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Abstract: Palm oil, derived from Elaeis guineensis, is a critical component of the global edible oil
and industrial fat market. This review provides a comprehensive overview of the sustainability of
the palm oil chain, focusing on industrial applications, environmental implications, and economic
sustainability. The processing of palm oil, from fruit pulp to refined oil, is detailed, highlighting the
importance of refining in maintaining quality and extending application ranges. While palm oil offers
health benefits because of its rich fatty acid composition and antioxidant properties, its production
poses significant environmental challenges. This review underscores ongoing efforts to balance
technological and culinary demands with environmental stewardship and sustainable economic
growth. Emerging trends, including interspecific hybrids such as E. guineensis and E. oleifera, are
discussed for their potential to increase sustainability and productivity.

Keywords: palm tree; oil separation; fatty acids; environmental impact

1. Introduction

The production of vegetable oils such as coconut, cottonseed, olive, palm kernel,
peanut, rapeseed, sunflower, soybean, and palm oils reached a combined total of 223.8 mil-
lion metric tons (mt) in 2024. Soybean and palm oils were the most common oils produced
in recent years [1] (Figure 1).

Considering the production trends from 2000 to 2001 until now, palm oil production
increased by 229%, whereas soybean oil production increased by 143% (Figure 1b). In the
2024/2025 biennium, the world production of palm oil is expected to exceed 80 mt. This
substantial growth underscores the importance of palm oil, which became a cornerstone of
the global edible oil and industrial fat market, now comprising more than 35% of global
vegetable oil production [2,3]. Despite occupying only 5.5% of the cultivated land for oils
and fats worldwide, palm oil accounts for 32% of the total production [4]. This efficiency
positions palm oil as a critical component of the agricultural sector, reflecting its economic
importance and versatility. It is used in various products, including shorteners, vanaspati
frying fats, margarine, and confectionery fats [5,6].

The increasing consumption of vegetable oils is driven by population growth, the
search for renewable energy sources to reduce greenhouse gas emissions, and the expansion
of the biofuel sector. These factors collectively establish palm oil as the most widely used
vegetable oil worldwide, with high productivity per planted area [7,8]. The yield of oil
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palm, reaching 4 to 4.5 tons per hectare, far surpasses that of other oilseeds, reinforcing its
global dominance [9]. The growing demand for palm oil is also attributed to its diverse
applications beyond traditional food use, including its role in biodiesel production, which
positioned palm oil as a critical resource for both the food and energy sectors [2].
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Figure 1. Vegetable oil production worldwide until 2024/2025. (a) Evolution of the production of
vegetable oil over the last four decades; and (b) increase in the production of vegetable oil in the last
20 years [1].

Owing to its rich fatty acid composition (oleic and palmitic acids), palm oil’s unique
semisolid or solid state at room temperature enhances its versatility in various food and
nonfood applications. This property enables palm oil to be blended or interesterified with
other oils to create trans-fat-free products, which are increasingly important to the food
industry [8,10,11]. Furthermore, the refining process of palm oil is critical for maintaining
its quality and extending its application range. It removes unwanted compounds while
preserving beneficial components such as tocopherols [12–15].

In this context, the present work aims to provide a comprehensive and up-to-date
overview of palm oil processing, focusing on its sustainability. This review synthesizes
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current knowledge regarding characteristics and processing and highlights emerging trends
and challenges in the palm oil industry, including official regulations, environmental issues,
and the pursuit of sustainable production practices.

2. Oil Palm Tree

The oil palm tree, scientifically known as Elaeis guineensis, is often called the African oil
palm and belongs to the Arecaceae family, sharing its botanical lineage with coconut and date
palms [2]. It is a pivotal component of the global palm family, holds significant economic
importance, is widely studied, and is commercially exploited [3]. The species E. oleifera or E.
melanococca (also known as “Caiaué”) is known as American oil palm tree. The hypothesis
is that the separation of the American and African continents in prehistoric times led to
the evolution of those species known today [2]. Researchers generally agree that the oil
palm E. guineensis is native to Africa’s western and southwestern regions, particularly the
area between Angola and Gambia [4]. It is believed that it was domesticated in its native
habitat, likely in Nigeria, and spread across tropical Africa over 5000 years ago [5].

The oil palm fruit (OPF), originating from the palm tree, is a drupe formed in tight,
spiky bunches [6]. Oil palm produces fruits in fresh bunch (FFB) clusters (Figure 2). These
bunches are composed of tightly packed spikelets containing fruits and can weigh up to
50 kg, bearing anywhere from a few hundred to a few thousand fruits [16]. Each fruit
consists of distinct layers, including an outer skin (exocarp), a fleshy pulp (mesocarp), a
protective shell (endocarp), and an inner kernel (endosperm), Scheme 1 [6,7]. The mesocarp,
a fibrous matrix, contains palm oil, whereas the kernel harbors oil within its central nut. A
typical palm fruit measures approximately 3.5 cm in length and weighs approximately 3.5
to 4.0 g. OPF is recognizable by its reddish color and bunch-like growth pattern. Each fruit
consists of two main parts: the oily, fleshy layer, known as the mesocarp, and a single seed,
the palm kernel or endosperm. The oil extracted from the mesocarp is referred to as crude
palm oil (CPO), whereas the oil from the kernel is called palm kernel oil [6].
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Scheme 1. Part of palm fruit.

