Chloropropanols and Their Esters in Food: An Updated Review
Abstract
:1. Introduction
2. Definitions, Properties, and Chemical Structures
3. Toxicological Effects
4. Formation
5. Occurrence in Foods
5.1. Vegetable Oils
5.2. Foods Other than Vegetable Oils
6. Analytical Method
7. Mitigation
- Removing precursor compounds from the raw material;
- Removing chloropropanols from the final product;
- Preventing chloropropanol synthesis by optimizing process parameters.
8. Legal Regulations
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- EFSA (European Food Safety Authority). Risks for human health related to the presence of 3- and 2-monochloropropanediol (MCPD), and their fatty acid esters, and glycidyl fatty acid esters in food. EFSA J. 2016, 14, 4426. [Google Scholar]
- Velisek, J.; Davidek, J.; Hajšlová, J.; Kubelka, V.; Janíček, G.; Mánková, B. Chlorohydrins in protein hydrolysates chlorhydrinein. Z. Lebensm. Unters. Forsch 1978, 167, 241–244. [Google Scholar] [CrossRef] [PubMed]
- Davidek, J.; Velíšek, J.; Kubelka, V.; Janíček, G.; Šimicová, Z. Glycerol chlorohydrins and their esters as products of the hydrolysis of tripalmitin, tristearin and triolein with hydrochloric acid. Z. Lebensm. Unters. Forsch 1980, 171, 14–17. [Google Scholar] [CrossRef]
- Zelinkova, Z.; Svejkovska, B.; Velisek, J.; Dolezal, M. Fatty acid esters of 3-chloropropane-1,2-diol in edible oils. Food Addit. Contam. 2006, 23, 1290–1298. [Google Scholar] [CrossRef]
- CVUA (Chemisches- und Veterinäruntersuchungsamt Stuttgart Sitz Fellbach). 3-MCPD ester in Raffinierten Speisefetten und ölen—Ein neu Erkanntes Weltweits Problem. 2007. Available online: http://www.cvuas.de/pub/beitrag.asp?ID=717&subid=1 (accessed on 11 March 2024).
- Zelinková, Z.; Novotný, O.; Schůrek, J.; Velíšek, J.; Hajšlová, J.; Doležal, M. Occurrence of 3-MCPD fatty acid esters in human breast milk. Food Addit. Contam. 2008, 25, 669–676. [Google Scholar] [CrossRef]
- Casado, N.; Berenguer, C.V.; Câmara, J.S.; Pereira, J.A.M. What are we eating? surveying the presence of toxic molecules in the food supply chain using chromatographic approaches. Molecules 2024, 29, 579. [Google Scholar] [CrossRef]
- SGS (Société Générale de Surveillance). Available online: https://www.sgs.com/en-hk/news/2022/03/20220310-sgs-risk-of-chloropropanols-in-fcm-paper-products (accessed on 10 May 2024).
- Andres, S.; Appel, K.E.; Lampen, A. Toxicology, occurrence and risk characterisation of the chloropropanols in food: 2-monochloro-1,3-propanediol, 1,3-dichloro-2-propanol and 2,3-dichloro-1-propanol. Food Chem. Toxicol. 2013, 58, 467–478. [Google Scholar] [CrossRef]
- Joint FAO/WHO Expert Committee on Food Additives. Summary of the Fifty-Seventh Meeting of the Joint FAO/WHO Expert Committee on Food Additives (JECFA), Rome, Italy, 5–14 June 2004; pp. 20–24. Available online: http://www.leffingwell.com/Summary%20and%20Conclusions%20of%20the%20Fifty-seventh%20meeting.pdf (accessed on 11 May 2024).
- Crews, C.; Hasnip, S.; Chapman, S.; Hough, P.; Potter, N.; Todd, J.; Brereton, P.; Matthews, W. Survey of chloropropanols in soy sauces and related products purchased in the UK in 2000 and 2002. Food Addit. Contam. 2003, 20, 916–922. [Google Scholar] [CrossRef]
- EC (European Commission). Collection and Collation of Data on Levels of 3-Monochloropropanediol (3-MCPD) and Related Substances in Foodstuffs, Reports on Tasks for Scientific Cooperation. 2004. Available online: https://food.ec.europa.eu/system/files/2016-10/cs_contaminants_catalogue_mcpd_scoop_3-2-9_final_report_chloropropanols_en.pdf (accessed on 11 March 2024).
- Chung, S.W.C.; Kwong, K.P.; Yau, J.C.W.; Wong, A.M.C.; Xiao, Y. Chloropropanols levels in foodstuffs marketed in Hong Kong. J. Food Compos. Anal. 2008, 21, 569–573. [Google Scholar] [CrossRef]
- IARC (International Agency for Research on Cancer). Some chemicals present in industrial and consumer products, food and drinking-water. IARC Monogr. Eval. Carcinog. Risks Hum. 2013, 101, 349–374. [Google Scholar]
- NTP (National Toxicology Program). NTP Toxicology and Carcinogenesis Studies of Glycidol (CAS No. 556-52-5) in F344/N Rats and B6C3F1 Mice (Gavage Studies); Technical Report Series No. 374; National Institutes of Health Publication No. 90-2829; NIH Publication: Chapel Hill, NC, USA, 1990.
- Seefelder, W.; Scholz, G.; Schilter, B. Structural diversity of dietary fatty esters of chloropropanols and related substances. Eur. J. Lipid Sci. Technol. 2011, 113, 319–322. [Google Scholar] [CrossRef]
- Tanguler, H.; Kabak, B. Chemical hazards in foods. In Health and Safety Aspects of Food Processing Technologies; Malik, A., Erginkaya, Z., Erten, H., Eds.; Springer International Publishing: Cham, Swizterland, 2019; pp. 349–402. [Google Scholar]
- Lee, B.Q.; Khor, S.M. 3-chloropropane-1,2-diol (3-MCPD) in soy sauce: A review on the formation, reduction, and detection of this potential carcinogen. Compr. Rev. Food Sci. Food Saf. 2015, 14, 48–66. [Google Scholar] [CrossRef] [PubMed]
- Velisek, J.; Doležal, M.; Crews, C.; Dvořák, T. Optical isomers of chloropropanediols: Mechanisms of their formation and decomposition in protein hydrolysates. Czech J. Food Sci. 2002, 20, 161–170. [Google Scholar] [CrossRef]
- NCBI (National Center for Biotechnology Information). PubChem Compound Summary for CID 7289, 1,3-Dichloro-2-propanol. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/1_3-Dichloro-2-propanol (accessed on 7 March 2024).
- NCBI (National Center for Biotechnology Information). PubChem Compound Summary for CID 12018, 2,3-Dichloro-1-propanol. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/2_3-Dichloro-1-propanol (accessed on 7 March 2024).
- Schilter, B.; Scholz, G.; Seefelder, W. Fatty acid esters of chloropropanols and related compounds in food: Toxicological aspects. Eur. J. Lipid Sci. Technol. 2011, 113, 309–313. [Google Scholar] [CrossRef]
- Habermeyer, M.; Guth, S.; Eisenbrand, G. Identification of gaps in knowledge concerning toxicology of 3-MCPD and glycidol esters. Eur. J. Lipid Sci. Technol. 2011, 113, 314–318. [Google Scholar] [CrossRef]
- NCBI (National Center for Biotechnology Information). PubChem Compound Summary for CID 11164, Glycidol. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Glycidol (accessed on 7 March 2024).
