Simultaneous Determination of Ethanol and Methanol in Wines Using FTIR and PLS Regression
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Reagents
2.1.2. Wine Samples
2.1.3. Sample Preparation
2.2. Equipment and Conditions
2.2.1. FTIR Measurements
2.2.2. GC Measurements
2.3. Data Analysis
3. Results
3.1. Identification of Spectra Modifications
3.2. Development of the PLS Regression Model
3.2.1. Standards
3.2.2. Pre-Processing
3.2.3. Model Review
3.3. Independent Validation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ribéreau-Gayon, P.; Dubourdieu, D.; Donèche, B.; Lonvaud, A. Handbook of Enology: Volume 1: The Microbiology of Wine and Vinification, 3rd ed.; John Wiley & Sons, Ltd.: Chichester, UK, 2021. [Google Scholar]
- Waterhouse, A.L.; Sacks, G.L.; Jeffery, D.W. Understanding Wine Chemistry; John Willey and Sons, Inc.: Hoboken, NJ, USA, 2016. [Google Scholar]
- OIV. International Code of Oenological Practices, Basic Definition; International Organisation of Vine and Wine: Dijon, France, 2024; Available online: https://www.oiv.int/standards/international-code-of-oenological-practices/part-i-definitions/wines/basic-definition (accessed on 14 August 2024).
- Ribéreau-Gayon, P.; Glories, Y.; Maujean, A.; Dubourdieu, D. Handbook of Enology: Volume 2: The Chemistry of Wine—Stabilization and Treatments, 2nd ed.; John Wiley & Sons, Ltd.: Chichester, UK, 2006. [Google Scholar]
- Fontoin, H.; Saucier, C.; Teissédre, P.-L.; Glories, Y. Effect of pH, ethanol and acidity on astringency and bitterness of grape seed tannin oligomers in model wine solution. Food Qual. 2008, 19, 286–291. [Google Scholar] [CrossRef]
- Jordão, A.M.; Vilela, A.; Cosme, F. From sugar of grape to alcohol of wine: Sensorial impact of alcohol in wine. Beverages 2015, 1, 292–310. [Google Scholar] [CrossRef]
- Costa, J.M.; Catarino, S.; Escalona, J.M.; Comuzzo, P. Achieving a more sustainable wine supply chain—Environmental and socioeconomic issues of the industry. In Improving Sustainable Viticulture and Winemaking Practices; Costa, J.M., Catarino, S., Escalona, J.M., Comuzzo, P., Eds.; Academic Press: Cambridge, MA, USA; Elsevier: Amsterdam, The Netherlands, 2022; pp. 1–24. [Google Scholar]
- Santos, J.A.; Fraga, H.; Malheiro, A.C.; Moutinho-Pereira, J.; Dinis, L.-T.; Correia, C.; Moriondo, M.; Leolini, L.; Dibari, C.; Costafreda-Aumedes, S.; et al. A Review of the Potential Climate Change Impacts and Adaptation Options for European Viticulture. Appl. Sci. 2020, 10, 3092. [Google Scholar] [CrossRef]
- Gutiérrez-Gamboa, G.; Zheng, W.; Martínez de Toda, F. Current viticultural techniques to mitigate the effects of global warming on grape and wine quality: A comprehensive review. Food Res. Int. 2021, 139, 109946. [Google Scholar] [CrossRef]
- Wilkinson, K.; Jiranck, V. Wine of reduced alcohol content: Consumer and society demand vs. industry willingness and ability to deliver. In Proceedings of the 1st International Symposium on Alcohol Level Reduction in Wine, Bordeaux, France, 6 September 2013. [Google Scholar]
- Saliba, A.J.; Ovington, L.A.; Moran, C.C. Consumer demand for low-alcohol wine in an Australian sample. Int. J. Wine Res. 2013, 5, 1–8. [Google Scholar] [CrossRef]
- Yoo, Y.J.; Saliba, A.J.; Prenzler, P.D. Should red wine be considered a functional food? Compr. Rev. Food Sci. Food Saf. 2010, 9, 530–551. [Google Scholar] [CrossRef]