The African oil palm can be classified into dura, pisifera, and tenera according to the
thickness of the endocarp covering the kernel (Figure 3). Dura is the predominant type,
with a frequency of approximately 97% in wild palm groves; tenera is a hybrid of dura and
psifera [2,8,9].

Foods 2024, 13, x FOR PEER REVIEW  4  of  22 
 

 

 

Figure 2. Palm tree (a) and fresh fruit bunch (b) (source: the authors, 2024). 

 

Scheme 1. Part of palm fruit. 

The African oil palm can be classified into dura, pisifera, and tenera according to the 

thickness of the endocarp covering the kernel (Figure 3). Dura is the predominant type, 

with a frequency of approximately 97% in wild palm groves; tenera is a hybrid of dura 

and psifera [2,8,9]. 

 

Figure 3. Classification of oil palm according to endocarp thickness. Adapted from [9]. Figure 3. Classification of oil palm according to endocarp thickness. Adapted from [9].

The most commercially important oil palm species is the African palm (Elaeis guineen-
sis), which is cultivated worldwide, mainly in Indonesia and Malaysia [17]. The most
significant exploitation of this species is its high oil productivity per planted area. The
American oil palm (Elaeis oleifera) is distributed across various regions of Central and South
America. Unlike the African oil palm, it is not commercially exploited due to its lower
productivity and is utilized by traditional communities for domestic consumption [12].
However, this species has several advantages over African palm: greater resistance to
diseases such as fusarium wilt and pests such as fatal yellowing [10,18] and lower trunk
growth in height, making it easier to handle and harvest bunches [11]. This American
species also has a high carotenoid content (over 4600 ppm), which is higher than that of
African species (between 600 and 1000 ppm) [12,18]. Only the shell dura type exists in the
E. oleifera species [13,14]

The interspecific hybrid E. guineensis × E. oleifera is currently gaining prominence.
This species produces hybrid or high oleic acid palm oil (HOPO) [15,19]. This cultivar
combines the advantages of its two parent species. These include lower vertical growth,
greater resistance to diseases and pests, high productivity per planted area, and a distinctive
composition rich in unsaturated fatty acids and antioxidant compounds such as carotenes.
Furthermore, hybrids exhibit lower acidity levels due to reduced lipase activity, which are
enzymes that become active when fruits are harvested improperly [20].

3. Features of Palm Oil and Its Bioactivity

A striking characteristic of palm oil is its oleic acid content and concentration of antiox-
idant compounds, such as carotenes and tocols, making it more resistant to oxidation and
more suitable for frying, meeting the requirements of the food industry [13]. African palm
oil (APO) is extracted from the fruit’s mesocarp and is known for its unique composition of
fatty acids. It presents a balanced profile of saturated and unsaturated fatty acids, which
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makes this oil extremely versatile and enables a wide range of applications [21,22]. APO
contains approximately 44% palmitic acid, 40% oleic acid, 10% linoleic acid, and 5% stearic
acid [12,13]; thus, it contains approximately 50% saturated fatty acids and 50% unsaturated
fatty acids [21]. This composition differs from that of the oil obtained from the American
species Elaeis oleifera (Caiaué). Among E. oleifera palm trees, the content of unsaturated
fatty acids varies from 47% to 69% for oleic acid, 2% to 19% for linoleic acid, 0.1% to 1.2%
for linolenic acid [23], and the content of palmitic acid is approximately 24% [24]. The
interspecific hybrid has a fatty acid profile composed of oleic acid (55%), palmitic acid
(27%), and linoleic acid (11%) [12].

Palm oil is often criticized for its high concentration of saturated fatty acids (SFA),
particularly palmitic acid, which are linked to health issues such as obesity, cardiovascular
diseases, diabetes, and cancers. However, recent work showed that palmitic acid of plant
origin has a negligible effect on increasing total blood cholesterol and low-density lipopro-
tein cholesterol levels compared with palmitic acid of animal origin and that palm oil does
not induce increases in biomarkers related to the risk of cardiovascular diseases in relation
to unsaturated fatty acids and, in general, does not increase the risk of obesity, diabetes,
cancer, or obesity [25–28]. Another fatty acid present at high concentrations in palm oil is
oleic acid, a non-unsaturated fatty acid (MUFA) that can reduce harmful cholesterol levels
and protect against heart disease [12,20,21] and poly-unsaturated fatty acid (PUFA). These
unsaturated fatty acids are also called omega (ω), according to the position of the carbon
where the unsaturated fatty acid is located, which can be ω-3 (linolenic acid), ω-6 (linoleic
acid), and ω-9 (oleic acid) fatty acid [29]. Significantly, moderate palm oil consumption
may not be associated with an increased risk of developing these health issues.

Palm oil is mainly composed of a mixture of triacylglycerols, approximately 95% [29].
Nevertheless, the oil contains various minority components, including free fatty acids (FFA),
monoacylglycerols (MAG), diacylglycerols (DAG), metals, phospholipids, peroxides, and
chlorophylls, as well as antioxidants and high-value compounds such as carotenoids, vita-
min A precursors, tocols (tocopherols and tocotrienols), and phenolic compounds [30–33].
Vegetable oils are essential in the human diet because they are important carriers of fat-
soluble vitamins such as A, D, E, and K [34].

