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Abstract: Due to its advantages such as speed and noninvasive nature, near-infrared spectroscopy
(NIRS) technology has been widely used in detecting the nutritional content of nut food. This study
aims to address the problem of offline quantitative analysis models producing unsatisfactory results
for different batches of samples due to complex and unquantifiable factors such as storage conditions
and origin differences of Korean pine nuts. Based on the offline model, an online learning model was
proposed using recursive partial least squares (RPLS) regression with online multiplicative scatter
correction (OMSC) preprocessing. This approach enables online updates of the original detection
model using a small amount of sample data, thereby improving its generalization ability. The OMSC
algorithm reduces the prediction error caused by the inability to perform effective scatter correction
on the updated dataset. The uninformative variable elimination (UVE) algorithm appropriately
increases the number of selected feature bands during the model updating process to expand the
range of potentially relevant features. The final model is iteratively obtained by combining new
sample feature data with RPLS. The results show that, after OMSC preprocessing, with the number
of features increased to 100, the new online model’s R2 value for the prediction set is 0.8945. The root
mean square error of prediction (RMSEP) is 3.5964, significantly outperforming the offline model,
which yields values of 0.4525 and 24.6543, respectively. This indicates that the online model has
dynamic and sustainable characteristics that closely approximate practical detection, and it provides
technical references and methodologies for the design and development of detection systems. It also
offers an environmentally friendly tool for rapid on-site analysis for nut food regulatory agencies and
production enterprises.

Keywords: Korean pine nut; near-infrared spectroscopy technology; online learning; fat content
detection; online multiplicative scatter correction; recursive partial least squares; uninformative
variable elimination

1. Introduction

Korean pine nut is the seed of Pinus koraiensis Sieb. et Zucc., which is resistant to cold
and prefers slightly acidic or neutral soil. It is mainly produced in the Changbai Mountain
area in northeast China, including Jilin and Xiaoxing’anling, with an altitude range of
150–1800 m, in forests with warm, cold, and humid climates. It is also distributed in Japan
(Honshu), Korea, and Russia (Amur, Khabarovsk) [1]. Pine nuts are rich in unsaturated
fatty acids beneficial for human health [2], which makes them and other products such as
pine nut oil popular among consumers.
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The unsaturated fatty acids in Korean pine nuts are an important indicator of their
nutritional value. As a result, Korean pine nuts occupy a high position among nut foods.
From the perspective of consumption, the fat content is a direct indicator of the fatty acid
content and the oil yield [2,3]. Therefore, the fat content can be used as the detection target.
Traditional chemical detection methods are laborious and time-consuming, making them
impossible to use for detection of large quantities, and improper treatment of waste liquid
can pollute the environment. Rapid and nondestructive detection of pine nut fat content
can help classify its edible grade. The most important indirect analysis characteristic of
near-infrared spectroscopy (NIRS) is the regression detection of specific substance content
in samples. The research on NIRS mainly focuses on ensuring the accuracy of the detection
results as quickly as possible in real time. By reducing the number of steps in the detection
process, simplifying the operation, avoiding the generation of a large amount of waste and
harmful reagents, and making precision detection less dependent on strict experimental
conditions, it is expected to achieve a high level of popularity, with wide sample coverage
and low equipment and operation thresholds for manufacturers. This nondestructive
detection technology is completely capable of detecting the fat content of Korean pine
nuts [4].

Currently, there is limited research on the application of NIRS for analyzing Korean
pine nuts. However, due to its advantages such as rapidity, environmental friendliness, and
ease of operation, NIRS has found widespread use in analyzing agricultural and food prod-
ucts [4–6]. In recent years, researchers have increasingly utilized spectroscopic techniques to
analyze the fat content in various foods, such as soybeans, meat, and dairy products [7–10].
NIRS can be used to analyze samples using diffuse reflectance spectroscopy. Spectroscopy
combined with chemometrics has been extensively employed in testing nut quality, encom-
passing qualitative tasks such as variety identification and adulteration detection, as well as
quantitative analysis of substance content. Existing research demonstrates the traceability
of multiple varieties of walnuts from different production areas using NIRS [11]. In a study
on peanuts and blocky nuts, NIRS successfully distinguished among peanuts, pine nuts,
almonds, sesame seeds, and flax seeds [12]. Moreover, in the domain of substance content
analysis, NIRS accurately detects higher levels of protein, water, and other substances in
nuts and characterizes lower levels of water-soluble sugars and AFB1 [13–17]. Additionally,
NIRS can quantify the unique crispy texture of nuts, corresponding to physical properties
such as fracture force, hardness, and elasticity modulus [14].

The prediction and classification of nuts have relied on various methods, including
statistical techniques such as multiple linear regression (MLR), partial least squares (PLS)
regression, and the naive Bayes algorithm; chemometric techniques such as first and
second derivative, multiplicative scatter correction (MSC), and standard normal variate
(SNV) algorithms [18,19]; and machine learning techniques such as different types of
kernel smoothing methods, boosting methods, and additive models [20–22]. These models
typically operate in a batch learning or offline learning mode. Traditional batch-style
machine learning methods, however, are plagued by several significant limitations: (1) they
exhibit low efficiency in terms of time and space costs; and (2) they demonstrate poor
scalability for large-scale applications because the models typically require retraining from
scratch with new training data.