- Kobets, T.; Smith, B.P.C.; Williams, G.M. Food-borne chemical carcinogens and the evidence for human cancer risk. Foods 2022, 11, 2828. [Google Scholar] [CrossRef]
- IARC (International Agency for Research on Cancer). Some industrial chemicals. IARC Monogr. Eval. Carcinog. Risk Chem. Hum. 2000, 77, 469–487. [Google Scholar]
- Barocelli, E.; Corradi, A.; Mutti, A.; Petronini, P.G. Comparison between 3-MCPD and its palmitic esters in a 90-day toxicological study. EFSA Support. Publ. 2011, 8, 1–131. [Google Scholar] [CrossRef]
- Li, J.; Wang, S.; Wang, M.; Shi, W.; Du, X.; Sun, C. The toxicity of 3-chloropropane-1,2-dipalmitate in Wistar rats and a metabonomics analysis of rat urine by ultra-performance liquid chromatography-mass spectrometry. Chem. Biol. Interact. 2013, 206, 337–345. [Google Scholar] [CrossRef]
- Onami, S.; Cho, Y.; Toyoda, T.; Mizuta, Y.; Yoshida, M.; Nishikawa, A.; Ogawa, K. A 13-week repeated dose study of three 3-monochloropropane-1,2-diol fatty acid esters in F344 rats. Arch. Toxicol. 2014, 88, 871–880. [Google Scholar] [CrossRef]
- Lynch, B.S.; Bryant, D.W.; Hook, G.J.; Earle, N.R.; Ian, C.M. Carcinogenicity of monochloro-1,2-propanediol (α-chlorohydrin, 3-MCPD). Int. J. Toxicol. 1998, 17, 47–76. [Google Scholar] [CrossRef]
- WHO (World Health Organization). Safety Evaluation of Certain Food Additives and Contaminants—3-Chloro-1,2-propanediol; WHO Food Additives Series; World Health Organization: Geneva, Switzerland, 2007; Volume 58. Available online: https://www.google.com/url?sa=t&source=web&rct=j&opi=89978449&url=https://apps.who.int/food-additives-contaminants-jecfa-database/Document/Index/9008&ved=2ahUKEwj39LKf_LWIAxUkSvEDHcvjAicQFnoECBQQAQ&usg=AOvVaw2YlbF3xXrl76Pnx0-qxzN5 (accessed on 15 March 2024).
- Cho, W.S.; Han, B.S.; Lee, H.; Kim, C.; Nam, K.T.; Park, K.; Choi, M.; Kim, S.J.; Kim, S.H.; Jeong, J.; et al. Subchronic toxicity study of 3-monochloropropane-1,2-diol administered by drinking water to B6C3F1 mice. Food Chem. Toxicol. 2008, 46, 1666–1673. [Google Scholar] [CrossRef]
- Jones, A.R. Antifertility actions of alpha-chlorohydrin in the male. Int. J. Biol. Sci. 1983, 36, 333–350. [Google Scholar]
- El Ramy, R.; Ould Elhkim, M.; Lezmi, S.; Poul, J.M. Evaluation of the genotoxic potential of 3-monochloropropane-1,2-diol (3-MCPD) and its metabolites, glycidol and beta-chlorolactic acid, using the single cell gel/comet assay. Food Chem. Toxicol. 2007, 45, 41–48. [Google Scholar] [CrossRef]
- Lee, J.K.; Byun, J.A.; Park, S.H.; Kim, H.S.; Park, J.H.; Eom, J.H.; Oh, H.Y. Evaluation of the potential immunotoxicity of 3-monochloro-1, 2-propanediol in Balb/c mice: I. Effect on antibody forming cell, mitogen-stimulated lymphocyte proliferation, splenic subset, and natural killer cell activity. Toxicology 2004, 204, 1–11. [Google Scholar] [CrossRef]
- Hamlet, C.G.; Sadd, P.A.; Crews, C.; Velíšek, J.; Baxter, D.E. Occurrence of 3-chloro-propane-1,2-diol (3-MCPD) and related compounds in foods: A review. Food Addit. Contam. 2002, 19, 619–631. [Google Scholar] [CrossRef]
- Jones, A.R.; Fakhouri, G. Epoxides as obligatory intermediates in the metabolism of a-halohydrins. Xenobiotica 1979, 9, 595–599. [Google Scholar] [CrossRef]
- Qian, G.; Zhang, H.; Zhang, G.; Yin, L. Study on acute toxicity of R, S and (R,S)-3-monchloropropane-1, 2-diol. J. Hyg. Res. 2007, 36, 137–140. [Google Scholar]
- Kluwe, W.M.; Gupta, B.N.; Lamb, J.C. The comparative effects of 1,2-dibromo-3-chloropropane (DBCP) and metabolites, 3-chloro 1,2-propaneoxide (epichlorohydrin), 3-chloro-1,2-propanediol (alphachlorohydrin), and oxalic acid, on the urogenital system of male rats. Toxicol. Appl. Pharmacol. 1983, 70, 67–86. [Google Scholar] [CrossRef]
- Lewis, R.J. Sax’s Dangerous Properties of Industrial Materials, 9th ed.; Van Nostrand Reinhold: New York, NY, USA, 1996; Volume 1–3, p. 1124. [Google Scholar]
- Lewis, R.J., Sr. (Ed.) Sax’s Dangerous Properties of Industrial Materials, 11th ed.; Wiley-Interscience, Wiley & Sons, Inc.: Hoboken, NJ, USA, 2004; p. 1869. [Google Scholar]
- Kawashima, M.; Watanabe, Y.; Nakajima, K.; Murayama, H.; Nagahara, R.; Jin, M.; Yoshida, T.; Shibutani, M. Late effect of developmental exposure to glycidol on hippocampal neurogenesis in mice: Loss of parvalbumin-expressing interneurons. Exp. Toxicol. Pathol. 2017, 69, 517–526. [Google Scholar] [CrossRef]
- Akane, H.; Shiraki, A.; Imatanaka, N.; Akahori, Y.; Itahashi, M.; Abe, H.; Shibutani, M. Glycidol induces axonopathy and aberrations of hippocampal neurogenesis affecting late-stage differentiation by exposure to rats in a framework of 28-day toxicity study. Toxicol. Lett. 2014, 224, 424–432. [Google Scholar] [CrossRef]
- Bakhiya, N.; Abraham, K.; Gürtler, R.; Appel, K.E.; Lampen, A. Toxicological assessment of 3-chloropropane-1,2-diol and glycidol fatty acid esters in food. Mol. Nutr. Food Res. 2011, 55, 509–521. [Google Scholar] [CrossRef]
- Rae, J.M.C.; Craig, L.; Slone, T.W.; Frame, S.R.; Buxton, L.W.; Kennedy, G.L. Evaluation of chronic toxicity and carcinogenicity of ammonium 2,3,3,3-tetrafluoro-2-(heptafluoropropoxy)-propanoate in Sprague-Dawley rats. Toxicol. Rep. 2015, 2, 939–949. [Google Scholar]
- Aasa, J.; Granath, F.; Törnqvist, M. Cancer risk estimation of glycidol based on rodent carcinogenicity studies, a multiplicative risk model and in vivo dosimetry. Food Chem. Toxicol. 2019, 128, 54–60. [Google Scholar] [CrossRef]
- Mihalache, O.A.; Dall’Asta, C. Food processing contaminants: Dietary exposure to 3-MCPD and glycidol and associated burden of disease for Italian consumers. Environ. Res. 2023, 234, 116559. [Google Scholar] [CrossRef]
- FSCJ (Food Safety Commission of Japan). Considerations on glycidol and its fatty acid esters in foods. Exec. Summ. 2015, 3, 67–69. Available online: https://www.jstage.jst.go.jp/article/foodsafetyfscj/3/2/3_2015010e/_pdf/-char/en (accessed on 20 March 2024).
