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Abstract: Accurate quantification of ethanol and methanol is essential for regulatory compliance
and product quality assurance. Fourier Transform Infrared Spectroscopy (FTIR) offers rapid, non-
destructive analysis with minimal sample preparation, making it a promising tool for wine analysis.
In this exploratory study, the use of FTIR and PLS regression for the simultaneous quantification of
ethanol and methanol in wine samples of 11 different Portuguese mono-varietal wines and different
vintages deriving from the same winery in Lisbon was investigated. A model was developed,
demonstrating the feasibility of FTIR and PLS regression for the simultaneous quantification of
ethanol and methanol in wine samples through dedicated models; it showed good prediction capacity
for ethanol determination but poorer performance for methanol quantification. The model could
be reliable enough for quality control in wine production, but to improve its performance should
be enhanced in the future with more samples from different origins, wine types, and a wider
concentration range in the case of methanol.

Keywords: wine analysis; ethanol; methanol; FTIR; chemometrics; quality control

1. Introduction

From a broad viewpoint, wine can be described as a mildly acidic hydroethanolic
solution, with water and ethanol constituting approximately 97% w/w of dry table wines.
Ethanol is produced by yeast through the fermentation of hexose sugars, namely fructose
and glucose [1]. The ethanol levels in wine are regularly measured to monitor alcoholic
fermentations, usually through density measurements, to maintain quality standards and
comply with legal regulations. Many countries and wine regions have set minimum ethanol
concentration requirements for a beverage to be considered wine, and tax regulations
might also be tied to ethanol concentration [2]. According to the basic definition of the
International Organisation of Wine and Vine (OIV), wine is considered a beverage resulting
exclusively from the partial or complete alcoholic fermentation of fresh grapes, whether
crushed or not, or of grape must, with an actual alcohol content not less than 8.5% vol.
and up to a maximum of 15% vol. for table wines and 22% vol. in fortified wines [3]. In
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typical table wines, this alcohol content consists of ethanol, with minor contributions from
other higher alcohols and a small amount of methanol [2]. The alcoholic strength of wine is
determined by its alcohol content, which is expressed as a percentage by volume [4].

Ethanol, as the primary volatile compound in wine with antiseptic properties, signif-
icantly impacts the sensory perception of aromatic attributes and the detection of other
volatile compounds. As a result, alcohol plays a crucial role not only in the sensory ex-
perience of wine but also in its interactions with other components such as aromas and
tannins. These interactions also influence the viscosity and body of the wine, as well as the
perceptions of astringency, sourness, sweetness, bitterness, aroma, and flavor [5,6]. In recent
years, a phenomenon of wines with higher alcoholic content has been witnessed due to
several factors related to the increase in sugar levels in musts, caused by climate change [7].
Climate change, driven by rising global temperatures, is impacting the alcoholic content of
wines by accelerating grape ripening and increasing sugar levels in the fruit, which in turn
leads to higher alcohol levels during fermentation [8]. This can alter traditional styles and
challenge the production of certain wine types like ice wines [9]. On the other hand, there
is a rising demand from consumers in many countries for beverages with lower alcohol
(9–13% vol.) [10,11], driven by health and social concerns [12–14].

Methanol can be produced naturally in wine, both before and during alcoholic fer-
mentation, mainly as a result of the breakdown of pectins by pectinase enzymes (such as
pectin methylesterase) [15]. Wines fermented with grape skins tend to have higher levels
of methanol, which explains why red wines typically have higher levels than rosé or white
wines [16]. The presence of methanol in wine is influenced by various factors, including
grape variety (especially grape skins, which have a high pectin content), grape sanitary
state, maceration conditions, fermentation temperature, and the use of pectolytic enzymes
or the pre-bottling antiseptic dimethyl dicarbonate (DMDC) [17].

Methanol is known to be one of the most harmful components in alcoholic drinks.
The International Organisation of Vine and Wine (OIV) has set maximum acceptable limits
for methanol content in wines: less than 400 mg/L for red wines and less than 250 mg/L
for white or rosé wines [18]. However, from a toxicological perspective, the established
methanol limits for wine do not pose significant safety concerns, as methanol is present in
wine at relatively low levels. The determination of methanol content in wine is significant
as it reflects its origin and is associated with the establishment of regulatory limits. These
limits are important from a technological standpoint as they relate to wine quality and
proper fruit handling during harvest and subsequent processing [17].