- Teissédre, P.-L.; Stockley, C.; Boban, M.; Ruf, J.C.; Ortiz Alba, M.; Gambert, P.; Flesh, M. The effects of wine consumption on cardiovascular disease and associated risk factors: A narrative review. OENO One 2018, 52, 67–79. [Google Scholar] [CrossRef]
- Liu, Y.T.; Lee, J.H.; Tsai, M.K. The effects of modest drinking on life expectancy and mortality risks: A population-based cohort study. Sci. Rep. 2022, 12, 7476. [Google Scholar] [CrossRef]
- Botelho, G.; Anjos, O.; Estevinho, L.M.; Caldeira, I. Methanol in Grape Derived, Fruit and Honey Spirits: A Critical Review on Source, Quality Control, and Legal Limits. Processes 2020, 8, 1609. [Google Scholar] [CrossRef]
- Cabaroglu, T. Methanol contents of Turkish varietal wines and effect of processing. Food Control 2005, 16, 177–181. [Google Scholar] [CrossRef]
- Hodson, G.; Wilkes, E.; Azevedo, S.; Battaglene, T. Methanol in wine. Bio Web Conf. 2017, 9, 02028. [Google Scholar] [CrossRef]
- OIV. Compendium of International Methods of Wine and Must Analysis; International Organisation of Vine and Wine: Dijon, France, 2019. [Google Scholar]
- Ferreira, M.L. Automatização da Análise de Vinhos-FTIR. In Química Enológica-Métodos Analíticos. Avanços Recentes No Controlo da Qualidade de Vinhos e de Outros Produtos Vitivinícolas; Curvelo-Garcia, A.S., Barros, P., Eds.; Publindustria: Porto, Portugal, 2015. [Google Scholar]
- Thanasi, V.; Catarino, S.; Ricardo-da-Silva, J. Fourier-Transform Infrared Spectroscopy in monitoring the wine production. Ciênc. Téc. Vitiv. 2022, 37, 77–99. [Google Scholar] [CrossRef]
- Plugatar, Y.; Johnson, J.B.; Timofeev, R.; Korzin, V.; Kazak, A.; Nekhaychuk, D.; Borisova, E.; Rotanov, G. Prediction of Ethanol Content and Total Extract Using Densimetry and Refractometry. Beverages 2023, 9, 31. [Google Scholar] [CrossRef]
- Joseph, J.A.; Akkermans, S.; Van Impe, J.F.M. Processing Method for the Quantification of Methanol and Ethanol from Bioreactor Samples Using Gas Chromatography–Flame Ionization Detection. ACS Omega 2022, 7, 28. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.L.; Wang, J.T.; Choong, Y.M. Simultaneous quantification of methanol and ethanol in alcoholic beverage using a rapid gas chromatographic method coupling with dual internal standards. Food Chem. 2004, 86, 609–615. [Google Scholar] [CrossRef]
- CT83. NP3263, Bebidas Alcoólicas e Espirituosas—Determinação dos Teores de Etanal, Acetato de Etilo, Metanol, 2-Butanol, 1-Propanol, 2-Metil-1-Propanol, 2-Propeno-1-ol, 1-Butanol, 2-Metil-1-Butanol+3-Metil-1-Butanol; IQA: Lisboa, Portugal, 1990. [Google Scholar]
- Anjos, O.; Caldeira, I.; Fernandes, T.A.; Pedro, S.I.; Vitória, C.; Oliveira-Alves, S.; Catarino, S.; Canas, S. PLS-R Calibration Models for Wine Spirit Volatile Phenols Prediction by Near-Infrared Spectroscopy. Sensors 2022, 22, 286. [Google Scholar] [CrossRef]
- Bauer, R.; Nieuwoudt, H.; Bauer, F.F.; Kossmann, J.; Koch, K.R.; Esbense, K.H. FTIR Spectroscopy for Grape and Wine Analysis. Anal. Chem. 2008, 80, 5. [Google Scholar] [CrossRef]
- Coldea, T.E.; Socaciu, C.; Fetea, F.; Ranga, F.; Pop, R.M.; Florea, M. Rapid quantitative analysis of ethanol and prediction of methanol content in traditional fruit brandies from Romania, using FTIR spectroscopy and chemometrics. Not. Bot. Horti Agrobot. 2013, 41, 143–149. [Google Scholar] [CrossRef]
- Rafferty, J.P. Beer’s Law. Encyclopedia Britannica 2024. Available online: https://www.britannica.com/science/Beers-law (accessed on 14 August 2024).
