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Abstract: α-Glucosidase is an important target for type II diabetes treatment, and the search for
natural α-glucosidase inhibitors is currently a hot topic in functional food research. Camellianin A is
the main flavonoid in the leaves of Adinandra nitida, but research on its inhibition of α-glucosidase is
rarely reported. In view of this, the present study systematically investigated the inhibitory impact
of camellianin A on α-glucosidase, combining the fluorescence method and molecular docking to
explore their interaction, aiming to reveal the relevant inhibitory mechanism. The results indicated
that camellianin A possessed excellent α-glucosidase inhibitory activity (IC50, 27.57 ± 0.59 µg/mL),
and van der Waals force and hydrogen bonding dominated the binding process between camellianin
A and α-glucosidase, with a binding-site number of 1. A molecular docking experiment suggested
that camellianin A formed hydrogen bonding with Glu771, Trp391, Trp710, Gly566, Asp568, and
Phe444 of α-glucosidase, consistent with the thermodynamic result. Our result can provide a reference
for the development of natural α-glucosidase inhibitors.

Keywords: camellianin A; α-glucosidase; interaction; fluorescence spectroscopy; molecular docking

1. Introduction

Diabetes is a chronic metabolic disease related to carbohydrate metabolism disor-
der, and its onset is mainly related to diet and lifestyle. The disease is characterized by
symptoms such as high blood glucose, polyuria, polydipsia, and weight loss, severely
affecting the health and quality of life of patients [1,2]. Prolonged high blood glucose can
also cause protein glycation, leading to complications such as retinopathy, neuropathy,
cardiovascular and cerebrovascular diseases, kidney and liver damage, and in severe cases,
may result in patient death [3–5]. Among the four main types of diabetes, type II diabetes
is the predominant type, accounting for over 90% of all cases [6], with the main cause
being postprandial hyperglycemia due to insufficient insulin secretion [7,8]. Controlling
postprandial blood glucose levels and delaying the progression of long-term diabetes
complications are effective treatment methods for achieving normal blood glucose levels.
α-Glucosidase is an important metabolic enzyme that releases glucose into the blood-
stream by hydrolyzing the glycosidic bonds in carbohydrates, leading to an increase in
postprandial blood glucose levels [9]. Therefore, one of the treatment methods for diabetes
is to inhibit α-glucosidase to effectively delay the postprandial blood glucose elevation in
diabetic patients [10]. Currently, antidiabetic drugs that inhibit α-glucosidase include migli-
tol, acarbose, and voglibose [11]. However, these microbial and chemically synthesized
drugs can cause serious toxic side effects such as hepatotoxicity, diarrhea, and abdominal
pain [12,13]. Natural products have always been the most important and efficient source of
compounds in drug development, mainly derived from chemical substances in edible or
medicinal plants, which are low in cost and relatively safe. Studies have found that various
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natural compounds, such as flavonoids, polysaccharides, phenolic acids, and terpenes,
exhibit good α-glucosidase inhibitory activity [14,15].

Camellianin A is a natural flavonoid, which is the main flavonoid in a unique healthy
tea (Shiyacha) from southern China, with a content exceeding 20% [16]. Camellianin A
has many bioactivities such as anti-inflammatory, antioxidant, anticancer, and reducing
the risk of cardiovascular diseases [17]. Yuan et al. found that camellianin A possessed
good antioxidant activity and could serve as a potential natural antioxidant [18]. Gao
et al. found that camellianin A could induce cell apoptosis and inhibit the proliferation
of breast cancer MCF-7 cells and liver cancer HepG2 in a dose-dependent manner [19],
indicating that camellianin A was a potential lead compound. However, there have been
no reports on the inhibitory effect of camellianin A on α-glucosidase. Therefore, this
study systematically investigated the inhibitory impact of camellianin A on α-glucosidase,
combining fluorescence assay and molecular docking to study their interactions in order to
reveal the relevant inhibitory mechanism (Figure 1). The result may provide new insights
for the development and application of camellianin A.
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2. Materials and Methods
2.1. Materials and Chemicals