Online learning, a subfield of machine learning, differs from traditional batch-style
machine learning in that it aims to incrementally learn from sequential data. Online learning
algorithms are easy to understand and implement, typically built on theories with rigorous
regret bounds [23], and the algorithm can immediately update the prediction model for
new data. Therefore, in large-scale food inspection, when the test data are input to the
model in a sequential manner and the detection target may drift or evolve over time, online
learning algorithms are usually more efficient and scalable than offline learning algorithms.

Online learning includes unsupervised learning and supervised learning, with un-
supervised learning mostly using methods such as kernel PCA [24], kernel ICA [25], and
manifold learning [26]. However, the spectral band extraction techniques for NIRS, in-
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cluding uninformative variable elimination (UVE), Monte Carlo uninformative variable
elimination (MC-UVE), the successive projections algorithm (SPA), and the competitive
adaptive reweighted sampling (CARS) algorithm [27], do not currently have online op-
timization algorithms based on increment. To address this issue, we propose an online
detection model based on RPLS. We utilize UVE to extract spectral bands and adjust model
parameters to align with the requirements of online learning. Additionally, we design an
improved online preprocessing method to calibrate raw spectra. The main contributions
are as follows:

• To address the issue of independent scatter correction not allowing the addition of new
samples outside the original modeling dataset, we propose an online multiplicative
scatter correction (OMSC) preprocessing algorithm. Inspired by the reference spectrum
in MSC, we design a dynamic reference spectrum that can change with variations in
the detection samples, enabling online correction of the original spectra.

• To address the problem of constantly changing datasets during online detection, which
can lead to the problem of constantly changing feature bands, we use UVE to extract
the spectral feature bands and expand the number of bands in the feature subset.
During the iterative update process of the model, we analyze the impact of parameter
settings on the coverage range of the selected feature bands and verify the necessity of
adjusting the number of features.

• To address the issue of detecting newly added pine nut samples without rebuilding the
model and to solve the problem of the original regression model performing poorly
on samples from different batches, we conducted research on the sustainable use of
offline models and established an online detection model based on RPLS.

The rest of this article is structured as follows. In Section 2, we describe the experi-
mental setup, sample preparation, and details of the proposed method. Section 3 presents
extensive experiments conducted on the dataset prepared for this study to validate the effec-
tiveness of the online learning model. In Section 4, we compare the prediction performance
of the original offline model with that of the online model on new samples. Furthermore,
we examine whether the online approach proposed in this study enhances the model’s
generalization ability.

2. Materials and Methods
2.1. Preparation of Materials and Dataset Partitioning

In accordance with the research requirements, the samples needed for the experiment
were all purchased from the main production areas of Pinus koraiensis in Northeast China.
The sample preparation mainly included pine nut selection, shelling, and kernel separa-
tion. Based on the principles of random sampling, chemometrics, and machine learning
modeling requirements, the final sample size was determined. After the pine cones had
matured, 100 mature and well-preserved pine nuts were randomly sampled as one group,
with each group weighing about 20 g. A total of 120 groups of samples were collected and
placed in separate sealed bags, numbered from #1 to #120. These samples were used to
establish the offline model. For the online learning model, 75 new samples were needed,
which were purchased from different batches of pine nuts. Starting from the first purchase,
a small batch of freshly picked pine nuts was purchased from farmers every 3 days, and
5 groups of new samples were made following the above experimental steps. A total of
75 groups of samples were collected, numbered from #1 to #75. The sampling process and
the final prepared samples are shown in Figure 1. All samples were properly stored away
from light, waiting for the next step of spectral collection and chemical experiments.

During the data acquisition phase of pine nut processing, we conducted spectral
detection, comparison, and analysis of pine nuts with and without their skins. Figure 2a,b
illustrates the spectral data for skinned and unshelled pine nuts, respectively. It is evident
that the spectral trends and absorption peaks are largely consistent between the two sets.
Considering the conclusions drawn from Figure 2a,b, along with the ability of near-infrared
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spectroscopy to penetrate materials up to 0.1 mm [28], we ultimately decided to use
unshelled pine nuts with skins for detection to ensure the integrity of the samples.

(a) (b) (c)
Figure 1. Samples to be tested in different states. (a) Part of the pine nut samples; (b) sample of pine
nuts without shell; (c) sample of pine nut kernels without skin.

900 1000 1100 1200 1300 1400 1500 1600 1700
wavelength/nm

0.3

0.35

0.4

0.45

0.5

0.55

ab
so

rb
an

ce
/A

.U
.

(a)

900 1000 1100 1200 1300 1400 1500 1600 1700
wavelength/nm

0.3

0.35

0.4

0.45

0.5

0.55

0.6

ab
so

rb
an

ce
/A

.U
.

(b)
Figure 2. Near-infrared raw spectra of pine nut kernels with skins (a) and without skins (b), where
the blue line in the figure represents the near-infrared spectral band of pine nuts.

It should be noted that quantitative analysis of the fat content requires coordination
with chemical analysis. Chemical analysis requires a certain amount of the sample to
undergo a series of reactions and extractions to obtain valid data. Considering the potential
loss during chemical analysis and the feasibility of collecting spectral data, each sample
was standardized to 20 g.