- Committee on Mutagenicity of Chemicals in Food, Consumer Products and the Environment. Annual Report. 2004. Available online: https://cot.food.gov.uk/sites/default/files/cot/comsection.pdf (accessed on 5 March 2024).
- Committee on the Carcinogenicity of Chemicals in Food, Consumer Products and the Environment. Annual Report. 2004. Available online: https://cot.food.gov.uk/sites/default/files/cot/cocsection.pdf (accessed on 5 March 2024).
- Hamlet, C.G.; Asuncion, L.; Velíšek, J.; Doležal, M.; Zelinková, Z.; Crews, C. Formation and occurrence of esters of 3-chloropropane-1, 2-diol (3-CPD) in foods: What we know and what we assume. Eur. J. Lipid Sci. Technol. 2011, 113, 279–303. [Google Scholar] [CrossRef]
- Craft, B.D.; Nagy, K.; Sandoz, L.; Destaillats, F. Factors impacting the formation of monochloropropanediol (MCPD) fatty acid diesters during palm (Elaeis guineensis) oil production. Food Addit. Contam. Part A 2012, 29, 354–361. [Google Scholar] [CrossRef]
- Seefelder, W.; Varga, N.; Studer, A.; Williamson, G.; Scanlan, F.P.; Stadler, R.H. Esters of 3-chloro-1,2-propanediol (3-MCPD) in vegetable oils: Significance in the formation of 3-MCPD. Food Addit. Contam. 2008, 25, 391–400. [Google Scholar] [CrossRef]
- Jędrkiewicz, R.; Kupska, M.; Głowacz, A.; Gromadzka, J.; Namieśnik, J. 3-MCPD: A worldwide problem of food chemistry. Crit. Rev. Food Sci. Nutr. 2016, 56, 2268–2277. [Google Scholar] [CrossRef]
- Baer, I.; Calle, B.; Taylor, P. 3-MCPD in food other than soy sauce or hydrolyzed vegetable protein (HVP). Anal. Bioanal. Chem. 2010, 396, 443–456. [Google Scholar] [CrossRef]
- Hori, K.; Hori-Koriyama, N.; Tsumura, K.; Fukusaki, E.; Bamba, T. Insights into the formation mechanism of chloropropanol fatty acid esters under laboratory-scale deodorization conditions. J. Biosci. Bioeng. 2016, 122, 246–251. [Google Scholar] [CrossRef]
- Matthäus, B.; Pudel, F.; Fehling, P.; Vosmann, K.; Freudenstein, A. Strategies for the reduction of 3-MCPD esters and related compounds in vegetable oils. Eur. J. Lipid Sci. Technol. 2011, 113, 380–386. [Google Scholar] [CrossRef]
- Destaillats, F.; Craft, B.D.; Sandoz, L.; Nagy, K. Formation mechanisms of monochloropropanediol (MCPD) fatty acid diesters in refined palm (Elaeis guineensis) oil and related fractions. Food Addit. Contam. Part A 2012, 29, 29–37. [Google Scholar] [CrossRef]
- Arris, F.A.; Thai, V.T.S.; Manan, W.N.; Sajab, M.S. A revisit to the formation and mitigation of 3-chloropropane-1,2-diol in palm oil production. Foods 2020, 9, 1769. [Google Scholar] [CrossRef]
- Tivanello, R.; Capristo, M.; Vicente, E.; Ferrari, R.; Sampaio, K.; Arisseto, A. Effects of deodorization temperature and time on the formation of 3-MCPD, 2-MCPD, and glycidyl esters and physicochemical changes of palm oil. J. Food Sci. 2020, 85, 2255–2260. [Google Scholar] [CrossRef]
- Ji, Y.; Lan, D.; Wang, W.; Goh, K.M.; Tan, C.P.; Wang, Y. The formation of 3-monochloropropanediol esters and glycidyl esters during heat-induced processing using an olive-based edible oil. Foods 2022, 11, 4073. [Google Scholar] [CrossRef]
- Sun, C.; Wu, N.; Kou, S.; Wu, H.; Liu, Y.; Pei, A. Occurrence, formation mechanism, detection methods, and removal approaches for chloropropanols and their esters in food: An updated systematic review. Food Chem. X 2023, 17, 100529. [Google Scholar] [CrossRef]
- IARC (International Agency for Research on Cancer). IARC Monographs on the Evaluation of the Carcinogenic Risks to Humans. 1,3-Dichloro-2-propanol. 2012. Available online: https://www.google.com/url?sa=t&source=web&rct=j&opi=89978449&url=https://publications.iarc.fr/_publications/media/download/5695/5a8db1ef7524cce85ad21b3836bea40ab9082535.pdf&ved=2ahUKEwjitZCv8LeIAxWPR_EDHc2sJ4YQFnoECBUQAQ&usg=AOvVaw0cu25qbzNOoJSfM5u3j6O4 (accessed on 3 March 2024).
- RASFF (Rapid Alarm System for Food and Feed Portal). Available online: https://ec.europa.eu/food/safety/rasff_en (accessed on 4 March 2024).