Camellianin A was prepared using our previous method [16]. One hundred grams of
Adinandra nitida leaves were extracted with 2000 mL of 80% ethanol for 30 min at 70 ◦C and
then filtered. The resulting filtrate was evaporated by vacuum rotation to remove ethanol.
The residue was extracted with 2000 mL of boiling water for 30 min and filtered. The
filtrate was kept for 24 h at 2 ◦C and then filtered. The obtained precipitate was subjected
to repeated recrystallization through the aforementioned steps of hot dissolution and cold
precipitation for a total of ten cycles and freeze-dried to obtain 2.58 g of camellianin A. Acar-
bose, α-glucosidase (from yeast), and p-nitrophenyl-α-D-glucopyranoside (PNP-G) were
purchased from Aladdin (Shanghai, China). All other chemicals were of analytical grade.

2.2. Determination of α-Glucosidase Inhibitory Effect

According to a previous report [20], the α-glucosidase inhibitory ability was evaluated.
α-Glucosidase, camellianin A, and PNP-G were dissolved in PBS buffer solution (0.1 M,
pH 6.8) for testing. Then, 1 mL of camellianin A solution at different concentrations
(10–100 µg/mL) was mixed evenly with 1 mL of α-glucosidase solution (0.2 U/mL) in a
centrifuge tube and incubated at 37 ◦C for 10 min. PNP-G solution (1 mL, 1 mM) was then
added to the tube, and the resulting mixture was incubated at 37 ◦C for 20 min. Finally,
1 mL of ethanol was quickly added to terminate the reaction, and the absorbance value was
measured at 405 nm (A1). According to the above steps, 1 mL of PBS was used to replace
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the sample solution for determining the control absorbance value (A0). The α-glucosidase
inhibitory activity of the sample (S) was calculated according to Formula (1).

S =
A0 − A1

A0
× 100% (1)

2.3. Determination of Binding Constant

According to the report by Li et al. [21], the binding constant between camellianin
A and α-glucosidase was measured. Briefly, 4 mL of 2 U/mL α-glucosidase solution
was mixed uniformly with 1 mL of camellianin A solution (0–100 µM), and the reaction
system was formed by incubating at 30 ◦C for 30 min. The obtained reaction system was
subjected to fluorescence scanning, and the fluorescence emission spectrum (300–450 nm)
was collected at an excitation wavelength of 280 nm. The scanning voltage was set at
750 kV, and the widths of the emission and excitation slits were 5 nm. In order to correct
the inner filter effect, Formula (2) was used for fluorescence data correction.

F = FInit × e
Aex+Aem

2 (2)

F and FInit represent the fluorescence intensity before and after sample correction.
Aex and Aem are the absorbance of the sample solution at the excitation and emission
wavelengths, respectively.

The corresponding quenching rate constant (Kq) can be calculated based on the fol-
lowing Stern–Volmer Equation (3):

F0

F
= 1 + KSV · [Q] = 1 + Kq · τ0 · [Q] (3)

where F0 and F are the fluorescence intensities before and after the addition of camellianin
A; [Q] is the concentration of camellianin A; τ0 is the average lifetime of the protein (10−8 s).

For static quenching, the binding constant (KA) and the binding-site number (n) could
be obtained using the double-logarithmic curve Formula (4):

lg[
F0 − F

F
] = lgKA + n · lg[Q] (4)

2.4. Determination of Thermodynamic Parameters

The reaction system of α-glucosidase solution and camellianin A was constructed,
and the reaction was carried out at 30 and 37 ◦C for 30 min in a water bath. Fluorescence
spectra were obtained using a fluorescence spectrophotometer to calculate the KA and n
values of the reaction system at different temperatures (T). Then, the corresponding entropy
change (∆S) and enthalpy change (∆H) values could be calculated by fitting the Van’t
Hoff Equation (5). Finally, the free energy change (∆G) at different temperatures could be
obtained based on the Gibbs–Helmholtz Equation (6).

ln KA = −∆H
RT

+
∆S
R

(5)

∆G = ∆H − T · ∆S (6)

where R is the gas molar constant (8.314 J mol−1 K−1)

2.5. Measurement of Synchronous and 3D Fluorescence Spectra

According to the method proposed by He et al. [22], the synchronous and three-
dimensional fluorescence spectra were recorded. The α-glucosidase solution was mixed
with camellianin A solution, and the spectra were scanned at 30 ◦C. Synchronous fluo-
rescence spectra were recorded at ∆λ = 15 nm with an excitation wavelength range of
265–350 nm, as well as at ∆λ = 60 nm with an excitation wavelength range of 220–350 nm.
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Three-dimensional fluorescence spectra were recorded with the excitation wavelength
ranging from 220 to 300 nm and the emission wavelength ranging from 300 to 450 nm. The
slit widths for excitation and emission were 5 nm.