2.2. Spectral Data Collection and Chemical Experiments

The NIRQuest512 Near Infrared spectrometer from Ocean Optics was selected for
spectral data acquisition due to its robustness, high signal-to-noise ratio, high resolution,
and capability for acquiring high-dimensional spectral data. Its wavelength range spans
from 900 nm to 1700 nm, encompassing the spectral information necessary for analyzing
the chemical bonds of fat in pine nuts. To ensure accurate data collection, it is crucial
to maintain close contact between the pine nut sample and the probe fixture to prevent
light leakage.

The NIRQuest512 near-infrared spectrometer from Ocean Optics was selected for
spectral data acquisition due to its robustness, high signal-to-noise ratio, high resolution,
and ability to acquire high-dimensional spectral data. The spectrometer operates within a
wavelength range of 900 nm to 1700 nm, which is ideal for analyzing the chemical bonds
in the fats of pine nuts. The light source for the spectrometer was the HL-2000 Tungsten
Halogen Light Source. To minimize light leakage and ensure accurate data collection, we
maintained close contact between the pine nut sample and the reflection probe fixture. The
fiber optic accessories included VIS-NIR fibers with core sizes of 200, 400, and 800 microns.
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The reflection probe had configurations with one fiber for illumination and three fibers for
collection. Additionally, the entrance slit of the spectrometer was 50 µm, with a pixel size
of 50 × 300 µm.

Sampling points with uniform texture were randomly selected, and spectra were
acquired when the spectral curve became clear, stable, and exhibited no significant fluc-
tuations. Each data point was averaged over three scans, and this process was repeated
to collect 100 samples, with the mean calculated as the raw spectral data for each set of
samples. The NIRQuest512 spectrometer is accompanied by SpectraSuite® software, which
facilitates sampling, averaging, and exporting commands using scripts. All data were
exported to an Excel file for storage and further analysis.

Subsequently, the 195 sets of samples with completed spectral data collection under-
went fat content detection using the Soxhlet extraction method. The Soxhlet extraction
method is widely recognized as the standard method for measuring fat content due to the
principle that fat readily dissolves in organic solvents. After extracting the sample directly
with anhydrous ether or petroleum ether, the solvent is evaporated, and the residue is
dried to a constant weight, allowing for the calculation of the free fat content. The main
steps include processing the pine nuts, packaging the pine nut powder, drying the samples,
extracting the samples, weighing the extracted material, and calculating the results. It is
important to note that the number of extraction cycles was set based on experiments with
other nuts. Since pine nuts have a high fat content, to ensure data accuracy, the extraction
cycle was set to 72 times as per the standard. The experiment was conducted in accordance
with national food safety standards [29] (GB5009.6-2016), with fat content determination
certified by the Heilongjiang Institute of Quality Supervision and Testing.

Subsequently, the 195 sets of samples with completed spectral data collection under-
went fat content detection using the Soxhlet extraction method. The Soxhlet extraction
method is widely recognized as the standard method for measuring fat content, involving
several steps including slicing, packaging, drying, extraction, weighing, and result calcula-
tion. The experiment was conducted in accordance with national food safety standards [29]
(GB5009.6-2016), with fat content determination certified by the Heilongjiang Institute of
Quality Supervision and Testing.

2.3. Data Analysis
2.3.1. Offline and Online Preprocessing of Spectral Data

MSC is a preprocessing algorithm designed to mitigate the scattering effects caused
by surface properties of samples, such as variations in refractive index, particle size, and
surface roughness. It is particularly suitable for diffuse reflectance spectroscopy due to
its ability to effectively remove unwanted scattering effects from spectral data, thereby
enhancing the accuracy of quantitative analysis. According to reference [30], MSC has
demonstrated effective performance in processing the spectra of pine nuts compared
to other preprocessing algorithms designed to mitigate scattering effects. For a specific
spectrum, the MSC algorithm can be performed as follows.

First, the average spectrum x̄ of the calibration set samples is calculated. Then, a
linear regression operation, given by Equation (1), is conducted between each individual
spectrum xi and the average spectrum x̄.

xi = ai x̄ + bi (1)

Calculate the slope ai and intercept bi based on the principle of least squares. Then,
obtain xi,MSC, which is given by Equation (2).

xi,MSC = (xi − bi)/ai (2)

During the research process, it was observed that, besides the inherent differences
in physical and chemical properties between new and old pine nuts, the spectral data
collection intervals varied significantly among different batches of samples. This resulted
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in distinct initial conditions for data collection in experiments. Experimental validation
indicated that simply merging new and old data for scattering correction did not yield
satisfactory results when predicting the behavior of the new sample set. In online model
research, where the sample set is real-time and dynamic, it is imperative that new data
undergo independent scattering correction from the original dataset. Additionally, since
the preprocessed new data will iteratively update the parameters of the original predictive
model, it is crucial that preprocessing does not deviate significantly from the original
modeling dataset. The real-time and dynamic nature of new sample data necessitates
online preprocessing. To address these challenges, we propose an enhanced version of the
MSC algorithm, termed OMSC.

When the (N + 1)-th new sample spectrum enters the preprocessing stage, the mean
value of all (N + 1) sample data is:

x̄n+1 =
x̄n × n + xn+1

n + 1
. (3)

According to the MSC principle, the data of the (N + 1)-th sample obtained after MSC
preprocessing is:

xn+1 = an+1 x̄n+1 + bn+1. (4)

At this point, xn+1 has not been corrected and, by applying the least squares method
to obtain an+1 and bn+1, we have:

xn+1,MSC =
xn+1 − bn+1

an+1
. (5)

Theorem 1. Regret is the difference between the cumulative actual loss and the minimum loss
under a fixed hypothesis known in advance. It can be represented as:

Rstatic
T =

T

∑
t=1

lt(wt)− min
w

T

∑
t=1

lt(w).