Carotenoids, which are among the most essential minor components of palm oil,
feature long chains with conjugated double bonds that significantly influence the color of
the oil, ranging from yellow to orange-red [35]. They are liposoluble pigments responsible
for the distinct orange color of the oil extracted from the mesocarp. The concentration
of these pigments in the oil obtained from fruits of E. guineensis varies between 600 and
1000 ppm, whereas for E. oleifera, it is above 4000 ppm. In the case of interspecific hybrids,
the concentration ranges from approximately 1400 to 2300 ppm [19,21,36]. Approximately
90% of the carotenes present in the oil are α- and β-carotenes [19,36].

Carotenoids have antioxidant properties that positively affect human health, making
palm oil valuable for preventing vision problems, cardiovascular disease, and cancer [37–40].
Carotenoids also serve as precursors to vitamin A, with β-carotene exhibiting the greatest
provitamin A (retinol) activity. In addition to their beneficial effects on health, carotenes
have a significant effect on the oxidative process of the oil, as they can reduce oil oxidation
due to their potential to suppress 1O2 (singlet molecular oxygen), and this ability increases
according to the number of double bonds in the chain [34,41]. In addition to their nutritional
value, these compounds are removed from the oil during the refining process to obtain an
oil with a lighter color for greater consumer acceptance in various industrial purposes [42].
On the other hand, maintaining residual carotenoids in postbleaching palm oil is essential,
as they slow the oxidation process [41].

Another essential minor component in palm oil is tocopherols and tocotrienols (collec-
tively known as tocols). Together with carotenes, these compounds can act synergistically
as antioxidants, enhancing the oxidative stability of the oil [17]. These compounds have a
chromanol group that affects vitamin E activity in the diet [43]. A lack of this vitamin can
cause anemia, a decreased immune response, retinopathy, neuromuscular and neurological
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problems [44], and potent anticarcinogenic substances and help combat thrombosis [45].
In addition to carotenes and tocols, palm oil is rich in compounds with important biolog-
ical activities [45] that improve the absorption of nutrients and support brain function,
including phospholipids, phenolic compounds and significant amounts of squalene and
phytosterols [46–48]. Table 1 shows some studies that address these nutritional compo-
nents of the oil. Saturated fatty acids in palm oil are often criticized for their potential
health impacts, such as obesity and cardiovascular diseases. However, recent studies
suggest that plant-derived palmitic acid has a negligible effect on increasing total blood
cholesterol and low-density lipoprotein cholesterol levels compared with animal-derived
palmitic acid [25–28]. Unsaturated fatty acids, particularly oleic acid, are known for their
health benefits, such as reducing harmful cholesterol levels and protecting against heart
disease [12–15,19–23].

Table 1. Health benefits of bioactive compounds found in oil palm.

Bioactive Compound Content Range Health Benefits Reference

Carotenoids
600–1000 ppm (E. guineensis)
4000+ ppm (E. oleifera)

Provitamin A activity [49–52]
Protection against cardiovascular disease [38,51,53,54]
Anticancer activity [51,55–59]
Antioxidant [40,51,55]

Phytosterols 100–200 ppm
Phytosterols help reduce LDL cholesterol
levels [60,61]

Anticancer characteristics [62]

Tocotrienols and
Tocopherols

600–1000 ppm
Vitamin E activity [57,63–65]
Reduces the risk of high cholesterol, risk of
developing cancer, cardiovascular diseases,
brain disorders and increases immunity

[57,63,65–67]

Antioxidant [44,64,65,68–70]

Phenolic acids 10–50 ppm Anti-inflammatory [71,72]

Phospholipids 10–50 ppm

Improves nutrient absorption and
digestion [63,73]

Energy endurance [74,75]
Brain development [76,77]

Squalene 200–500 ppm
Anticancer activity [78]
Protection against cardiovascular disease [79]
Delay in the production of cholesterol [80,81]

Saturated fatty acids
Palmitic acid: Approximately 44% in
E. guineensis and 24% in E. oleifera
Stearic acid: Approximately 5% in E.
guineensis [16–25]

Palmitic: essential fatty acids in cell
membrane, transportation, secretary lipids
and part of the human body and energy
production

[25]

Vegetable palmitic acid has a negligible
effect on blood cholesterol levels [12–15,19–25]

Unsaturated fatty
acids

Oleic acid: Approximately 40% in E.
guineensis, 47–69% in E. oleifera, and
55% in interspecific hybrids
Linoleic acid: Approximately 10% in
E. guineensis, 2–19% in E. oleifera, and
11% in interspecific hybrids

Modulates physiological functions, inhibits
cancer proliferation, reduces inflammation,
reduces blood pressure and improves
wound healing

[6,82]

Beneficial effects on anti-inflammatory and
autoimmune diseases [6,12–15,19–23]

4. Processing of Crude Palm Oil

After the third year of planting, the first bunches of fruits begin to ripen. Approxi-
mately 180 days after the start of inflorescence development, the oil begins to form, with
its formation accelerating notably after two weeks of maturation [83]. Two types of oil
are extracted from the fruit of the palm tree: red crude palm oil from the mesocarp and
palm yellow crude kernel oil from the endosperm, each of which has a distinct composi-
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tion [84]. Mesocarp oil is primarily used for edible purposes, whereas palm kernel oil has
applications in the oleochemical industry [85]. When fully ripe, the fruit mesocarp typically
contains 68.0% to 73.2% (w/w) edible oil [85].