- Pudel, F.; Benecke, P.; Fehling, P.; Freudenstein, A.; Matthaus, B.; Schwaf, A. On the necessity of edible oil refining and possible sources of 3-MCPD and glycidyl esters. Eur. J. Lipid Sci. Technol. 2011, 113, 368–373. [Google Scholar] [CrossRef]
- MacMahon, S.; Begley, T.H.; Diachenko, G.W. Occurrence of 3-MCPD and glycidyl esters in edible oils in the United States. Food Addit. Contam. A. 2013, 30, 2081–2092. [Google Scholar] [CrossRef] [PubMed]
- Razak, R.A.A.; Tarmizi, A.H.A.; Hammid, A.N.A.; Kuntom, A.; Ismail, I.S.; Sanny, M. Verification and evaluation of monochloropropanediol (MCPD) esters and glycidyl esters in palm oil products of different regions in Malaysia. Food Addit. Contam. Part A 2019, 36, 1626–1636. [Google Scholar] [CrossRef] [PubMed]
- Albuquerque, T.G.; Costa, H.S.; Silva, M.A.; Oliveira, M.B.P.P. Are chloropropanols and glycidyl fatty acid esters a matter of concern in palm oil? Trends Food Sci. Technol. 2020, 105, 494–514. [Google Scholar] [CrossRef]
- Eisenreich, A.; Monien, B.H.; Götz, M.E.; Buhrke, T.; Oberemm, A.; Schultrich, K.; Abraham, K.; Braeuning, A.; Schäfer, B. 3-MCPD as contaminant in processed foods: State of knowledge and remaining challenges. Food Chem. 2023, 403, 134332. [Google Scholar] [CrossRef]
- Shi, R.R.S.; Shen, P.; Yu, W.Z.; Cai, M.; Tay, A.J.; Lim, I.; Chin, Y.S.; Ang, W.M.; Er, J.C.; Lim, G.S. Occurrence and dietary exposure of 3-MCPD esters and glycidyl esters in domestically and commercially prepared food in Singapore. Foods 2023, 12, 4331. [Google Scholar] [CrossRef]
- Liao, Z.; Gao, Z.; Yang, Q.; Cao, D. Occurrence and exposure evaluation of 2- and 3-monochloropropanediol (MCPD) esters and glycidyl esters in refined vegetable oils marketed in Tianjin of China. J. Food Compos. Anal. 2024, 130, 106150. [Google Scholar] [CrossRef]
- Li, C.; Nie, S.P.; Zhou, Y.Q.; Xie, M.Y. Exposure assessment of 3-monochloropropane-1,2-diol esters from edible oils and fats in China. Food Chem. Toxicol. 2015, 75, 8–13. [Google Scholar] [CrossRef] [PubMed]
- Razak, R.A.A.; Kuntom, A.; Siew, W.L.; Ibrahim, N.A.; Ramli, M.R.; Hussein, R.; Nesaretnam, K. Detection and monitoring of 3-monochloropropane-1,2-diol (3-MCPD) esters in cooking oils. Food Control 2012, 25, 355–360. [Google Scholar] [CrossRef]
- Kamikata, K.; Vicente, E.; Arisseto-Bragotto, A.P.; de Oliveira Miguel, A.M.R.; Milani, R.F.; Tfouni, S.A.V. Occurrence of 3-MCPD, 2-MCPD and glycidyl esters in extra virgin olive oils, olive oils and oil blends and correlation with identity and quality parameters. Food Control 2019, 95, 135–141. [Google Scholar] [CrossRef]
- Jedrkiewicz, R.; Głowacz, A.; Gromadzka, J.; Namie, J. Determination of 3-MCPD and 2-MCPD esters in edible oils, fish oils and lipid fractions of margarines available on Polish market. Food Control 2016, 59, 487–492. [Google Scholar] [CrossRef]
- Kuhlmann, J. Determination of bound 2, 3-epoxy-1-propanol (glycidol) and bound monochloropropanediol (MCPD) in refined oils. Eur. J. Lipid Sci. Technol. 2011, 113, 335–344. [Google Scholar] [CrossRef]
- Shahidi, F.; Zhong, Y. Lipid oxidation: Measurement methods. In Bailey’s Industrial Oil and Fat Products; Shahidi, F., Ed.; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2005; pp. 357–385. [Google Scholar]
- Weisshaar, R. 3-MCPD-esters in edible fats and oils–a new and worldwide problem. Eur. J. Lipid Sci. Technol. 2008, 110, 671–672. [Google Scholar] [CrossRef]
- CAC (Codex Alimentarius Commission). Proposed Draft Code of Practice for the Reduction of 3-Monochloropropane-1,2-diol Esters (3-MCPDE) and Glycidyl Esters (GE) in Refined Oils and Products Made with Refined Oils, Especially Infant Formula. Joint FAO/WHO Food Standards Programme. 2018. Available online: http://www.fao.org/fao-who-codexalimentarius/resources/circular-letters/en/?y=2018 (accessed on 1 February 2024).
- Zhang, J.; Zhang, W.; Zhang, Y.; Huang, M.; Sun, B. Effects of food types, frying frequency, and frying temperature on 3-monochloropropane-1,2-diol esters and glycidyl esters content in palm oil during frying. Foods 2021, 10, 2266. [Google Scholar] [CrossRef] [PubMed]
- Weisshaar, R.; Perz, R. Fatty acid esters of glycidol in refined fats and oils. Eur. J. Lipid Sci. Technol. 2010, 112, 158–165. [Google Scholar] [CrossRef]
- Taghizadeh, S.F.; Naseri, M.; Ahmadpourmir, H.; Azizi, M.; Rezaee, R.; Karimi, G. Determination of 3 monochloropropane-1,2-diol (3-MCPD) and 1,3-dichloropropan-2-ol (1,3-DCP) levels in edible vegetable oils: A health risk assessment for Iranian consumers. Microchem. J. 2023, 192, 108946. [Google Scholar] [CrossRef]
- Yamazaki, K.; Ogiso, M.; Isagawa, S.; Urushiyama, T.; Ukena, T.; Kibune, N. A new, direct analytical method using LC-MS/MS for fatty acid esters of 3-chloro-1, 2-propanediol (3-MCPD esters) in edible oils. Food Addit. Contam. Part A 2013, 30, 52–68. [Google Scholar] [CrossRef] [PubMed]
- Aniołowska, M.; Kita, A. The effect of frying on glycidyl esters content in palm oil. Food Chem. 2016, 203, 95–103. [Google Scholar] [CrossRef]
- Hammouda, I.B.; Zribi, A.; Ben Mansour, A.; Matthäus, B.; Bouaziz, M. Effect of deep-frying on 3-MCPD esters and glycidyl esters contents and quality control of refined olive pomace oil blended with refined palm oil. Eur. Food Res. Technol. 2017, 243, 1219–1227. [Google Scholar] [CrossRef]
- Hamlet, A.; Sadd, P.A.; Gray, D.A. Generation of monochloropropanediols (MCPDs) in model dough systems. 1. Leavened doughs. J. Agric. Food Chem. 2004, 52, 2059–2066. [Google Scholar] [CrossRef]
- Dolezal, M.; Chaloupská, M.; Divinová, V.; Svejkovská, B.; Velišek, J. Occurrence of 3-chloropropane-1,2-diol and its esters in coffee. Eur. Food Res. Tech. 2005, 221, 221–225. [Google Scholar] [CrossRef]
- Stauff, A.; Schneider, E.; Heckel, F. 2-MCPD, 3-MCPD and fatty acid esters of 2-MCPD, 3-MCPD and glycidol in fine bakery wares. Eur. Food Res. Technol. 2020, 246, 1945–1953. [Google Scholar] [CrossRef]