In general [31], the regret bound is defined as the upper bound corresponding to the
worst-case regret value of a certain online learning algorithm. If the regret bound of a
certain online learning algorithm is a sub-linear function with respect to the number of
iterations T, that is, RT = o(T), then this online learning algorithm can be considered
ideal because, as T tends to infinity, the losses of the optimal offline algorithm and the
online learning algorithm can be considered approximately equal. The proposed OMSC in
this study does not affect the convergence of online learning algorithms, and this will be
proven next.

Theorem 2. Suppose the maximum deviation of the near-infrared spectral absorbance at the same
wavelength between the samples is E, where E is a positive constant.

Theorem 3. If the upper bound of the regret value for the online learning algorithm in this study is
R, then after preprocessing the newly added sample data with OMSC, the upper bound of the regret
value for the final algorithm is R + O(E).

Proof. To prove it by contradiction, try to assume that the statement is false; proceed from
there, and at some point, you will arrive at a contradiction.

x̄n =
x1 + · · ·+ xn

n

x̄n+1 =
x1 + · · ·+ xn+1

n + 1
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x̄n+1 − x̄n =
(x1 − xn+1) + · · ·+ (xn − xn+1)

n(n + 1)
<

E
n + 1

When the new sample data xn+1 are preprocessed, it will cause a slight variation in
an+1, and the maximum magnitude of the variation will not exceed bn+1.

xn+1,MSC =
xn+1 − bn+1

an+1

According to the principle of the MSC algorithm, xn,MSC = xn−bn
an

, it can be in-
ferred that:

|xn+1,MSC − xn,MSC| = O(|x̄n+1 − x̄n|) <
O(E)
n + 1

.

Therefore, the loss function, ∆lt(·) = O(|xn+1,MSC − xn,MSC|) < O(E)
n+1 , and we can obtain:

Rstatic
T,MSC =

T

∑
t=1

lt(wt) + ∆lt(wt)− min
w

T

∑
t=1

lt(w) < R + O(E).

The pseudocode of the OMSC algorithm is represented in Algorithm 1.

Algorithm 1 The OMSC pseudo-code.
Input: A set of NIR spectra collected for i samples Xi, xi is reference NIR spectra of Xi,

new NIR spectra xi+1
Output: MSC transformed spectra xi+1,MSC, reference NIR spectra xi+1

1: Compute the reference spectra of n + 1 samples: xn+1 = xn×n+xn+1
n+1

2: residual: r = xn+1 − (an+1x + bn+1)
3: Compute an+1 and bn+1: min

an+1,bn+1
∥xn+1 − (an+1x + bn+1)∥

4: xn+1,MSC = xn+1−bn+1
an+1

5: return xi+1,MSC

After the scattering correction, the spectral data are subjected to the S–G convolution
smoothing process. This algorithm utilizes polynomial fitting and the least squares method
to calculate the weighted average value of wavelength points within the window [32]. Its
purpose is to eliminate the high-frequency noise carried by the original spectral data. The
result of S–G algorithm preprocessing is not affected by other samples in the dataset. In both
offline and online model studies, the data can be directly smoothed after scattering correction.

2.3.2. Feature Extraction Methodology

The UVE algorithm can screen and remove the invalid information carried by the full
spectrum data. It reduces the data size to within a reasonable limit and tries to ensure
the amount of effective information as much as possible. The basic principle of UVE is to
introduce a random noise matrix into the spectral data matrix and obtain the PLS regression
model by cross-validation [33]. Due to the noise matrix and the original spectral data matrix
having the same dimension, the regression coefficient matrix can be obtained, denoted as
B. There exists a linear relationship between the spectral data matrix and the fat content
matrix as follows:

Y = bX + e. (6)

In the equation above, b is the regression coefficient vector, and e represents the error
vector. The average and standard deviation of vector b in matrix B are divided to obtain C.
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Ci =
mean(bi)

std(bi)
(7)

Here, vector i represents the i-th column of the spectral data matrix, and mean (b) and
std(b) represent the mean and standard deviation of vector b, respectively. By judging the
absolute value of Ci, we consider whether to retain the i-th column vector in the spectral
data matrix.

2.3.3. Modeling Methodology

PLS is widely used in various fields for its stability. In particular, its excellent perfor-
mance in dealing with multicollinearity makes it one of the most recognized regression
algorithms in the field of NIRS analysis [34,35].

The recursive partial least squares (RPLS) regression algorithm is commonly used
in regression analysis. RPLS updates the regression coefficients of the original model
during the iterative process with newly added modeling data. In this way, it can extract
information from the feature data of newly added pine nut samples [36,37].