The production of CPO involves various complex steps [9], which include sterilization
of fresh fruit, fruit detachment, digestion, oil extraction, and clarification [83] (Figure 4).
Sterilizing fresh fruit is a critical step involving moisture absorption and heat treatment to
deactivate lipolytic enzymes such as lipases in the fruit mesocarp [86–88]. These enzymes
can otherwise lead to increased levels of free fatty acids (FFAs) [83], causing quality issues
during storage, processing, and refining [89]. The condensed water from this process is a
significant source of palm oil mill effluent (POME). Several studies focused on optimizing
the use of POME, such as reusing the water generated during oil extraction in milling
processes or as drinking water [90]. Additionally, POME is used for biogas generation [90].

Palm oil production can be categorized into artisanal and industrial milling methods.
The oil extraction method, which employs various techniques, is crucial in determining the
yield and quality of oil. These extraction methods can be classified based on their complexity
and processing capacity, ranging from artisanal techniques and small mechanical units to
medium-scale and large industrial mills [91].

Artisanal palm oil extraction represents the oldest method of oil separation and is often
conducted with traditional equipment. In artisanal extraction, harvested fruit bunches are
left for several days to facilitate the detachment of the fruits before the oil extraction process,
increasing lipase activity and leading to the hydrolysis of palm oil triglycerides [92]. The
fruits are subsequently boiled in a drum, and extraction is performed via a manual or
motorized press.

Industrial palm oil extraction employs two primary methods: chemical or wet tech-
niques, such as solvent extraction, and physical or dry methods, such as mechanical press-
ing. These methods can achieve oil extraction efficiencies ranging from 75% to 90% [93–95].
The choice between these two methods depends on several factors, such as the quality and
acidity of the crude oil or local legislation [96].

During the solvent extraction process, oil is extracted from the ruptured cells of
the oil palm via water or steam. This process coagulates proteins and hydrolyzes any
starch, glue, or gum that may be present [97]. These substances can cause oil foam during
frying. The alkaline neutralization stage of chemical refining removes free fatty acids and
most phosphatides. In the subsequent oil clarification step, hydrolyzed and coagulated
products are removed. After moisture evaporation, extracted crude palm oil (CPO) is
obtained [98,99].

Dry extraction, on the other hand, uses a hydraulic press, screw press, or centrifugation
to break the oil cells. The screw press is typically more suitable for continuous extraction
systems, whereas the hydraulic press is commonly used in batch or semi-batch extraction
systems. After being pressed, the crude palm oil is separated from the fibrous mesocarp,
with the remaining fiber components retaining approximately 5 to 6% (w/w) of the oil. The
yield and quality of the extracted oil are influenced by factors such as the initial oil and
moisture contents, operating temperature, heating time, and applied pressure [99]. The
pressure is typically reduced to prevent fruit kernel breakage, which increases oil retention
to around 10–12% in the mesocarp biomass [100].

High-grade palm oil typically has low free fatty acid and moisture levels, minimal
contaminants, and excellent deterioration of the bleachability index (DOBI). The grade and
market value of palm oil depend on the quality of the extracted product. Triacylglycerol
(neutral lipid), carotenoids, phytosterols, and vitamin E (tocopherol and tocotrienols) are
desirable components of oils because of their nutritional value. However, during extraction
processes, whether artisanal or industrial, various compounds are extracted alongside the
oil, including FFA, partial acylglycerols, phosphatides, sterols, tocopherols, tocotrienols,
hydrocarbons, pigments, vitamins, sterol glycosides, protein fragments, traces of pesticides,
dioxins, and heavy metals [49].
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Consequently, CPO contains undesirable compounds such as water, oil impurities, and
fruit fragments. Reducing these compounds is crucial to ensure the quality of palm oil and
expand its range of applications. The objectives of the refining process include achieving
a moisture content below 10% and reducing the FFA level to 0.3% [101]. Conversely, free
fatty acids, phospholipids, and gums are considered contaminants and are undesirable
from a chemical standpoint [102].

CPO must undergo refining to have the desired purity characteristics and become
edible [30]. During the refining process of CPO, which may be chemical or physical, these
impurities are effectively removed, resulting in refined, bleached, and deodorized (RBD)
palm oil [49], as depicted in Figure 5. The quality of refined palm oil is primarily assessed
based on criteria such as the free fatty acid content, iodine value, peroxide value, moisture
content, saponification value (SV), and impurity level.

Chemical refining involves removing free fatty acids by alkali and separating the soap
by centrifugation (sludge). When chemically refined, CPO is washed with a sodium hy-
droxide or sodium carbonate solution to reduce free fatty acids and remove phospholipids
and other polar lipids [103]. However, alkali refining alone may not eliminate all potentially
undesirable chemical components [104].
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Physical refining removes free fatty acids and other compounds through a stripping
process. The choice of refining method depends on the characteristics of each oil. Oils such
as palm, palm kernel, and coconut, which have low levels of phospholipids, are almost
always physically refined [107].

