 0.000025 - 1.648398 - 0.99869 0.0160 4.2172

Lewis
60 - - 0.003471 - - - 0.98273 0.0687 48.9230
70 - - 0.004884 - - - 0.98596 0.0569 33.6900
80 - - 0.006508 - - - 0.97654 0.0805 67.8266

Two terms
60 0.524049 0.545877 0.003830 0.003830 - - 0.98784 0.0577 38.8660
70 0.520622 0.496003 0.005001 0.005001 - - 0.98628 0.0562 35.9094
80 0.539035 0.539035 0.007094 0.007098 - - 0.98410 0.0664 50.7679

Logarithm
60 1.219157 −0.169168 0.002856 - - - 0.99352 0.0422 19.3030
70 1.262024 −0.274728 0.003157 - - - 0.99521 0.0333 12.6088

80 1.272281 −0.205391 0.005188 - - - 0.99193 0.0474 25.8775

WBP, whole beet paste; a, b, k, k1, n, and c, equation constants; R2, determination coefficient; MSD, Mean Square
Deviation; X2, chi-square; -, not estimated.

Although it is common to find studies that determine the best predictive model
based only on the R2 value, this practice is not the most appropriate as it is subject to
misinterpretations of the fits [20]. Therefore, this study also considered the MSD and
χ2 values. For MSD, performance was similarly and inversely proportional to R2, with
satisfactory values for all tested temperatures in the Page and Logarithm models (MSD
below 0.05). According to Panchariya et al. [48], the best predictive model is the one that
delivers the lowest χ2 values. In this regard, the Midilli model presented the lowest χ2

values at 70 and 80 ◦C. In turn, the Page model performed better at 60 ◦C, with satisfactory
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values for all temperatures (Table 1). The Logarithm model also achieved good fits at 60
and 70 ◦C.

The drying behavior of the beetroot cubes was well described by the two-term expo-
nential model indicated by a lower mean relative error (7–8%) [21]. It was observed that
the drying constant k tended to increase with rising temperature. The value of k depends
on the type of product, the temperature, and the relative humidity of the air [49]. This
trend is also related to Def in the drying process during the falling-rate period and to the
net diffusion controlling the process. There was also a reduction in the constant n at the
intermediate temperature (70 ◦C), followed by an increase at 80 ◦C. Perez et al. [50] stated
that the parameter n is related to the internal resistance of the material to drying.

Figure 1 shows the drying curves (60, 70, and 80 ◦C) of WBP with the fits of the
Page model. The curves conform to the typical constant rate drying curve described by
Geankoplis [51].
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Figure 1. Drying curves (60, 70, and 80 ◦C) of WBP fitted to the empirical Page model. WBP, whole
beetroot paste.

As expected, water losses were greater at the beginning of the drying process. Higher
drying temperatures resulted in a faster drying process, which is associated with higher
water vapor pressure on the surface [52]. The stabilization phase of drying was slower for
WBP dried at 60 and 70 ◦C. The water removal rate decreased due to the low water content
and the difficulty of migrating to the surface of the material. Almeida et al. [20] emphasized
that surface water is removed more easily and quickly. Therefore, the drying time can
vary according to the material, air velocity, and layer thickness. In this study, the drying
time of WBP was 820, 520, and 400 min for temperatures of 60, 70, and 80 ◦C, respectively.
The influence of temperature on reducing drying time is a consequence of the increased
vibration level of water molecules, thus contributing to faster water diffusion [53].

3.2. Effective Diffusion Coefficient (Def) and Activation Energy (Ea)

Def is a measure of diffusion efficiency, considering all factors that affect water mi-
gration. It is crucial for the development and selection of appropriate equipment for the
raw material, as well as for a complete understanding of its use [20,54]. The Def values
in this experiment increased with rising temperature, where 60 ◦C = 1.27 × 10−9 m2 s−1,
R2 = 0.9348; 70 ◦C = 1.47 × 10−9 m2 s−1, R2 = 0.9536; 80 ◦C = 2.04 × 10−9 m2 s−1, and
R2 = 0.9317. Therefore, it can be observed that the results were higher than the general range
of 10−11 to 10−9 m2 min−1 for agricultural products [55], which may be associated with the
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occurrence of more efficient water diffusion channels due to increased matrix porosity [56].
Figure 2 shows ln(Def) as a function of the inverse of the absolute temperature (T).
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There was a reduction in ln(Def) as the inverse of the temperature increased. The result
varied between −22.78 for 60 ◦C and −22.30 for 80 ◦C. The Ea of WBP was 29.34 KJ mol−1,
like the results of other plant matrices, such as olive pomace—29.06 KJ mol−1 [57], Brazilian
Lippia alba leaves—31.79 KJ mol−1 [58], and apple slices—13.04–33.52 KJ mol−1 [59]. This
energy measure allows for predicting and controlling the process speed, and no other
studies measuring the Ea of WBP were found, making this result novel.

3.3. Quality Characterization of Whole Beetroot Paste (WBP) and Food Flour

The quality analyses of WBP and food flour are presented in Table 2.

Table 2. Physicochemical and physical properties of the paste and food flour.