RPLS involves operations with two important covariance matrices. The regression
coefficients of the PLS model are calculated using matrix XTX(t), while the latent variables
are obtained from matrix XTy(t). Here, X denotes the spectral feature matrix, and y
represents the vector of actual fat content. When the feature data of the t-th sample in the
new dataset are added to the sample database, XTX(t) and XTy(t) are recursively updated
using Equations (8) and (9):

XTX(t) = λXTX(t − 1) + x̂(t)T x̂(t), (8)

XTy(t) = λXTy(t − 1) + x̂(t)T ŷ(t), (9)

where XTX(t) and XTy(t) respectively represent the replaced covariance matrices, and λ
represents the forgetting factor (0 < λ ≤ 1), whose role is to facilitate the rate at which the
original covariance matrix is updated through feedback. During the recursive calculation
process, the t-th sample spectrum feature data x(t) and the true value data y(t) of the fat
content both need to be standardized. The process of standardization involves an average
vector and a standard deviation vector. The recursive updating process of the average and
standard deviation vectors is shown in Equations (10) to (13):

x̄(t) =
N − 1

N
x̄(t − 1) +

1
N

x(t), (10)

ȳ(t) =
N − 1

N
ȳ(t − 1) +

1
N

y(t), (11)

δ2
x(t) =

N − 2
N − 1

δ2
x(t − 1) +

1
N − 1

(x(t)− x̄(t − 1))2, (12)

δ2
y(t) =

N − 2
N − 1

δ2
y(t − 1) +

1
N − 1

(y(t)− ȳ(t − 1))2, (13)

where N represents the number of all samples in the database at this time. The value of N
varies according to the change in the number of iterations. Then, Equations (14) and (15) are
used to calculate the standardized spectrum feature data x̂(t) and the true value data ŷ(t)
of fat content.

x̂(t) =
x(t)− x̄(t)

δx(t)
(14)

ŷ(t) =
y(t)− ȳ(t)

δy(t)
(15)
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The initial series of values before recursive updating of the RPLS model can be calcu-
lated based on the feature data and the true values of fat content in the modeling dataset.
These initial values are represented as x̄(0), ȳ(0), δx(0), δy(0), XTX(0), and XTy(0).

2.3.4. Fat Content Calibration Model

This study first establishes an offline PLS prediction model for the fat content of
Korean pine nuts. The process of upgrading this offline model to an online learning model
mainly revolves around the newly added sample dataset. The spectral data in the new
dataset are preprocessed by the OMSC and S–G convolution smoothing algorithms, and
the data then need to be reselected for features by UVE. With the offline model, the RPLS
algorithm can be used to achieve online updating of the prediction model. The construction
process of the offline and online learning models is shown in Figure 3.

Pine nut powder samples

Fat content measured by 

Soxhlet extraction

Sample data set for 

online learning

Sample data set for 

quantitative analysis

MSC, S-G

PLS

UVE

The prediction model of the 

fat content of pine nuts

OMSC, S-G

UVE

RPLS

Spectral data collection

Online learning prediction 

model of pine nut fat content

 

Figure 3. RPLS algorithm flow chart.

2.3.5. Model Validation

By adjusting and comparing parameters, the modeling process is fine-tuned, and
the final model is evaluated and decided upon. In this study, the root mean square error
(RMSE) and the coefficient of determination [38] R2 are used as evaluation metrics for
the regression model. Specifically, RMSE is divided into the root mean square error of
cross-validation (RMSECV) and the root mean square error of prediction [39] (RMSEP)
for the calibration set and prediction set, respectively. RMSE and R2 are calculated using
Equations (16) and (17), respectively:

RMSECV/RMSEP =

√
∑n

i=1(yi − ŷi)
2

n
, (16)
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R2 =

√√√√∑n
i=1(ŷi − yi)

2

∑n
i=1(ŷi − ȳ)2 , (17)

where yi represents the actual measured values corresponding to the pine nut fat content in
this study, ŷi represents the predicted values, and ȳ represents the average measured values.

3. Results
3.1. Sample Fat Content and Dataset Division

Before model construction, a reasonable dataset partition is necessary. The calibration
set and the prediction set for testing the final performance of the model are divided in a
ratio of 2:1. The composition of the dataset follows the principle of random sampling, and
it is necessary to ensure that the actual values of the fat content in the calibration set have
a larger range than those in the prediction set. The newly added pine nut samples in the
calibration and prediction sets also need to follow the above two principles simultaneously.
Since this study adopts cross-validation, the partition of the validation set is not shown here.

3.2. Establishment of the PLS Offline Model
3.2.1. Preprocessing Results

The original spectrum of the pine nuts is shown in Figure 4a. The spectral data are
greatly affected by surface particle scattering and artificial factors such as changes in light
path. The variation in sample transmittance and absorbance is difficult to control within
a small range, resulting in a dispersed data curve. Figure 4b shows the spectrum curve
after pre-processing with the MSC and S–G algorithms in sequence. It can be seen that
the pre-processed spectrum curve has a clearer profile. The dispersed phenomenon is
eliminated to a great extent, and the absorption peaks are more obvious. The noise signals
and clutter in the 900–1600 nm band are basically eliminated. The high-frequency noise at
the 1500–1700 nm band is also somewhat reduced.
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Figure 4. Preprocessing results of the sample dataset for fat content detection in Korean pine nuts.
(a) Description of the raw spectrum of pine nuts. (b) Preprocessing results of MSC and S–G, where
the colored lines in the figure represent the near-infrared spectral bands of different pine nuts.