Physical refining has advantages in its use of fewer chemicals and the production of
fewer effluents. For crude palm and palm kernel oils with low initial phosphatide contents
and high carotene and free fatty acid (FFA) contents, physical refining is preferred because
it reduces the loss of neutral oil and operational costs [30,45,49]. Processing parameters
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can be adapted to retain better desirable secondary components such as tocopherols and
tocotrienols and minimize the production of unwanted trans fatty acids [44].

When physically refined, CPO undergoes bleaching and deodorization, which re-
quire high temperatures [41]. Bleaching is an adsorptive process conducted from 95 ◦C
to 135 ◦C [49]. During this process, neutral or acid-activated bleaching earth removes
pigments, metals, oxidation products, and soaps [17]. Some carotenes are removed during
bleaching and the remaining carotenes are destroyed during deodorization at temperatures
of 240 ◦C or higher [21]. This heat bleaching step removes free fatty acids, aldehydes, and
ketones through volatilization. Oils with low DOBI and high levels of FFA and peroxides
are more prone to bleach [108]. The DOBI value is the ratio of oil absorption at 446 nm
to 268 nm, indicating the relative amounts of carotenes and oxidized carotenes. A higher
DOBI value signifies fewer oxidized carotenes, making the oil easier to bleach. DOBI values
between 2.5 and 4.0 indicate average to good crude oil quality, whereas values below 2.0
indicate poor quality, which is difficult to bleach [48].

The high temperatures used in refining processes may lead to undesirable chemical
changes due to elevated temperatures in the refining steps [42]. The use of bleaching earth
can lead to the formation of oxidation products, increasing the levels of FFA’s, foams, color
and viscous compounds [40,42]. Other unwanted products formed during refining are
3-monochloropropane-1,2-diol (3-MCPD) and glycidyl esters (gEs), which are process-
induced contaminants [108,109]. These compounds are toxic, and their consumption is
linked to the formation of tumors.

The formation of 3-MCPD and gEs is influenced primarily by temperature, especially
during oil deodorization [108,110]. 3-MCPDs are virtually undetectable in virgin, unrefined
oils [111]. These contaminants are formed not only in oils during processing, but also
in ready-to-eat foods such as bread, cakes, cookies, cereals, roasted coffees, and baby
foods [109,110,112]. In addition to the conditions mentioned above, several other factors
influence the formation of these compounds, such as the type of soil, fertilizers, and
harvest interval of the bunches [111]. The formation mechanisms of these contaminants are
not yet completely elucidated [111,113], but ways to mitigate their formation are known:
reducing chlorides and other precursors by washing the crude oil before the deodorization
stage [114,115]; controlling the DAG content and reducing the exposure and time to high
temperatures during processing [111,116]; and using neutral bleaching earths since acid-
activated earths undergo treatment with hydrochloric acid [116].

During transport, storage, and consumption, refined oil may gradually change color,
becoming darker shades [117], in a phenomenon called color reversal. Color reversal
is generally associated with poor oil quality or inadequate degumming and bleaching
processes [40,44,48]. The presence of colored pigments and oxidation compounds has
an important effect on the final color of the oil and plays a role in this phenomenon of
color reversal. If, on the one hand, temperature leads to the discoloration of carotenes, it
also favors oxidation, which leads to the formation of other types of colored compounds.
There may be an increase in the yellowish or red color of the oil because the formation of
tocopherol oxidation products such as γ-tocopherol and γ-tocopherol-5,6-quinone may also
lead to the stabilization of other pigments against their removal by adsorption [48,117,118].

5. Utilization of Palm Oil

Palm oil can be used for a variety of purposes. There are several uses for mesocarp
oil and kernel seed oil; approximately 80% are for food purposes, and the remaining 20%
are used as feedstocks for various nonfood applications [119,120]. At the household level,
palm oil has been used for domestic cooking in Southeast Asia, tropical Africa, and South
America for centuries [9,121]. The food industry adopted palm oil in its refined form in
recent decades because of its functional benefits, versatility, and widespread availability.
The main advantages of palm oil include (1) its high stability over time because palm oil
helps maintain the product’s taste throughout its shelf life because of its higher oxidation
stability than other vegetable oils do [122]; (2) its neutral taste and the smell of deodorized



Foods 2024, 13, 2814 11 of 21

palm oil, allowing it to be incorporated into a variety of foods without affecting flavor;
this neutrality ensures that the oil does not mask the flavors of other ingredients, such as
milk, cocoa, and hazelnuts [123]; (3) versatility as a vegetable fat due to the possibility of
fractionation into different solid contents, making it suitable for different requirements
of texture and flavor in the final products [124]; (4) smooth and creamy texture since
food products with palm oil have an excellent mouth feel with specific characteristics for
each product; for example, palm oil contributes to chocolate spreads’ smooth and creamy
texture and spreadability [123]; and (5) as an alternative to trans-fat, palm oil is a suitable
replacement for partially hydrogenated fat [124]. A high percentage of the products sold
at supermarkets use palm oil in their formulation. These products include margarine,
confectionery, ready-to-eat meals, food snacks, chocolate, ice cream, bakery products, and
nonfood products such as soap, candles, and cosmetics [125].