- Mikulíková, R.; Svoboda, Z.; Benešová, K.; Běláková, S. 3-MCPD process contaminant in malt. Kvasny Prum. 2018, 64, 6–9. [Google Scholar] [CrossRef]
- Ilko, V.; Zelinkova, Z.; Doležal, M.; Velíšek, J. 3-chloropropane-1,2-diol fatty acid esters in potato products. Czech J. Food Sci. 2011, 29, 411–419. [Google Scholar] [CrossRef]
- Leigh, J.; MacMahon, S. Occurrence of 3-MCPD and glycidyl esters in commercial infant formulas in the United States. Food Addit. Contam. Part A 2017, 34, 356–370. [Google Scholar] [CrossRef] [PubMed]
- Azmi, N.N.A.; Tan, T.C.; Ang, M.Y.; Leong, Y.H. Occurrence and risk assessment of 3-monochloropropanediols esters (3-MCPDE), 2-monochloropropanediol esters (2-MCPDE), and glycidyl esters (GE) in commercial infant formula samples from Malaysia. Food Addit. Contam. Part A 2023, 40, 212–221. [Google Scholar] [CrossRef] [PubMed]
- Wong, S.F.; Lee, B.Q.; Low, K.H.; Jenatabadi, H.S.; Bt Wan Mohamed Radzi, C.W.J.; Khor, S.M. Estimation of the dietary intake and risk assessment of food carcinogens (3-MCPD and 1,3-DCP) in soy sauces by Monte Carlo simulation. Food Chem. 2020, 311, 126033. [Google Scholar] [CrossRef]
- Arisseto, A.P.; Silva, W.C.; Scaranelo, G.R.; Vicente, E. 3-MCPD and glycidyl esters in infant formulas from the Brazilian market: Occurrence and risk assessment. Food Control 2017, 77, 76–81. [Google Scholar] [CrossRef]
- Beekman, J.K.; Grassi, K.; MacMahon, S. Updated occurrence of 3-monochloropropane-1,2-diol esters (3-MCPD) and glycidyl esters in infant formulas purchased in the United States between 2017 and 2019. Food Addit. Contam. Part A 2020, 37, 374–390. [Google Scholar] [CrossRef]
- Fu, W.S.; Zhao, Y.; Zhang, G.; Zhang, L.; Li, J.G.; Tang, C.D.; Miao, H.; Ma, J.B.; Zhang, Q.; Wu, Y.N. Occurrence of chloropropanols in soy sauce and other foods in China between 2002 and 2004. Food Addit. Contam. 2007, 24, 812–819. [Google Scholar] [CrossRef]
- Breitling-Utzmann, C.M.; Köbler, H.; Harbolzheimer, D.; Maier, A. 3-MCPD: Occurrence in bread crust and various food groups as well as formation in toast. Dtsch. Lebensm. Rundsch 2003, 99, 280–285. [Google Scholar]
- Zelinkova, Z.; Doležal, M.; Velíšek, J. Occurrence of 3-chloropropane-1,2-diol fatty acid esters in infant and baby foods. Eur. Food Res. Technol. 2009, 228, 571–578. [Google Scholar] [CrossRef]
- Divinova, V.; Doležal, M.; Velíšek, J. Free and bound 3-chloropropane-1,2-diol in coffee surrogates and malts. Czech J. Food Sci. 2007, 25, 39–47. [Google Scholar] [CrossRef]
- Da Costa, D.S.; Albuquerque, T.G.; Costa, H.S.; Bragotto, A.P.A. Thermal contaminants in coffee induced by roasting: A review. Int. J. Environ. Res. Public Health 2023, 20, 5586. [Google Scholar] [CrossRef] [PubMed]
- Jira, W. 3-monochloropropane-1,2-diol (3-MCPD) in smoked meat products: Investigation of contents and estimation of the uptake by the consumption of smoked meat products. Fleischwirtschaft 2013, 90, 115–118. [Google Scholar]
- Zastrow, L.; Albert, C.; Speer, K.; Schwind, K.-H.; Jira, W. Formation of pyrolysis-affected PAHs, oxygenated PAHs, and MCPDs in home smoked meat. LWT 2023, 184, 114971. [Google Scholar] [CrossRef]
- Kuntzer, J.; Weisshaar, R. The smoking process: A potent source of 3-chloropropane-1,2-diol (3-MCPD) in meat products. Dtsch. Lebensm. Rundsch 2006, 102, 397–400. [Google Scholar]
- Ostermeyer, U.; Merkle, S.; Karl, H. Free and bound MCPD and glycidyl esters in smoked and thermally treated fishery products of the German market. Eur. Food Res. Technol. 2021, 247, 1757–1769. [Google Scholar] [CrossRef]
- Goh, K.M.; Wong, Y.H.; Tan, C.P.; Nyam, K.L. A summary of 2-, 3-MCPD esters and glycidyl ester occurrence during frying and baking processes. Curr. Res. Food Sci. 2021, 4, 460–469. [Google Scholar] [CrossRef]
- Schuhmacher, R.; Nurmi-Legat, J.; Oberhauser, A.; Kainz, M.; Krska, R. A rapid and sensitive GC-MS method for determination of 1,3-dichloro-2-propanol in water. Anal. Bioanal. Chem. 2005, 382, 366–371. [Google Scholar] [CrossRef]
- Gonzalez, P.; Racamonde, I.; Carro, A.M.; Lorenzo, R.A. Combined solid-phase extraction and gas chromatography–mass spectrometry used for determination of chloropropanols in water. J. Sep. Sci. 2011, 34, 2697–2704. [Google Scholar] [CrossRef]
- Crews, C.; Chiodini, A.; Granvogl, M.; Hamlet, C.; Hrnčiřík, K.; Kuhlmann, J.; Lampen, A.; Scholz, G.; Weisshaar, R.; Wenzl, T.; et al. Analytical approaches for MCPD esters and glycidyl esters in food and biological samples: A review and future perspectives. Food Addit. Contam. Part A 2013, 30, 11–45. [Google Scholar] [CrossRef]
- Racamonde, I.; Gonzalez, P.; Lorenzo, R.A.; Carro, A.M. Determination of chloropropanols in foods by one-step extraction and derivatization using pressurized liquid extraction and gas chromatography-mass spectrometry. J. Chromatogr. A 2011, 1218, 6878–6883. [Google Scholar] [CrossRef]
- Zhong, H.-N.; Zeng, Y.; Zhu, L.; Pan, J.-J.; Wu, S.-L.; Li, D.; Dong, B.; Li, H.-K.; Wang, X.-H.; Zhang, H.; et al. The Occurrence of mono/di-chloropropanol contaminants in food contact papers and their potential health risk. Food Packag. Shelf Life 2022, 34, 101002. [Google Scholar] [CrossRef]
- Ramli, N.A.S.; Roslan, N.A.; Abdullah, F.; Ghazali, R.; Abd Razak, R.A.; Tarmizi, A.H.A.; Bilal, B. Analytical method for the determination of 2-and 3-monochloropropanediol esters and glycidyl ester in palm-based fatty acids by GC-MS. Food Control 2023, 151, 109824. [Google Scholar] [CrossRef]
- Li, Y.; Li, Y.; Zhang, N.; Wen, S.; Li, Q.; Gao, Y.; Yu, X. Methods, principles, challenges, and perspectives of determining chloropropanols and their esters. Crit. Rev. Food Sci. Nutr. 2024, 64, 1632–1652. [Google Scholar] [CrossRef]
- AOCS (American Oil Chemists’ Society). AOCS Official Method Cd 29a–13: 2- and 3-MCPD Fatty Acid Esters and Glycidol Fatty Acid Esters in Edible Oils and Fats by Acid Transesterification. 2013. Available online: https://myaccount.aocs.org/PersonifyEbusiness/Store/Product-Details/productId/118272 (accessed on 20 March 2024).