3.2.2. Feature Selection Results

The UVE method was used to select characteristic spectral bands in the spectral
data. The most stable part of the characteristics was selected to establish the calibration
model. Figure 5a shows the stability output results of different bands after UVE selection.
Experimental results showed that the best correlation between pine nut fat content and
near-infrared spectral characteristic data was achieved when the top 70 most stable wave-
length groups were selected. The purple coverage area in Figure 5b shows the 70 selected
characteristic wavelength groups.
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Figure 5. Feature selection of NIRS by UVE. (a) Stability diagram of spectral bands selected by UVE.
(b) Output result of feature selection, where the blue lines of varying lengths in Figure (a) represent
the importance of the near-infrared spectral bands as selected by the UVE algorithm, while the purple
shading in Figure (b) indicates the spectral bands selected by the UVE algorithm.

3.2.3. Model Prediction Performance and Analysis

Table 1 shows the performance differences between the PLS prediction models based
on the full spectrum and the selected features. The comparative analysis results are as
follows: the PLS model based on the full spectrum has RMSECV and RMSEP of 7.9952
and 7.8754, respectively, and R2 values of 0.9569 and 0.9177 for calibration and prediction
sets, respectively. Compared with the UVE-PLS model with 70 selected features, the UVE-
PLS model has better R2 and RMSE. It can be seen that, under the premise of setting a
reasonable number of selected features, the model performance is better when the input
data undergo feature selection. In this study, after global optimization using grid search,
UVE fixed the number of features in the input matrix of the model at 70, which reduces
the data dimension as much as possible while carrying enough information to meet the
modeling requirements.

Table 1. Parameter outputs of the calibration set for different modeling methods.

Model Number of Calibration (n = 80) Prediction (n = 40)
Features RMSECV R2

c RMSEP R2
p

PLS 511 7.9952 0.9569 7.8754 0.9177
UVE-PLS 70 6.4839 0.9590 7.3120 0.9464

R2
c represents the correlation coefficient for the calibration set, while R2

p denotes the correlation coefficient for the
prediction set.

Figure 6 shows the visualization of the correlation between the calibration and predic-
tion sets. Based on the analysis of the graph, both the PLS and UVE-PLS models perform
well during the calibration process, but there are significant differences in the correlation
of the prediction sets. Due to the presence of ineffective information and interference, the
output data points of the PLS model in Figure 6a are scattered and show weak correlation.
Therefore, feature selection plays an important role in data preprocessing before modeling.
The correlation between the optimized spectral data and the true value of the fat content is
also improved.

It should be noted that the UVE-PLS model shows consistent correlation performance
between the prediction and calibration sets, while the PLS model does not exhibit the
same effect. This is because the original spectra of pine nuts contain a large amount of
information and have a complex structure. The redundant information makes it easy for
the model training process to overfit and cause significant deviation in the prediction set
results. The UVE-PLS model improves the model performance from the perspective of
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optimizing the data quality. However, a model with superior performance still needs to
withstand the test of different batches of prediction set samples.
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Figure 6. Visualizations of correlation of calibration set for fat content prediction of each correction
model. (a) Visual output of PLS correlation. (b) Visual output of UVE-PLS correlation. The pink line
serves as the reference baseline for the regression model. If the model’s output aligns with the true
label data, the scatter points should fall on the pink line.

3.3. Establishment of the RPLS Online Model
3.3.1. Updated Feature Selection and Results

Before iteratively updating the covariance matrix of the original model with new
sample spectra that have undergone online preprocessing, the new sample data must
undergo feature selection. The difference is that the number of features selected by the
UVE technique needs to be expanded at this stage. This adjustment is necessary because
the introduction of new data alters the importance of the selected feature bands. The PLS
model weight is determined by the eigenvalues of its covariance matrix.

XTXnew = ΓTΛΓ (18)

Λ =


λ1 0 · · · 0

0
. . .

...
...

. . . 0
0 · · · 0 λn

 (19)

In order to update the covariance matrix of the original model with the preprocessed
spectral data of newly acquired samples, feature selection should also be performed on
the new data. However, the number of features selected by UVE needs to be increased
at this point because the weightings of the selected spectral bands may change with the
inclusion of new data. In this study, we monitored the feature bands corresponding to the
first 30 eigenvalues λ during the iterative process. Through experimentation, we found that
the model performance was optimal when the number of features was expanded to 100.
Figure 7a shows the 100 spectral features selected by UVE. Figure 7b–d show the feature
selection results of the RPLS model after 0, 15, and 30 iterations, respectively. The blue
regions represent the feature bands corresponding to the 30 largest updated eigenvalues. It
can be observed from these figures that the selected features undergo dynamic changes
during the iterative process, and the final selected features shown in red reflect the transfer
of selected features for the spectral data of newly acquired samples.

It is important to note potential discrepancies in selected features between the new
sample data and the original modeling data. This arises from differences in the feature
selection range between the original sample dataset and the new dataset after the addition
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of new samples. The shift in feature wavelengths suggests that the initially selected features
may not encompass some of the updated features in the dataset, necessitating an increase
in the number of features.
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(d)
Figure 7. Feature results of feature wavelengths selected by UVE. (a) Feature results of feature wave-
lengths selected by UVE. (b) Feature selection results of 0 iterations of the RPLS model. (c) Feature
selection results of 15 iterations of the RPLS model. (d) Feature selection results of 30 iterations of the
RPLS model. The alternating red and blue shading in the figure represents the continual variation in
the spectral bands selected by the UVE algorithm as the model iterates.