The fractionation process can determine the chemical and physical properties of olein
and stearin: at the industrial level, refined, bleached, and deodorized (RBD) olein is mainly
used in food products such as cooking and frying oils, shortening, and margarine; the RBD
stearin is also used to make margarine and shortening [12]. Unfractionated RBD palm oil
makes ice cream, margarine, shortening, vanaspati (vegetable ghee), frying fats, and ice
cream [123].

Nonfood uses of palm oil include cosmetics and personal care, soap, candles, phar-
maceuticals, metal plating, lubrication and grease, surfactants, industrial chemicals, agro-
chemicals, coatings, paints, lacquers, electronics, leather, and biodiesel production [100].

In addition to mesocarp and kernel oils, which are the main oil palm products, tree and
fruit processing waste have several uses. Sludge is used in traditional soaps and fertilizer,
and palm kernel cake is widely used as an input into the feed industry and fertilizer. The
processing wastes, namely, empty bunch refuse, fibers, shells, sludge, and mill effluent,
constitute approximately 75% of the total mass of the oil products. The other parts of the
palm tree (trunk, leaves, and fiber) have broad uses, while the bunch refuse and byproducts
from oil processing (fiber, shell, and sludge) can be used as fuel for mills, making briquettes
a substitute for fuel wood. Kernel cake was applied in animal feed and organic fertilizer
production as a substrate for mushroom production. The midribs and rachises are applied
as roofing materials [121].

6. Impact and Sustainability of the Palm Oil Chain

Since the beginning of the 21st century, approximately 5 million hectares of forests were
deforested annually. Brazil and Indonesia are critical areas for deforestation, accounting for
33% and 19% of deforested areas, respectively [126]. The land used for oilseed cultivation
increased from 170 MHa in 1961 to 425 MHa in 2017 [127]. This increase is due to the
current demand for renewable energy sources and the needs of both the food and nonfood
industries. Palm cultivation stands out in this increase in production owing to its lower
price and higher productivity than those of other vegetable oils [128].

The relationship between oil palm cultivation and the environment is quite controver-
sial because of the social and environmental impacts versus the opportunities generated by
this culture [127]. The most common environmental impacts are deforestation; a reduction
in woody biomass; the drainage of peatlands; and impacts on biodiversity, water quality,
and increased greenhouse gas emissions and haze when fires are used [126–128]. This
culture also requires a large amount of labor to address field activities such as planting,
cultivating, harvesting, collecting and processing bunches [128], which leads to social prob-
lems such as labor exploitation, low wages, social inequality and compromised well-being
at the village level; another social problem is land grabbing and conflicts [127,129].

Approximately 50% of products present in supermarkets have palm oil in their compo-
sition, in addition to its direct use in the production of food, feed, fuel, cosmetics, detergents,
and the chemical industry [130]. Therefore, despite these negative aspects, boycotting palm
oil cultivation is not viable, especially considering its significant industrial, economic, and
social importance and yield per planted area. Among the two largest vegetable oil crops,
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palm yields 2.93 MT/HA, whereas soybean yields only 0.46 MT/HA. The superiority in
terms of palm yield becomes more evident when we consider that, to achieve this yield, oil
palm was planted at 27.41 (1000 HA) and soybeans at 143.35 [131].

Instead of boycotting, promoting sustainable oil palm cultivation is the path to pursue.
Initial steps were taken; according to Basiron and Weng [132], much time was spent un-
derstanding and managing the palm oil industry’s economic, environmental, and social
aspects, with sustainability aspects only recently being integrated into business strategies.
Currently, it is desired to produce certified palm oil to integrate production and sustain-
ability. These certificates are procedures by which guarantees are provided that a product,
process, or service along the supply chain complies with certain standards [132]. In this
context, the Round Table on Sustainable Palm Oil (RSPO) plays a crucial role. RSPO round
tables are private agreements aimed at enhancing the sustainability of the global palm oil
supply chain [130].

RSPO is a global nonprofit organization with volunteer members aiming to transform
the palm oil industry into a sustainable industry. To this end, stakeholders should be
integrated across the entire palm oil production chain to develop and implement global
standards for sustainable palm oil. According to the organization’s data from 2023, there
were nearly 5000 hectares of certified areas, more than 4000 companies, and approximately
7000 facilities with supply chain certificates. Additionally, this year, more than 14,000 tons
of sustainable palm oil were produced [129].

RSPO is the most recognized and accepted international sustainability certification
today. However, there are national certifications, such as the Malaysian Sustainable Palm
Oil (MSPO) and Indonesian Sustainable Palm Oil Standard (ISPO), which are certifications
from Malaysia and Indonesia, countries that together contribute approximately 90% of
global palm oil production [133]. These certifications ensure that palm oil plantations in
Malaysia and Indonesia are managed following good agricultural practices [134]. Table 2
presents several certification schemes and legislation that aim to sustain palm cultivation.

Sustainable production protects the natural environment while improving business
operations and sharing economic growth with the local community through employment
and fair trade [135,136]. The sustainability of palm oil can be assessed by considering three
main aspects: economic, ecological and social sustainability [133,137].