- Dos Santos, C.A.T.; Páscoa, R.N.M.J.; Lopes, J.A. A review on the application of vibrational spectroscopy in the wine industry: From soil to bottle. TrAC Trends Anal. Chem. 2017, 88, 100–118. [Google Scholar] [CrossRef]
- Debebe, A.; Temesgen, S.; Abshiro, M.R.; Chandravanshi, B.S. Partial least squares−near infrared spectrometric determination of ethanol in distilled alcoholic beverages. Bull. Chem. Soc. Ethiop. 2017, 31, 201–209. [Google Scholar] [CrossRef]
- Govindaraj, N.; Gangadoo, S.; Truong, V.K.; Chapman, J.; Gill, H.; Cozzolino, D. The use of derivatives and chemometrics to interrogate the UV-visible spectra of gin samples to monitor changes related to storage. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2020, 227, 117548. [Google Scholar] [CrossRef] [PubMed]
- Tooke, P.B. Fourier self-deconvolution in IR spectroscopy. TrAC Trends Anal. Chem. 1988, 7, 130–136. [Google Scholar] [CrossRef]
- Miller, J.C.; Miller, J.N. Statistics for Analytical Chemistry, 3rd ed.; Ellis Horwood PTR Prentice Hall: New York, NY, USA, 1993. [Google Scholar]
- Cozzolino, D.; Dambergs, R.G.; Janik, L.; Cynkar, W.U.; Gishen, M. Analysis of Grapes and Wine by near Infrared Spectroscopy. J. Near Infrared Spectrosc. 2006, 14, 279–289. [Google Scholar] [CrossRef]
Property | Number of PCs | %Variance (R Squared) | Std. Error of Estimate (SEE) | Std. Error of Prediction (SEP) | Cross-Validation SEP | Mean Property Value |
---|---|---|---|---|---|---|
Ethanol | 10 | 99.9977 | 0.03447 | 0.03879 | 1.33 | 12.5 |
Methanol | 9 | 99.9183 | 0.03799 | 0.04243 | 0.51 | 0.9 |
Wine Sample | Type | Alcoholic Strength (A) (% v/v) | Alcoholic Strength (B) (% v/v) | Methanol (C) (mg/L) | Methanol (D) (mg/L) |
---|---|---|---|---|---|
‘Alvarinho’ 2016 | White | 13.45 ± 0.01 | 13.37 ± 0.24 | 22.5 ± 0.7 | 250 ± 353.6 |
‘Alvarinho’ 2019 | White | 13.68 ± 0.02 | 12.66 ± 0.22 | 38.0 ± 9.9 | 150 ± 212.1 |
‘Arinto’ 2019 | White | 12.34 ± 0.00 | 11.59 ± 0.26 | 51.0 ± 4.2 | 55 ± 77.8 |
‘Cabernet Sauvignon’ 2016 | Red | 12.12 ± 0.01 | 14.2 ± 0.28 | 102.5± 6.4 | 400 ± 565.7 |
‘Cabernet Sauvignon’ 2018 | Red | 13.00 ± 0.01 | 13.49 ± 0.27 | 83.5 ± 9.2 | 80 ± 28.3 |
‘Cabernet Sauvignon’ 2019 | Red | 12.23 ± 0.01 | 11.27 ± 0.23 | 111.0 ± 2.8 | 200 ± 282.8 |