2.6. Molecular Docking

The Surflex-Dock GeomX (SFXC) docking module in SYBYL 8.1 software was ap-
plied to construct the binding mode of camellianin A with α-glucosidase, studying their
interaction mode and mechanism. The crystal structure of α-glucosidase was from the
RCSB PDB database (http://www.rcsb.org/, accessed on 17 January 2024, ID: 4J5T). Water
molecules and non-essential substructures were removed, polar hydrogens and charges
were added, residues were repaired, and the protein preparation of α-glucosidase was
completed. The 3D molecular structure of camellianin A was from the PubChem database
(https://pubchem.ncbi.nlm.nih.gov/, accessed on 26 April 2024), and its structure was
imported into SYBYL 8.1 software in mol 2 format. The molecule was optimized using the
Powell conjugate gradient method, Gasteiger–Huckel charges were loaded, the maximum
iteration coefficient was set to 10,000, the energy convergence limit was set to 0.005 kJ/mol,
and other parameters were set to default values. Molecular docking was performed using
the Surflex-Dock GeomX (SFXC) ultra-high precision docking method. After docking, the
conformation with the highest total score and relatively high CScore was selected as the
research object [23]. Typically, output conformations with a total score higher than 6 were
considered good. The empirical scoring function CScore ranges from 0 to 5, with higher
CScore values indicating better selectivity of the output conformation for the molecule.

2.7. Statistical Analysis

Each experiment was repeated three times, and the results were presented as the
mean ± standard deviation. Graphs were generated using Origin 2018 software.

3. Results and Discussion
3.1. Inhibitory Effect on α-Glucosidase

Camellianin A is a natural flavonoid glycoside (Figure 2A) found in the famous folk tea
(Shiyacha) from Guangxi Province, China. In previous pharmacological studies, camellianin
A has shown strong antioxidant activity and significant anticancer effects on tumor cells,
but its α-glucosidase inhibitory ability has not been reported. This study investigated the
inhibitory effect of camellianin A on α-glucosidase, with its activity represented by the IC50
value [24], which was calculated using Origin 2018 software. As shown in Figure 2B, the
inhibition rate of camellianin A on α-glucosidase was significantly positively correlated
with concentration, indicating a significant dose-dependent inhibitory effect on enzyme
activity. When the concentration is 100 µg/mL, the inhibition rate of camellianin A on
the enzyme was 77.71%. The calculated IC50 value of camellianin A on α-glucosidase was
27.57 ± 0.59 µg/mL. The inhibitory effect of camellianin A is superior to acarbose (IC50
value of >1 mg/mL) [25]. Therefore, Camellianin A is a potential α-glucosidase inhibitor.
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3.2. Binding Behavior Analysis

The research about the interactions between small molecules and biomacromolecules,
especially biologically active small molecules, contributes to understanding the transport
and distribution of active ingredients in the body and is of great significance for eluci-
dating their efficacy and mechanisms of action. Fluorescence spectroscopy is an effective
method for studying the interactions of protein–ligand complexes. The research mainly in-
cludes binding constants, binding-site number, driving force, and conformational changes
in protein molecules during the interaction. Aromatic amino acids such as tryptophan,
tyrosine, and phenylalanine have strong endogenous fluorescence, making proteins fluo-
rescent [26,27].