There are several economic benefits, such as agricultural development, increased
investment and employment in rural industry, and international competitiveness, which
lead to positive financial and socioeconomic impacts on the immediate surroundings of
plantations. On the other hand, the economic development of producing countries resulted
in social and environmental losses [135]. One way to mitigate these losses would be to
invest in the education and training of small producers since it is estimated that they are
responsible for cultivating approximately 50% of the global palm oil area [135,138]. The
integration of these producers into certified palm oil cultivation is essential, as it results
in increased agricultural income and employment and reduced poverty rates at the local,
regional, and national levels [135].

Environmental factors are the most critical of the three pillars since developing palm
oil cultivation requires many natural resources, which impact the environment through
greenhouse gas emissions, deforestation, and loss of biodiversity [136,137]. However, the
contribution of the palm oil sector to driving deforestation remains inconclusive [137,139].
In any case, to continue meeting the current needs of the food and nonfood industries, sus-
tainability standards were established by local authorities and NGOs to ensure transparency
and control over the operations of the palm oil supply chain, from palm oil plantations to
obtaining final products [133].
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Table 2. Principles and objectives of the main national and international legislation and certificates
related to sustainable oil palm cultivation.

Coverage Certifications/
Legislation Key Aspects Ref.

International
Certifications

RSPO—Round
Table on

Sustainable Palm
Oil

Behave ethically and transparently
Operate legally and respect rights
Optimize productivity, efficiency, positive impacts and resilience
Respect Community and human rights and deliver benefits
Support smallholder inclusion
Respect workers’ rights and conditions
Protect, conserve and enhance ecosystems and the environment

[133,134]

ISCC—
International

Sustainability and
Carbon

Certification

Certification of palm oil used as a feedstock for biofuels
Preservation of natural areas characterized by their high biodiversity
or that can store carbon (High Conservation Value = HCV)
Application of good agricultural practices, for example, to maintain
soil fertility or preserve water quality and to reduce the use of
pesticides
Safe working conditions are maintained, for example, through
employee training and the provision of appropriate protective
clothing
Compliance with labor and human rights laws and ensuring
responsible working conditions that promote health
Compliance with applicable laws and regulations
Adherence to good management practices

[136,137,139]

POIG—Palm Oil
Innovation Group

Creates and promotes innovations in the palm oil industry
Support the RSPO principle
Seeks the adoption of responsible palm oil production practices by
key supply chain participants through the development and sharing
of a reliable and verifiable benchmark

[140]

RSB—Roundtable
on Sustainable
Biomaterials;

SAN—Sustainable
Agriculture
Networks

Ensure the inevitable transformation to a biocircular economy is
environmentally sustainable and socially fair.
Transforming agriculture for the greater good of all
Positive change across agricultural value chains and working to
create lasting impact

[136,137,141,142]

Malaysia

MSPO—Malaysia
Sustainable Palm

oil

Management commitment and responsibility
Transparency
Compliance with legal requirements
Social responsibility, safety and employment conditions
Environment, natural resources, biodiversity and ecosystem services
Best practice
Development of new plantings

[133,134]

MPOB—Malaysia
Palm Oil Board

To enhance and support the well-being of the Malaysian oil palm
industry through the dissemination of timely, reliable and
comprehensive data and economic research findings as well as
market information
To conduct research on the economics of production, downstream
processing, and marketing of the Malaysian palm oil industry.
To ensure compliance with conditions imposed on the license
regarding the registration of contracts and submission of monthly
statements (PL forms).
To disseminate comprehensive, accurate and timely industry and
market information.
To provide inputs for the establishment of the national palm oil
development policy.

[143]
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Table 2. Cont.

Coverage Certifications/
Legislation Key Aspects Ref.

Indonesia
ISPO—Indonesia
Sustainable Palm

Oil

Plantation Management
Protection of the utilization of Primary Forest and Peatlands
Environmental Management
Responsibility for Workers
Responsibility for Social and Economic Empowerment
Continuous Business Improvement

[133,134]

Brazil

Federal Law No.
12,651/2012

Establishes general rules on the Protection of Native Vegetation,
including areas where oil palm can be cultivated; forest exploitation;
the supply of forest raw materials; the control of the origin of forest
products; the control and prevention of forest fires, and the provision
of economic and financial instruments to achieve its objectives.

[144]

Decree
n◦7172/2010

Agroecological zoning of oil palm cultivation in Brazil to be applied
from the 2010/2011 harvest
Guide the expansion of Brazilian palm production on a
technical-scientific basis, to guarantee sustainability in its economic,
social and environmental aspects.
Offer sustainable economic alternatives to rural producers in the
region and provide a basis for planning sustainable land use
following current legislation.
Promote land use planning in the region’s anthropized areas
following each state’s Ecological and Economic Zoning.
Provide a basis for planning development hubs in rural areas that
align with the public policies of the different levels of government.

[145]

European
Union

Regulation (EU)
2018/841

Relates to reducing greenhouse gas emissions from land use activities
and achieving the long-term climate targets of the Paris Agreement
Deals with the European Union’s strategy to combat deforestation
and promote the sustainable use of agricultural products
Establishes requirements to ensure that palm oil used in the EU does
not contribute to deforestation and forest degradation

[146]

United States Lacey Act

Deals with the Importation of Products: Prohibits all trade in plants
and plant products from illegal sources in any state of the United
States and other countries.
Requires importers to declare the country of origin and species name
of all plants contained in their products

[147]

It is possible to associate a risk factor in the long term with investing in industries
that prioritize economic factors and precarious environmental and social factors [148].
Therefore, as ways of combining the growth of palm cultivation with social development,
small producers are assured of secure land titles, access to credit and technical support, and
decent and fair working conditions, and given the importance of small farmers [136,149].