- Ermacora, A.; Hrncirik, K. A novel method for simultaneous monitoring of 2-MCPD, 3-MCPD and glycidyl esters in oils and fats. J. Am. Oil Chem. Soc. 2013, 90, 1–8. [Google Scholar] [CrossRef]
- Cao, X.; Song, G.; Gao, Y.; Zhao, J.; Zhang, M.; Wu, W.; Hu, Y. A Novel derivatization method coupled with GC–MS for the simultaneous determination of chloropropanols. Chromatographia 2009, 70, 661–664. [Google Scholar] [CrossRef]
- Hamlet, C.G.; Sutton, P.G. Determination of the chloropropanols, 3-chloro-1, 2-propandiol and 2-chloro-1, 3-propandiol, in hydrolysed vegetable proteins and seasonings by gas chromatography/ion trap tandem mass spectrometry. Rapid Commun. Mass Spectr. 1997, 11, 1417–1424. [Google Scholar] [CrossRef]
- Wang, L.; Ying, Y.; Hu, Z.; Wang, T.; Shen, X.; Wu, P. Simultaneous determination of 2-and 3- MCPD esters in infant formula milk powder by solid-phase extraction and GC-MS analysis. J. AOAC Int. 2016, 99, 786–791. [Google Scholar] [CrossRef]
- Oey, S.B.; van der Fels-Klerx, H.J.; Fogliano, V.; van Leeuwen, S.P. Chemical refining methods effectively mitigate 2-MCPD esters, 3-MCPD esters, and glycidyl esters formation in refined vegetable oils. Food Res. Int. 2022, 156, 111137. [Google Scholar] [CrossRef]
- Tran, S.C.; Nguyen, N.H.; Vu, T.N.; Bui, T.C.; Phung, L.C.; Tran, T.T.; Thai, T.N.H. Risk assessment of 3-MCPD esters and glycidyl esters from the formulas for infants and young children up to 36 months of age. Food Addit. Contam. Part A 2023, 40, 723–732. [Google Scholar] [CrossRef] [PubMed]
- Chai, Q.; Zhang, X.; Karangwa, E.; Dai, Q.; Xia, S.; Yu, J.; Gao, Y. Direct determination of 3-chloro-1, 2-propanediol esters in beef flavoring products by ultra-performance liquid chromatography tandem quadrupole mass spectrometry. RSC Adv. 2016, 6, 113576–113582. [Google Scholar] [CrossRef]
- Sun, X.; Zhang, L.; Zhang, H.; Qian, H.; Zhang, Y.; Tang, L.; Li, Z. Development and application of 3-chloro-1, 2-propandiol electrochemical sensor based on a polyaminothiophenol modified molecularly imprinted film. J. Agric. Food Chem. 2014, 62, 4552–4557. [Google Scholar] [CrossRef]
- Yuan, Y.; Wang, J.; Ni, X.; Cao, Y. A biosensor based on hemoglobin immobilized with magnetic molecularly imprinted nanoparticles and modified on a magnetic electrode for direct electrochemical determination of 3-chloro-1, 2-propandiol. J. Electroanal. Chem. 2019, 834, 233–240. [Google Scholar] [CrossRef]
- Fang, M.; Zhou, L.; Zhang, H.; Liu, L.; Gong, Z.Y. A molecularly imprinted polymers/carbon dots-grafted paper sensor for 3-monochloropropane-1,2-diol determination. Food Chem. 2019, 274, 156–161. [Google Scholar] [CrossRef]
- Silva, W.C.; Santiago, J.K.; Capristo, M.F.; Ferrari, R.A.; Vicente, E.; Sampaio, K.A.; Arisseto, A.P. Washing bleached palm oil to reduce monochloropropanediols and glycidyl esters. Food Addit. Contam. Part A 2019, 36, 244–253. [Google Scholar] [CrossRef]
- Ramli, M.R.; Siew, W.L.; Ibrahim, N.A.; Kuntom, A.; Razak, R.A.A. Other factors to consider in the formation of chloropropandiol fatty esters in oil processes. Food Addit. Contam. Part A 2015, 32, 817–824. [Google Scholar] [CrossRef]
- CXC 79-2019; Code of Practice for the Reduction of 3-Monochloropropane-1,2-diol Esters (3-MCPDEs) and Glycidyl Esters (GEs) in Refined Oils and Food Products Made with Refined Oils. Codex Alimentarius International Food Standards: Rome, Italy, 2019.
- Strijowski, U.; Heinz, V.; Franke, K. Removal of 3-MCPD esters and related substances after refining by adsorbent material. Eur. J. Lipid Sci. Technol. 2011, 113, 387–392. [Google Scholar] [CrossRef]
- Bornscheuer, U.T.; Hesseler, M. Enzymatic removal of 3-monochloro-1,2-propanediol (3-MCPD) and its esters from oils. Eur. J. Lipid Sci. Technol. 2010, 112, 552–556. [Google Scholar] [CrossRef]
- Liu, S.; Shen, M.; Xie, J.; Liu, B.; Li, C. Effects of endogenous antioxidants in camellia oil on the formation of 2-monochloropropane-1, 3-diol esters and 3-monochloropropane-1,2-diol esters during thermal processing. Foods 2024, 13, 261. [Google Scholar] [CrossRef] [PubMed]
- Tobón, J.F.O.; Meireles, M.A.A. Recent applications of pressurized fluid extraction: Curcuminoids extraction with pressurized liquids. Food Public Health 2013, 3, 289–303. [Google Scholar] [CrossRef]
- Chen, G.W.; Wang, G.; Zhu, C.J.; Jiang, X.W.; Sun, J.X.; Tian, L.M.; Bai, W. Effects of cyanidin-3-O-glucoside on 3-chloro-1,2-propanediol induced intestinal microbiota dysbiosis in rats. Food Chem. Toxicol. 2019, 133, 110767. [Google Scholar] [CrossRef]
- Tian, L.; Tan, Y.; Chen, G.; Wang, G.; Sun, J.; Ou, S.; Chen, W.; Bai, B. Metabolism of anthocyanins and consequent effects on the gut microbiota. Crit. Rev. Food Sci. Nutr. 2019, 59, 982–991. [Google Scholar] [CrossRef]
- Xie, J.; Luo, C.; Yang, X.; Ren, Y.; Zhang, X.; Chen, H.; Zhao, Y.; Wu, F. Study on wild medicinal plant resources and their applied ethnology in multiethnic areas of the Gansu-Ningxia-Inner Mongolia intersection zone. J. Ethnobiol. Ethnomed. 2023, 19, 18. [Google Scholar] [CrossRef]
- Mou, Y.; Sun, L.; Geng, Y.; Xie, Y.; Chen, F.; Xiao, J.; Hu, X.; Ji, J.; Ma, L. Chloropropanols and their esters in foods: Exposure, formation and mitigation strategies. Food Chem. Adv. 2023, 3, 100446. [Google Scholar] [CrossRef]
- Rondanelli, M.; Nichetti, M.; Martin, V.; Barrile, G.C.; Riva, A.; Petrangolini, G.; Gasparri, C.; Perna, S.; Giacosa, A. Phytoextracts for human health from raw and roasted hazelnuts and from hazelnut skin and oil: A narrative review. Nutrients 2023, 15, 2421. [Google Scholar] [CrossRef]
- ANZFA (Australia New Zealand Food Authority). Draft Assessment Proposal P243: Maximum Limit for Chloropropanols in Soy and Oyster Sauces. 2001. Available online: https://www.foodstandards.gov.au/sites/default/files/food-standards-code/proposals/Documents/P243%20DraftFAR.pdf (accessed on 3 May 2024).
- Health Canada. Health Canada’s Maximum Levels for Chemical Contaminants in Foods. 2018. Available online: https://www.canada.ca/en/health-canada/services/food-nutrition/food-safety/chemical-contaminants/maximum-levels-chemical-contaminants-foods.html/ (accessed on 3 May 2024).
- GB 2762-2017; National Food Safety Standard, Maximum Levels of Contaminants in Foods. CFDA (China Food and Drug Administration): Beijing, China, 2017.