The interaction between enzymes and small molecules can alter the microenviron-
ment of amino acid residues, leading to a decrease in fluorescence intensity. The effect of
camellianin A on the fluorescence spectrum of α-glucosidase is shown in Figure 3A. At the
excitation wavelength of 280 nm, α-glucosidase exhibited a fluorescence characteristic ab-
sorption peak at 338 nm. With increasing concentrations of camellianin A, the fluorescence
intensity also gradually declined, with the maximum fluorescence intensity decreasing
from 642.644 to 239.602. This indicated that α-glucosidase interacted with camellianin A,
quenching the intrinsic fluorescence of α-glucosidase and leading to a decrease in fluores-
cence intensity. Its characteristic absorption peak shifted from 338 nm to 336 nm, suggesting
that the binding of camellianin A with α-glucosidase enhanced the hydrophobicity of the
enzyme’s fluorescence groups.
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Fluorescence quenching has two different mechanisms: one is dynamic quenching
through thermal motion and molecular collision, and the other is static quenching by form-
ing a complex [28]. As shown in Figure 3B, the good linear relationship between F0/F and
concentration confirms a single quenching process, either static or dynamic quenching [29].
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From Table 1, the quenching rate constant (Kq) values calculated based on the slope were
all higher than the maximum collisional quenching rate constant (2.0 × 1010 L/mol·s), in-
dicating that the static quenching of α-glucosidase with camellianin A was attributed to
the formation of a complex.

Table 1. The quenching constant, binding constant, and thermodynamic parameters of the interaction
between camellianin A and α-glucosidase.

T
(K)

1012 Kq
(L mol−1s−1)

pKA
(Lmol−1) n ∆G

(KJ mol−1)
∆H

(KJ mol−1)
∆S

(J mol−1K−1)

303 4.3541 6.7420 1.4409 −39.10 −634.96 −1966.51303 5.4111 4.2702 0.9079 −25.34

In order to further analyze the interaction between α-glucosidase and camellianin
A, the corresponding binding constant (KA) and the binding-site number (n) values were
calculated using double logarithmic curves. Figure 3C demonstrates the double logarithmic
curve, and the calculated results are shown in Table 1. Under the conditions of 30 and 37 ◦C,
the KA values of the reaction system were 5.52 × 106 and 1.86 × 104 L/mol·s, respectively.
The magnitude of the KA values was greater than 104 Lmol−1, confirming a high affinity.
The binding-site number at different temperatures was close to 1. As the temperature
increases, both the KA and n values of the reaction system decrease. This is because the
increase in temperature promotes molecular motion, which is not conducive to the stability
of the α-glucosidase/camellianin A complex [30].

Hydrophobic interaction, electrostatic force, hydrogen bond, and van der Waals forces
are the primary interactions in protein–ligand complexes. Based on extensive experimental
data, the relationship between the thermodynamic parameters of the reaction and the forces
involved has been summarized [31,32]. In Table 1, the negative ∆G values at different
temperatures indicated that the formation of the α-glucosidase/camellianin A complex
was a spontaneous process. Both ∆H and ∆S values of the reaction were negative, which
suggested that hydrogen bonds and van der Waals forces dominated the interaction process.

3.3. Synchronous and 3D Fluorescence Analysis

Synchronous fluorescence spectroscopy is an effective technique for measuring changes
in the protein microenvironment. Fluorescent proteins contain chromophores such as tryp-
tophan, tyrosine, and phenylalanine residues (with a lower quantum yield for phenylala-
nine residue). When ∆λ is 15 nm and 60 nm, characteristic peaks of tyrosine and tryptophan
residues can be observed, respectively. Figure 4A,B exhibit the synchronous fluorescence
spectra of tyrosine and tryptophan residues in α-glucosidase upon the addition of a series
of concentrations of camellianin A. Camellianin A interacted with tryptophan and tyrosine
residues of α-glucosidase, resulting in a systematic decrease in synchronous fluorescence.
However, the decreasing trend was different, with the decrease in tryptophan fluorescence
intensity being greater than that of tyrosine, indicating that the binding site was closer to
the tryptophan residue. Additionally, the characteristic peak of the tyrosine residue shifted
from 293 nm to 291 nm, suggesting that the complex enhanced the hydrophobicity of the
enzyme’s fluorescent groups and reduced polarity.