3.3.2. Comparison and Analysis of Prediction Performance

Note that the blue data points in Figure 8a,b represent the test results of the original
MSC-PLS model and OMSC-RPLS model, respectively, without adjusting the number
of input features (70 input features) for the new sample data. The blue data points in
Figure 8c,d represent the test results of the MSC-RPLS model and OMSC-RPLS model,
respectively, after increasing the number of input features (100 input features). The red
points in Figure 8b,d represent the visualization output of the correlation results of the new
data calibration (iteration). As can be seen from the figure, the data points preprocessed
by OMSC are more evenly distributed, with only a few weak correlations. As the sample
data are added one by one and after multiple iterations, the models also tend to be stable.
The generalization ability of each model is mainly evaluated based on the test results of the
prediction set. By observing the distribution of points, the predictive ability of the model
can be preliminarily judged and analyzed.
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Figure 8. Correction and test results of each model. (a) Test results of new sample test data on
the original PLS model. (b) Correction and test results of the OMSC-RPLS model (the number of
features is 70). (c) Correction and test results of the MSC-RPLS model (the number of features is 100).
(d) Correction and test results of the OMSC-RPLS model (the number of features is 100).

It can be seen that, compared with the original MSC-PLS offline model, the updated
RPLS online learning model generally has a stronger prediction ability for new samples.
The reason for this phenomenon is that the offline model cannot accurately explore effective
feature information contained in the new sample dataset. The red dots in Figure 8b,d are
compactly and uniformly distributed, while in Figure 8c, the red dots are scattered. Due
to the unsatisfactory preprocessing results of the new sample spectral data, the overall
deviation of the updating and correction process is relatively large. Compared with
traditional preprocessing methods, the OMSC algorithm makes the updating and correction
process more in line with the requirements of improving model adaptability. The hollow
blue circles reflect the direct relationship between the performance of the prediction set
testing results and the strength of the model. It can be concluded that the testing results of
the OMSC-RPLS model in Figure 8d are highly correlated and have better performance.
The final conclusion needs to be determined through specific comparison analysis based on
the RMSEP and other specific output parameters of each model in the testing set, as shown
in Table 2.

Based on Table 2 and Figure 8, the predictive relationship and model performance
regarding the fat content of the new pine nuts can be validated. The results indicate that
the original offline model exhibits poor detection ability for new samples. Conversely, the
online learning model established by the RPLS algorithm demonstrates a certain degree
of generalization for new samples, aligning with the visualization effects depicted in
Figure 8b–d. Through analysis of both the figure and the table, it is evident that both the
MSC-RPLS model and the MSC-PLS model yield unsatisfactory testing results for the new
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sample prediction set at this juncture. This can be primarily attributed to the fact that,
when the new sample data undergo MSC preprocessing, each new spectrum is subjected to
linear regression analysis, with the average spectrum derived from the calibration sample
set of the original offline model. The acquisition of the original reference spectrum remains
independent of the additional data and remains unchanged, even with the inclusion of new
data. Consequently, this preprocessing methodology only mitigates the disparity between
the new sample spectrum data and the original calibration set of spectrum data, without
considering the impact of new samples on the reference spectrum. As a result, a significant
error occurs in the preprocessing stage of the new sample spectrum, thereby potentially
compromising the final prediction outcomes of the model.

Table 2. The outputs of the parameters of the predicted results of each model.

Model Number of Prediction (n = 15) Calibration
Input Features RMSEP R2

p RMSECV R2
c

MSC-PLS 70 24.6543 0.4525 – –
OMSC-RPLS 70 9.9039 0.8772 5.1564 0.9236
MSC-RPLS 100 8.1060 0.6673 3.1320 0.9682

OMSC-RPLS 100 3.5964 0.8945 4.1832 0.9509

When the number of input features is increased from 70 in the original offline model to
100, the prediction accuracy of the model is higher. RMSEP decreased from 9.9039 to 3.5964,
and R2

p increased from 0.8772 to 0.8945. The results in Figure 8 and Table 2 indicate that
using OMSC to preprocess the original spectral data of new samples and increasing the
number of features extracted by UVE can establish a prediction model with good detection
ability for new pine nut samples in combination with the RPLS algorithm.

4. Discussion

NIRS is a rapid and effective technology for assessing the quality of agricultural
products and food. Several studies have successfully correlated the nutritional content of
nuts with spectral data [40–42]. However, a common challenge in practical application
arises from the fact that the items being measured often arrive in batches, making it
difficult to consistently match the physicochemical properties of the samples used during
offline model development. Consequently, offline models may remain limited to feasibility
studies and may fail to transition out of laboratory settings. This limitation stems from the
requirement in offline learning that all training data be available during model development,
with the model only becoming usable for predictions after training is complete. In contrast,
online learning processes data sequentially, continuously updating the model (referred
to as the offline model in this study) as real-time data become available. Nonetheless,
this advantage of online learning introduces certain risks. Since the model processes one
data point at a time and updates weights immediately after training, erroneous weight
calculations resulting from faulty data can potentially lead the model astray. To mitigate
this risk, this study thoroughly preprocesses new samples, ensuring alignment with the
original reference spectra and thereby reducing the likelihood of online learning weight
calculations veering off course from the source data, effectively minimizing residuals.