‘Encruzado’ 2019 | White | 12.96 ± 0.06 | 11.78 ± 0.25 | 23.5 ± 2.1 | 115 ± 120.2 |
‘Moscatel de Setúbal’ 2019 | White | 13.27 ± 0.01 | 12.96 ± 0.23 | 22.5 ± 2.1 | 45 ± 63.6 |
‘Macabeo’ 2019 | White | 10.99 ± 0.01 | 10.55 ± 0.21 | 75.0 ± 9.9 | 80 ± 113.1 |
‘Moscatel de Setúbal’ 2016 | White | 13.19 ± 0.02 | 10.06 ± 0.23 | 17.0 ± 1.4 | 60 ± 84.9 |
‘Moscatel Galego’ 2019 | White | 15.53 ± 0.05 | 15.89 ± 0.26 | 53.5 ± 7.8 | 300 ± 424.3 |
‘Syrah’ 2016 | Red | 15.25 ± 0.04 | 17.58 ± 0.25 | 174.5 ± 4.9 | 200 ± 282.8 |
‘Syrah’ 2018 | Red | 16.10 ± 0.02 | 14.69 ± 0.27 | 124.5 ± 3.5 | 135 ± 190.9 |
‘Syrah’ 2019 | Red | 16.93 ± 0.02 | 15.78 ± 0.25 | 135.0 ± 8.5 | 200 ± 282.8 |
‘Touriga Nacional’ 2016 | Red | 10.75 ± 0.01 | 12.57 ± 0.23 | 137.0 ± 8.5 | 150 ± 212.1 |
‘Touriga Nacional’ 2018 | Red | 16.28 ± 0.01 | 15.89 ± 0.26 | 172.5 ± 4.9 | 0 ± 0 |
‘Touriga Nacional’ 2019 | Red | 15.71 ± 0.01 | 12.06 ± 0.23 | 214.0 ± 32.5 | 150 ± 212.1 |
‘Trincadeira’ 2019 | Red | 13.58 ± 0.01 | 12.28 ± 0.25 | 211.5 ± 19.1 | 200 ± 282.8 |
‘Trincadeira’ 2016 | Red | 14.24 ± 0.00 | 15.11 ± 0.30 | 194.0 ± 29.7 | 400 ± 565.7 |
‘Viosinho’ 2019 | White | 13.45 ± 0.03 | 12.68 ± 0.46 | 21.5 ± 3.5 | 100 ± 141.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thanasi, V.; Caldeira, I.; Santos, L.; Ricardo-da-Silva, J.M.; Catarino, S. Simultaneous Determination of Ethanol and Methanol in Wines Using FTIR and PLS Regression. Foods 2024, 13, 2975. https://doi.org/10.3390/foods13182975
Thanasi V, Caldeira I, Santos L, Ricardo-da-Silva JM, Catarino S. Simultaneous Determination of Ethanol and Methanol in Wines Using FTIR and PLS Regression. Foods. 2024; 13(18):2975. https://doi.org/10.3390/foods13182975
Chicago/Turabian StyleThanasi, Vasiliki, Ilda Caldeira, Luís Santos, Jorge M. Ricardo-da-Silva, and Sofia Catarino. 2024. "Simultaneous Determination of Ethanol and Methanol in Wines Using FTIR and PLS Regression" Foods 13, no. 18: 2975. https://doi.org/10.3390/foods13182975
APA StyleThanasi, V., Caldeira, I., Santos, L., Ricardo-da-Silva, J. M., & Catarino, S. (2024). Simultaneous Determination of Ethanol and Methanol in Wines Using FTIR and PLS Regression. Foods, 13(18), 2975. https://doi.org/10.3390/foods13182975