In addition to production considering these three pillars of sustainability, other mecha-
nisms, such as improving productivity by applying better cultivation practices and quality
inputs; planting conditions; fertilizer application; harvesting; transportation of freshly col-
lected fruit bunches and loose fruit; weed control; and sanitary control, are also important
potential sources of high production costs. These processes can be optimized within the
ecologically sustainable development framework, increasing competitiveness [136,150].
In any case, it is important to emphasize that these pillars are closely linked, and it is
not acceptable to prioritize one over the others. All actions to improve palm oil culti-
vation must consider economic development, social development, and environmentally
friendly actions.

One way to make oil palm cultivation more sustainable is to grow it in areas that
were already deforested, avoiding forest degradation. It is also possible to mitigate the
impacts of waste generated, transforming it into coproducts, especially renewable energy
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resources. The empty bunches can be used for vegetable cover or burned as fuel for boilers,
POME can be used as fertilizer, and the trunks and leaves can be chipped and left between
the lines as vegetable cover to prevent fires [132]. In factories, fiber, bark, and EFB are
burned as fuel for boilers. Residues from the burning of palm bark and fibers in a furnace
form palm oil clinker (POC), a hard and porous material that can be added to concrete
for the construction of masonry blocks, resulting in a material with the ability to control
noise [150]. Owing to continuous research and development into new uses, most waste is
now accounted for [132].

Furthermore, positive economic and social impacts can also be highlighted. This
culture contributes to economic development and improves well-being, in addition to being
a source of employment, which leads to improved living standards, poverty reduction and
better income distribution, workers’ accessibility to medical benefits, school facilities for
workers’ children, and the development of rural areas [127,128].

The great challenge of oilseed cultivation, especially oil palm cultivation, is to sustain-
ably meet the global demand for this raw material while mitigating its environmental and
social impacts.

7. Conclusions

This review highlights the critical aspects of palm oil sustainability, processing, and
utilization. Palm oil processing involves several key steps, including harvesting, steril-
ization, threshing, pressing, and refining. These processes are crucial for maintaining the
quality and extending the application range of palm oil. The refining process removes
unwanted compounds while preserving beneficial components such as tocopherols. The
versatility of palm oil is evident in its diverse applications, including food products such as
shorteners, vanaspati frying fats, margarine, and confectionery fats, as well as its role in
biodiesel production. The ongoing efforts to balance technological demands with environ-
mental stewardship and sustainable economic growth are underscored, emphasizing the
importance of sustainable production practices and the potential of interspecific hybrids to
increase productivity and sustainability.
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103. Čmolík, J.; Pokorný, J. Physical Refining of Edible Oils. Eur. J. Lipid Sci. Technol. 2000, 102, 472–486. [CrossRef]
104. Alhaji, M.H.; Sanaullah, K.; Lim, S.-F.; Khan, A.; Hypolito, C.N.; Abdullah, M.O.; Bhawani, S.A.; Jamil, T. Photocatalytic Treatment

Technology for Palm Oil Mill Effluent (POME)—A Review. Process Saf. Environ. Prot. 2016, 102, 673–686. [CrossRef]
105. Panapanaan, V.; Helin, T.; Kujanpää, M.; Soukka, R.; Heinimö, J.; Linnanen, L. Sustainability of Palm Oil Production and Opportunities

for Finnish Technology and Know-How Transfer; Lappeenranta University of Technology Faculty of Technology, LUT Energy:
Lappeenranta, Finland, 2009; Available online: https://lutpub.lut.fi/handle/10024/45293 (accessed on 28 August 2024).

106. Gibon, V.; Danthine, S. Systematic Investigation of Co-Crystallization Properties in Binary and Ternary Mixtures of Triacylglycerols
Containing Palmitic and Oleic Acids in Relation with Palm Oil Dry Fractionation. Foods 2020, 9, 1891. [CrossRef]

107. Anderson, D.; Hossain, A.; Shahidi, F. A Primer on Oils Processing Technology. In Bailey’s Industrial Oil and Fat Products; Major
Reference Works; Wiley: Hoboken, NJ, USA, 2020; pp. 1–47.

108. Vispute, P.; Dabhade, S. Refining of Palm Oil: A Review on Palm Oil Refining Process, 3- MCPD Esters in Refined Palm Oil, and
Possible Reduction Tactics for 3-MCPD Esters. Int. J. Agric. Eng. 2018, 11, 81–85. [CrossRef]

109. Rahn, A.K.K.; Yaylayan, V.A. What Do We Know about the Molecular Mechanism of 3-MCPD Ester Formation? Eur. J. Lipid Sci.
Technol. 2011, 113, 323–329. [CrossRef]

110. Jędrkiewicz, R.; Kupska, M.; Głowacz, A.; Gromadzka, J.; Namieśnik, J. 3-MCPD: A Worldwide Problem of Food Chemistry. Crit.
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