To validate the superiority of the online learning model, we focused on comparing
the performance of three online models. We specifically discussed the impact of spectral
data dimensionality on modeling work. Additionally, the sample quantity determines
the dataset volume, thereby affecting optimization effectiveness. Having too many new
samples would eliminate the advantage of iteratively updating model parameters instead
of reestablishing the model. The number of online dataset samples should be kept within
a reasonable range. In this study, data collection was conducted in batches, with a total
of 75 sets of samples comprising the NIR_ONLINE dataset. The NIR_ONLINE dataset
samples were organized into batches of 5, sequentially inputted into the online model for
training, and real-time outputs of RMSEP and R2

p were obtained. This process was used
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to analyze the model quality mentioned in Table 3. Figure 9a,b depict the RMSEP and R2
p

iteration curves for the online model. The results of the prediction set tests directly reflect
the strength of the predictive model performance.
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Figure 9. Iterative training results of the online models. (a) R2

p. (b) RMSEP.

From Figure 9a,b, the OMSC-RPLS method can accurately extract effective feature
information from the new sample dataset. Compared with traditional preprocessing methods,
the OMSC and RPLS algorithms make the updating and correction process more consistent
with the requirements of improving model adaptability. The OMSC-RPLS-100 model is
initially unstable, and its accuracy is slightly lower than that of the OMSC-RPLS-70 model.
However, as the model continues to iterate and the dataset is input in batches to the online
model for training and prediction, new data gradually increase, and the OMSC-RPLS-70
model strictly controls the number of bands. When the number of feature bands gradually
exceeds 70, the model accuracy gradually decreases. On the other hand, the accuracy of
the OMSC-RPLS-100 model gradually increases, and when the number of samples in the
NIR_ONLINE dataset reaches about 30, the model accuracy approaches the maximum value,
and the weight tends to stop updating. The NIR_ONLINE dataset should ideally contain as
few samples as possible. In this study, the sample size of the NIR_ONLINE dataset ranged
from 10 to 60. The model validation results are shown in Table 3.

Table 3. Comparison of the accuracy of the OMSC-RPLS-100 model with different numbers
of datasets.

NIR_ONLINE Prediction Set
RMSEP R2

p

10 5.5572 0.8410
20 4.1735 0.8676
30 3.6139 0.8954
40 3.5575 0.8951
50 3.3723 0.8945
60 3.2329 0.8986

In general, a larger number of training samples leads to higher prediction accuracy.
Following the design principle of minimizing the size of the online learning dataset, this
study set the number of samples in the online partial correction set to 30. At this point, the
enhanced prediction accuracy of the updated online learning model now exceeds that of the
offline model, with both model RMSEP and R2

p approaching their maximum values. The
prediction results meet the accuracy requirements. In future optimizations of the model
through online learning, the proportion of online samples can serve as a reference. In
similar detection tasks in the future, a more in-depth investigation can be conducted into
the setting of the volume of the online learning dataset.
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5. Conclusions

This study aims to address the limitations of conventional methods for determining
the fat content of Korean pine nuts by proposing a comprehensive approach that leverages
near-infrared spectroscopy (NIRS). Initially, a PLS offline prediction model was developed,
which offers a rapid, nondestructive, and accurate detection method. However, recognizing
the offline model’s shortcomings, such as limited generalization and inadequate sample
preprocessing for model updates, we advanced an OMSC-RPLS online learning model. The
OMSC algorithm performs independent scatter correction on new sample data without the
need for the complete set of original model data, thereby enhancing prediction accuracy.
Additionally, by expanding the feature selection range during preprocessing, the new
model captures a greater proportion of relevant information, which, when fed into the
RPLS model, leads to a progressively updated and stable regression model.

The results demonstrate that the online learning model significantly outperforms the
original model in detecting new batches of samples, showcasing enhanced adaptability.
This online model holds significant guiding and practical value for the determination of pine
nut nutritional content, offering reference and application value for quantitative analysis,
quality testing, and online learning research related to other nut varieties. Theoretically, the
establishment of an updated sample database facilitates the long-term optimization and
updating of models aimed at similar detection objectives.

Despite these advancements, the recursive PLS model is not the only option. Various
incremental learning algorithms, such as online stochastic gradient descent, online Ad-
aBoost, online SVM, and online k-means, remain underexplored. Furthermore, algorithms
like online collaborative filtering, widely used on e-commerce platforms to update user
preferences in real time, could also be applied to near-infrared spectroscopy. Compared
to these emerging algorithms, recursive PLS offers higher interpretability of spectral data,
and the predecessor algorithm, PLS, has been widely applied in near-infrared spectroscopy.
After balancing the advantages of recursive PLS with those of emerging algorithms, this
study chose the recursive PLS algorithm as the online model. Future research should
investigate these alternatives to assess their applicability to NIRS.

Moreover, this study focused on near-infrared spectroscopy, while other potential
nondestructive techniques, such as laser-induced breakdown spectroscopy (LIBS) and
Raman spectroscopy, could also be applied to nondestructive food testing. Given LIBS’s
high sensitivity and limited penetration, it could be a viable alternative for detecting
the nutritional content of pine nuts. Future research should explore these techniques for
potential applications in nondestructive analysis.

In conclusion, this study has delved deeply into chemometrics, machine learning,
and online learning methods, seamlessly integrating them to establish a robust quality
evaluation model for Korean pine nuts. This model not only characterizes the properties
and determines the nutrient content of the nuts but also transitions from an offline to an
online learning model, setting the stage for ongoing research and development in this field.
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