- European Commission. Commission Regulation (EU) 2023/915 on maximum levels for certain contaminants in food and repealing Regulation (EC) No 1881/2006. Off. J. EU 2023, L 119, 103. [Google Scholar]
- Malaysia Food Regulations. Maximum Permitted Proportion of 3-Monochloropropane-1,2-diol (3-MCPD) in Specific Food. 1985. Available online: https://faolex.fao.org/docs/pdf/mal27305.pdf (accessed on 11 May 2024).
- MFDS (Ministry of Food and Drug Safety). Risk Assessment of 3-MCPD and 1,3-DCP in Foods (11-1471057-01); Technical Report; National Institute of Food and Drug Safety Evaluation: Cheongju-si, Republic of Korea, 2019; pp. 47–61.
- TFC (Turkish Food Codex). Bulaşanlar Yönetmeliği. Resmî Gazete Tarihi: 5 November 2023, Resmî Gazete Sayısı: 32360. Available online: https://www.resmigazete.gov.tr/eskiler/2023/11/20231105-1.htm (accessed on 25 March 2024).
- FDA (Food and Drug Administration). Guidance Levels for 3-MCPD (3-chloro-1,2-propanediol) in Acid-Hydrolyzed Protein and Asian-Style Sauces. 2008. Available online: https://www.fda.gov/media/71760/download (accessed on 27 March 2024).
- TFDA (Taiwan Food and Drug Administration). Regulations for 3-MCPD and GEs in Infant Formulas. 2021. Available online: https://www.fda.gov.tw/ENG/site.aspx?sid=10172#arrow-up-a (accessed on 25 March 2024).
- European Commission. Commission Regulation (EC) No 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs. Off. J. EU 2006, L364, 5–24. [Google Scholar]
- European Commission. Commission Regulation (EU) 2020/1322 of 23 September 2020 amending Regulation (EC) No 1881/2006 as regards maximum levels of 3-monochloropropanediol (3-MCPD), 3-MCPD fatty acid esters and glycidyl fatty acid esters in certain foods. Off. J. EU 2020, L310, 2–5. [Google Scholar]
- AGRINFO. Maximum Levels for 3-MCPD in Infant Formulae. The Latest on EU Agri-Food Policies Impacting Low-Income & Middle-Income Countries. 2024. Available online: https://www.google.com/url?sa=i&url=https%3A%2F%2Fagrinfo.eu%2Fbook-of-reports%2Fmaximum-levels-for-3-mcpd-in-infant-formulae%2F&psig=AOvVaw3HZ2mSDqEd6H5EqOCFWH7e&ust=1715940653836000&source=images&cd=vfe&opi=89978449&ved=0CAgQr5oMahcKEwjo_raa95GGAxUAAAAAHQAAAAAQBA (accessed on 12 May 2024).
- FSANZ (Food Standards Australia New Zealand). Chloropropanols in Food. Technical Report Series No 15. 2003. Available online: https://www.foodstandards.gov.au/sites/default/files/publications/Documents/Chloropropanol%20Report%20(no%20appendices)%20-%2011%20Sep%2003b-2.pdf (accessed on 28 March 2024).
Substance | Oral Toxic Effects | LD50, mg/kg b.w. (Species) | References |
---|---|---|---|
3-MCPD | Mutagenic effects on sperm Male infertility | 191 (mouse) 152 (rat) | [38] [39] |
2-MCPD | Toxic by ingestion | 50–60 (rat) | [1] |
1,3-DCP | Fetotoxic effects on reproductivity Tumorogenic effects on liver, kidney, ureter, and bladder | 100 (mouse) 110 (rat) | [40] [40] |
2,3-DCP | NA | 90 (rat) | [40] |
Glycidol | DNA damage in ovary and sperm Effects on embryo/fetus Male infertility Tumorogenic effects on gastrointestine, liver, skin, endocrine, and brain | 431 (mouse) 420 (rat) | [41] [41] |
Product | Country | No. of Samples (n) | Incidence (%) | Range (µg/kg) | Method | References |
---|---|---|---|---|---|---|
Camellia oil | China | 5 | NA | 988–2586 | DGF method C-VI 18 | [72] |
Camellia oil (crude) | China | 5 | NA | 250–555 | DGF method C-VI 18 | [72] |
Canola oil | Malaysia | NA | NA | 600 | BfR Method 008 | [73] |
Maize germ oil | China | 12 | NA | 219–1826 | DGF method C–VI 18 | [72] |
Maize oil | Malaysia | NA | NA | 250–300 | BfR Method 008 | [73] |
Olive oil | China | 11 | 100 | 34–1970 | ISO-18363-4 | [71] |
Olive oil | Brazil | 13 | 92 | 250–3900 | AOCS Cd 29a-13 | [74] |
Olive oil (bland) | Brazil | 17 | 35 | 250–620 | AOCS Cd 29a-13 | [74] |
Olive oil (pomace) | Malaysia | NA | NA | 1650 | BfR Method 008 | [73] |
Olive oil (virgin) | Malaysia | NA | NA | 350 | BfR Method 008 | [73] |
Olive oil (virgin) | Brazil | 46 | 17 | 250–1240 | AOCS Cd 29a-13 | [74] |
Palm oil (bleached) | Malaysia | 56 | 50 | 250–1800 | BfR Method 008 | [73] |
Palm oil (crude) | Malaysia | 105 | 20 | 250–900 | BfR Method 008 | [73] |
Palm oil (refined) | Malaysia | NA | 99 | 250–5800 | BfR Method 008 | [73] |
Palm oil | China | 18 | 100 | 270–8390 | ISO-18363-4 | [71] |
Peanut oil (refined) | China | 15 | NA | 450–1187 | DGF method C-VI 18 | [72] |
Peanut/sesame oil | Malaysia | NA | NA | 2450 | BfR Method 008 | [73] |
Peanut oil | China | 14 | 100 | 190–3720 | ISO-18363-4 | [71] |
Rapeseed oil (crude) | China | 9 | NA | 250–438 | DGF method C-VI 18 | [72] |
Rapeseed oil (refined) | China | 18 | NA | 226–1069 | DGF method C-VI 18 | [72] |
Rapeseed oil | China | 12 | 100 | 82–6400 | ISO-18363-4 | [71] |
Refined vegetable oil | Singapore | 36 | NA | 78–9592 | AOCS Cd 29a-13 | [70] |
Rice bran oil | Malaysia | NA | NA | 250–300 | BfR Method 008 | [73] |
Sesame oil (crude) | China | 6 | NA | 250–356 | DGF method C-VI 18 | [72] |
Sesame oil (refined) | China | 4 | NA | 651–1344 | DGF method C-VI 18 | [72] |
Sesame oil | China | 18 | 100 | 69–5860 | ISO-18363-4 | [71] |
Soybean oil | Malaysia | NA | NA | <250 | BfR Method 008 | [73] |
Soybean oil (crude) | China | 7 | NA | <250 | DGF method C-VI 18 | [72] |
Soybean oil (refined) | China | 18 | NA | 224–1090 | DGF method C-VI 18 | [72] |
Sunflower oil | Malaysia | NA | NA | 600 | BfR Method 008 | [73] |