Parameters
Whole Beet

Paste Food Flour

Physicochemical properties
Water content (%) 87.40 ± 0.10 3.17 ± 0.20

Ash (%) 0.17 ± 0.02 6.15 ± 0.28
pH 6.50 ± 0.00 6.47 ± 0.06

TTA (% Citric acid) 0.37 ± 0.00 0.61 ± 0.00
TSS (◦Brix) 10.00 ± 0.00 6.69 ± 0.00

aw 0.638 ± 0.030 -

Physical properties
ρB (g cm−3) - 0.52 ± 0.02
ρC (g cm−3) - 0.56 ± 0.03

CIn - 8.60 ± 0.28
HR - 1.09 ± 0.00

W (g min−1) - 4.75 ± 0.47
S (%) - 90.33 ± 0.22
I (%) - 32.62 ± 0.05

TTA, total titratable acidity; TSS, total soluble solids; aw, water activity; ρB bulk density; ρC compressed density;
CIn, Carr index; HR, Hausner ratio; W, wettability; S, solubility; I, insolubility; -, not estimated.
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The water content of raw beetroot (86%; [60]) was preserved in the WBP, despite the
peel and the application of the appropriate technological process. After drying, the food
flour showed a reduction in moisture content (3.17%) and, consequently, a substantial
increase in ash content (6.15%). Silva et al. [9]) reported a higher moisture content (8.42%)
than the present study when analyzing beetroot flour subjected to a drying temperature
of 70 ◦C. Pasa et al. [61] obtained a similar range of ash values (5.5 to 7.1%) to the present
study when evaluating beetroot flour obtained at different drying times at 75 ◦C.

The convective drying process directly influenced the TTA and aw values, suggesting
better stability against the metabolic activity of microorganisms and chemical or biochemi-
cal reactions for the dried product. The pH values for WBP and food flour were closer to
neutrality compared to the results found by Farias et al. [10] when they analyzed beetroot
peel flour (5.98). The variation in quality parameters is related to factors such as soil
type, cultivation, planting season, planting location, and marketing conditions [28]. A pH
between 5.0 and 6.0 also favors the maintenance of the color of pigments [62,63] such as
betalain, present in beetroot.

The physical properties indicated results like those of Yashiki and Triboli [53] in ρB
(0.46) and ρC (0.67), who evaluated yam flour obtained by lyophilization. The CIn and
HR values were classified as excellent by the United States Pharmacopeia [64], which
recommends values ≤ 10 as parameters for the flow and fluidity of a particulate mate-
rial. They were also classified as having low cohesiveness by Santhalakshmy et al. [65],
who recommend values below 1.2 in this category, with particle size and shape being
determinants [66].

The food flour showed a good adsorption capacity, high S and W in water, and low
I. Lannes and Medeiros [40] reported that powders with a good W take up to 5 min for
90% of the sample (powder) to be immersed in water. Similar S values were found by
Franco et al. [67] when evaluating powdered yacon obtained by foam layer drying (80.89 to
84.16%). Feitosa et al. [68] also obtained low I (32.27 to 37.78%) for myrtle powders (Eugenia
gracillima Kiaersk.).

3.4. Flour Stability in Laminated and Plastic Flexible Packaging

Figure 3 shows the results for water content (a), pH (b), TSS (c), ρB (d), ρC (e), CIn (f),
HR (g), and W (h) for the stability of flours in laminated and plastic flexible packaging. The
different packaging at room temperature (average of 25 ± 2 ◦C) had a significant influence
(p < 0.05) at all storage times on most of the parameters.

The selected drying process was effective, resulting in a 96.5% reduction in the water
content of the paste compared to the beetroot flour (Table 2). During the storage period,
the increase in moisture content was significantly higher (p < 0.05) in the plastic flexible
packaging. This directly interferes with stickiness, clumping, pathogen multiplication,
and the quality of the product’s shelf life, although the low water content is an indication
of the amorphous state [69–71]. Consequently, the TSS levels of the flours experienced a
substantial reduction after 60 days of storage, with no statistically significant difference
between the packaging types (p > 0.05).

Significant differences between the packaging types (p < 0.05) were observed only
in the ρB and ρC parameters after 60 days of flour storage. Conversely, the pH and W
parameters were not significantly affected during the storage of beetroot flour in different
types of packaging (p > 0.05), with the former remaining close to neutrality (pH = 7, Table 2).
The CIn values were classified as excellent throughout the storage period, according to
the variation between 5 and 15% established by Villanova et al. [72]. Again, smaller
fluctuations in physicochemical parameters were observed for the laminated packaging
in HR. According to Santhalakshmy et al. [65], powders with an HR < 1.2 are classified as
having low cohesiveness, an HR between 1.2 and 1.4 as having intermediate cohesiveness,
and an HR > 1.4 as having high cohesiveness.
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Figure 3. Results of water content (a), pH (b), TSS (c), ρB (d), ρC (e), CIn (f), HR (g), and W (h) for the stability of flours in laminated and plastic flexible packaging
during 60 days of storage (average of 25 ± 2 ◦C). TSSs, total soluble solids; ρB, bulk density; ρC, tapped density; CIn, Carr index; HR, Hausner ratio; W, wettability.
a–c: different lowercase letters at different storage times denote difference (p < 0.05; Tukey’s test); A,B: different capital letters at the same storage time denote
difference (p < 0.05; Tukey’s test).
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4. Conclusions

The Page model can be considered the best empirical model for predicting the drying
kinetics of whole red beetroot paste at 60 ◦C. During storage, the laminated packaging
proved to be more effective in controlling the physicochemical parameters of whole red
beetroot flour, especially regarding the control of hygroscopicity. This beetroot product
could serve as an alternative to traditional flours, with the advantage of being gluten-free
and free of animal products. Future research is recommended to explore the sensory
properties and applications of beetroot powders in biodegradable films.
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