The 3D fluorescence spectrum of proteins can reflect changes in their structure and mi-
croenvironment. The intermediate concentration of camellianinA (12 µmol/L) was selected
to investigate the effect of camellianinA on the 3D fluorescence spectrum of α-glucosidase.
As shown in Figure 5, α-glucosidase exhibited two characteristic peaks (peak 1 and peak 2)
in the 3D fluorescence spectrum. Peak 1 (λ = 280 nm) was a typical representative peak
of the spectral characteristics involving the π→π* transition of tryptophan and tyrosine
residues in enzymes [33], while peak 2 (λ = 226 nm) represented a typical representative
peak of the peptide backbone of α-glucosidase [34]. After the addition of camellianin A,
the fluorescence intensity of peaks 1 and 2 significantly decreased. Peak 2 exhibited a slight
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blue shift, indicating that camellianin A affected the microenvironment of the α-glucosidase
peptide chain by forming a complex, increasing its hydrophobicity, and leading to changes
in the peptide structure.
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Figure 5. Effect of camellianin A on the synchronous fluorescence spectra of α-glucosidase ((A), the
fluorescence spectrum of α-glucosidase without camellianin A; (B), the fluorescence spectrum of
α-glucosidase with camellianin A).

3.4. Molecular Docking Analysis

The interaction between polyphenols and enzymes involves complex structural changes,
including higher-order structural rearrangements accompanied by energy transfer and
conformational alterations. Currently, various experimental techniques are available for
studying these interactions, such as isothermal titration calorimetry, surface plasmon
resonance, and nuclear magnetic resonance [35–37]. However, the complexity of experi-
mental parameter settings poses significant challenges for research, and most experimental
methods struggle to directly obtain dynamic and microscopic information about the inter-
action process. In recent years, molecular simulation has emerged as an important tool
in scientific research. The rapidly advancing ONIOM calculation, molecular dynamics,
and molecular docking have been employed to investigate the mechanisms of molecular
interactions, yielding substantial results [38,39]. Shukor et al. investigated the interac-
tion between polyphenols and angiotensin-converting enzymes using molecular docking
and quantitative structure–activity relationship analysis [40]. Ugarte et al. applied the
ONIOM method to clarify the molecular mechanism of glyphosate inhibiting mitochondrial
succinate dehydrogenase [41].

In order to further explore the potential interaction mechanism between α-glucosidase
and camellianin A, this study utilized the Surflex-Dock GeomX (SFXC) ultra-high precision
docking method to explore the binding site of camellianin A. The active site of α-glucosidase
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was generated in a ligand-like manner, and after molecular docking and scoring, a total of
20 output conformations were obtained. Among all output conformations, the total score
scoring was above 8.00, and the conformation with a total score of 9.94 points and a Cscore
of 5 was selected (Figure 6). Camellianin A had only one binding site with α-glucosidase,
located in the cavity of α-glucosidase. During the binding process, camellianin A formed
hydrogen bond interactions with Glu771, Trp391, Trp710, Gly566, Asp568, and Phe444 of
α-glucosidase (Figure 7), which coincided with the fluorescence analysis. Camellianin A
formed two hydrogen bonds with Asp568 and one hydrogen bond with the remaining
residues. In addition, camellianin A also interacted with many surrounding hydrophobic
residues (Figure 8). These forces collectively stabilized the interaction between camellianin
A and α-glucosidase, effectively competing with substrates for binding sites. The stronger
the binding between camellianin A and α-glucosidase, the less binding with substrates,
thereby reducing the activity of α-glucosidase.
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4. Conclusions

This study, for the first time, combined in vitro and molecular simulation methods to
reveal the inhibitory mechanism of camellianin A against α-glucosidase. The experimental
results indicated that camellianin A had a significant inhibitory effect on α-glucosidase, with
an IC50 value of 27.57 ± 0.59 µg/mL. Camellianin A could bind to α-glucosidase through
van der Waals force and hydrogen bonds, with a binding site number of 1. Molecular dock-
ing analysis further confirmed that camellianin A could enter the cavity of α-glucosidase,
interacting with Glu771, Trp391, Trp710, Gly566, Asp568, and Phe444 through hydrogen
bonds. In addition, it also exhibited hydrophobic interactions with numerous surrounding
hydrophobic residues, collectively stabilizing the interaction between camellianin A and α-
glucosidase. Our experiments indicate that camellianin A possesses potential α-glucosidase
inhibitory activity; however, further investigation of its hypoglycemic effects in in vivo
studies is necessary in the future.
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