Sunflower oil (crude) | China | 8 | NA | <250 | DGF method C-VI 18 | [72] |
Sunflower oil (refined) | China | 6 | NA | 504–1044 | DGF method C-VI 18 | [72] |
Sunflower oil | China | 13 | 100 | 140–2580 | ISO-18363-4 | [71] |
Vegetable oil (unrefined) | Singapore | 24 | NA | <30–1172 | AOCS Cd 29a-13 | [70] |
Product | Country | No. of Samples (n) | Incidence (%) | Range (µg/kg) | Method | References |
---|---|---|---|---|---|---|
Edible oils | Poland | 27 | 11 | 180–230 | AOCS Cd 29b-13 | [75] |
Margarines | Poland | 5 | 100 | 630–1700 | AOCS Cd 29b-13 | [75] |
Palm oil | Germany | 20 | NA | 200–5900 | AOCS Cd 29b-13 | [76] |
Palm oil | China | 18 | 100 | 150–6950 | ISO-18363-4 | [71] |
Rapeseed oil | Germany | 5 | NA | <LOQ–300 | AOCS Cd 29b-13 | [76] |
Rapeseed oil | China | 12 | 100 | 71–4440 | ISO-18363-4 | [71] |
Soybean oil | Germany | 5 | NA | <LOQ–300 | AOCS Cd 29b-13 | [76] |
Soybean oil | China | 21 | 100 | 336–1200 | ISO-18363-4 | [71] |
Sunflower oil | Germany | 5 | NA | <LOQ–300 | AOCS Cd 29b-13 | [76] |
Sunflower oil | China | 13 | 100 | 28–1700 | ISO-18363-4 | [71] |
Olive oil | Brazil | 13 | 85 | 200–2010 | AOCS Cd 29a-13 | [74] |
Olive oil (bland) | Brazil | 17 | 12 | 200–280 | AOCS Cd 29a-13 | [74] |
Olive oil (virgin) | Brazil | 46 | 13 | 200–2160 | AOCS Cd 29a-13 | [74] |
Olive oil | China | 11 | 82 | 800–1010 | ISO-18363-4 | [71] |
Product | Country | No. of Samples (n) | Incidence (%) | Range (µg/kg) | Method | References |
---|---|---|---|---|---|---|
Palm oil | Germany | 20 | NA | 300–18,000 | AOCS Cd 29b-13 | [76] |
Rapeseed oil | Germany | 5 | NA | <100–300 | AOCS Cd 29b-13 | [76] |
Olive oil | Brazil | 13 | 100 | 200–1910 | AOCS Cd 29a-13 | [74] |
Olive oil (bland) | Brazil | 17 | 100 | 200–1910 | AOCS Cd 29a-13 | [74] |
Olive oil (virgin) | Brazil | 46 | 35 | 200–2160 | AOCS Cd 29a-13 | [74] |
Soybean oil | Germany | 5 | NA | <100–600 | AOCS Cd 29b-13 | [76] |
Sunflower oil | Germany | 5 | NA | <100–400 | AOCS Cd 29b-13 | [76] |
Vegetable oil (refined) | Singapore | 36 | NA | 155–6204 | AOCS Cd 29a-13 | [70] |
Vegetable oil (refined) | Singapore | 24 | NA | <30–1325 | AOCS Cd 29a-13 | [70] |
Substance | Product | Country | No. of Samples (n) | Incidence (%) | Range (µg/kg) | References |
---|---|---|---|---|---|---|
Free 3-MCPD | Cereal products | Czech Rep. | NA | NA | 1–477 | [86] |
Coffee | Czech Rep. | 15 | 73 | 10–19 | [87] | |
Fine bakery | Germany | 94 | 27 | 5–265 | [88] | |
Malt | Czech Rep. | 22 | 32 | 10–95 | [89] | |
Bound 3-MCPD | Cereal products | UK | NA | NA | 3–2916 | [86] |
Coffee | Czech Rep. | 15 | 80 | 6–390 | [87] | |
Fine bakery | Germany | 94 | NA | 18–1365 | [88] | |
Fried French fries | Czech Rep. | 16 | NA | 100–258 | [90] | |
Infant formula | United States | 98 | NA | 21–920 | [91] | |
Infant formula | Malaysia | 16 | 100 | 2–244 | [92] | |
Potato crisps | Czech Rep. | 56 | NA | 229–1008 | [90] | |
Total 3-MCPD | Cereal and cereal products | Hong Kong | 57 | 54 | 4–23 | [13] |
Chicken seasoning cubes | Malaysia | 6 | 100 | 90 | [93] | |
Dairy products | Hong Kong | 12 | 0 | <LOD | [13] | |
Egg and products | Hong Kong | 18 | 0 | <LOD | [13] | |
Fish and shellfish products | Hong Kong | 66 | 22 | 3–33 | [13] | |
Fruits | Hong Kong | 21 | 0 | <LOD | [13] | |
Infant formula | Brazil | 40 | 37 | <LOD–600 | [94] | |
Infant formula | United States | 222 | NA | 13–950 | [95] | |
Meat and poultry products | Hong Kong | 87 | 49 | 4–32 | [13] | |
Snacks | Hong Kong | 24 | 38 | 6–66 | [13] | |
Soy-based sauces | Malaysia | 43 | 54 | <20–122 | [93] | |
Soy sauces | China | 629 | 89 | 5–189,000 | [96] | |
Vegetable products | Hong Kong | 39 | 0 | <LOD | [13] |
Substance | Product | No. of Samples (n) | Incidence (%) | Range (µg/kg) | References |
---|---|---|---|---|---|
Bound 2-MCPD | Cereals | NA | NA | 1–853 | [86] |
Fine bakery products | 94 | NA | <3–624 | [88] | |
Infant formula | 16 | 81 | 2–22 | [86] | |
Soy sauces | 345 | 48 | 10–20300 | [96] | |
1,3-DCP | Fish products | 66 | 14 | 3–6 | [13] |
Meat and poultry products | 87 | 7 | 5–10 | [13] | |
Soy sauces | 282 | 20 | 100–1400 | [12] | |
Soy sauces | 345 | 19 | 4–8260 | [96] | |
Soy-based sauces | 43 | 54 | <LOD–25 | [93] | |
Water | >300 | <100 | [106] | ||
Water | 24 | NA | 6–122 | [107] | |
2,3-DCP | Soy sauce | 71 | 10 | 13–28 | [12] |
Soy sauces | 345 | 4 | 3–500 | [96] | |
GE | Infant formula | 42 | <LOD–750 | [94] | |
Infant formula | 98 | NA | 5–400 | [91] | |
Infant formula | 222 | NA | 19–370 | [95] | |
Infant formula | 16 | 38 | 2–69 | [92] | |
Glycidol | Fine bakery products | 94 | NA | <3–128 | [88] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ozluk, G.; González-Curbelo, M.Á.; Kabak, B. Chloropropanols and Their Esters in Food: An Updated Review. Foods 2024, 13, 2876. https://doi.org/10.3390/foods13182876
Ozluk G, González-Curbelo MÁ, Kabak B. Chloropropanols and Their Esters in Food: An Updated Review. Foods. 2024; 13(18):2876. https://doi.org/10.3390/foods13182876
Chicago/Turabian StyleOzluk, Gizem, Miguel Ángel González-Curbelo, and Bulent Kabak. 2024. "Chloropropanols and Their Esters in Food: An Updated Review" Foods 13, no. 18: 2876. https://doi.org/10.3390/foods13182876
APA StyleOzluk, G., González-Curbelo, M. Á., & Kabak, B. (2024). Chloropropanols and Their Esters in Food: An Updated Review. Foods, 13(18), 2876. https://doi.org/10.3390/foods13182876