Considering all the above, in wine production, accurately measuring these two key
parameters is essential to ensure the quality and safety of the final product and meet
consumer demands. Traditionally, electronic densimetry is used to determine alcoholic
strength, while gas chromatography with flame ionization detection (GC-FID) is the pre-
ferred method for methanol determination [18]. However, these techniques are labor- and
time-intensive, leading many wineries and laboratories to adopt instrument-based tech-
niques. FTIR, combined with specialized software for grape and wine analysis, is gaining
attention for its non-destructive, rapid, and automation-friendly approach [19,20]. This
study aims to explore the potential of FTIR combined with chemometrics for quantifying
methanol in the presence of ethanol in wine samples.

2. Materials and Methods

The feasibility of using FTIR to quantify ethanol and methanol in wine samples
simultaneously was tested using standard solutions of ethanol in water, methanol in water,
and various combinations of both. A mathematical model was developed using Partial
Least Squares (PLS) regression. Two reference methods were employed to independently
validate the model: electronic densimetry for ethanol determination and GC-FID for
methanol determination.
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2.1. Materials
2.1.1. Reagents

Highly pure methanol (Merck, Darmstadt, Germany, 99.8% purity) and ethanol (Merck,
Darmstadt, Germany, 99.9% purity) were used for the preparation of standard solutions of
ethanol in water (0–25% v/v) and methanol in water (0.1–1.4% v/v).

2.1.2. Wine Samples

Different white and red wines from distinct grapevine varieties (Vitis vinifera L.) and
different vintages were used, namely ‘Cabernet Sauvignon’ (2019, 2018, 2016), ‘Trincadeira’
(2019, 2016), ‘Touriga Nacional’ (2019, 2018, 2016), ‘Syrah’ (2019, 2018, 2016), ‘Moscatel de
Setúbal’ (2019, 2016), ‘Arinto’ (2019), ‘Viosinho’ (2019), ‘Alvarinho’ (2019, 2016), ‘Moscatel
Galego’ (2019), ‘Encruzado’ (2019), and ‘Macabeo’ (2019). The wines were produced
using grapes grown in Tapada da Ajuda vineyards, at the winery of Instituto Superior de
Agronomia, following traditional white and red winemaking processes.

2.1.3. Sample Preparation

Before analysis, the samples underwent distillation for both densimetry and GC-FID
to minimize matrix effects and ensure accurate measurements according to [18]. However,
for FTIR, the samples were used directly without prior distillation, employing chemometri-
cal approaches to account for the matrix effects. Densimetry, used for ethanol quantification,
can be influenced by matrix components like sugars, acids, and other alcohols, which may
alter the density [21], while GC-FID, employed for both ethanol and methanol quan-
tification, can be affected by the co-elution of volatile compounds, leading to potential
inaccuracies [22,23]. To minimize volatilization during sample preparation, both standards
and samples were placed in airtight vials and handled quickly in a temperature-controlled
environment.

2.2. Equipment and Conditions
2.2.1. FTIR Measurements

Duplicate FTIR measurements took place in transmission mode with the use of a
Perkin Elmer LQATM 300 FT-IR wine analyzer. The instrument consists of a standard,
high-performance, room-temperature MIR detector. Infrared spectral data were collected
in the range of 950–4000 cm−1 with 4 scans and a resolution of 0.5 cm−1. A liquid handling
system was designed to deliver the sample to the liquid cell to perform the measurement.
Calcium fluoride (CaF2) windows were used on the liquid cell. Cleaning and zeroing
solutions provided by the manufacturer (Perkin Elmer, Inc., Waltham, MA, USA) were
also automatically pumped into the cell. The zeroing solution used for the background
measurements was a buffering agent replicating the pH and ionic strength of the wine,
without containing the analytes under study.

2.2.2. GC Measurements

Methanol content was determined by gas chromatography (GC) on distilled wine
samples by adding an internal standard according to the “Portuguese Official Standards
for Spirits and Alcoholic Beverages”, NP 3263, 1990 [24]. A distilled sample of 10 mL was
mixed with 1 mL of 4-methyl-2-pentanol solution (1 g/L) as the internal standard, and
1 microliter of the mixture was injected in triplicate into a Focus GC gas chromatograph
(Thermo Scientific, Waltham, MA, USA). The GC was equipped with a flame ionization
detector (FID) set at 250 ◦C; a fused silica capillary column of polyethylene glycol (DB-
WAX, JW Scientific, Folsom, CA, USA) 60 m in length, 0.32 mm i.d., and with 0.25 µm
film thickness; and an injector set at 200 ◦C operating in split mode (split ratio 1:6). The
carrier gas was hydrogen (3.40 mL/min). The oven temperature program was 35 ◦C (for
8 min), then increased at 10 ◦C/min until 200 ◦C and held at this temperature for 9 min.
The quantification was performed by analyzing hydroalcoholic methanol solutions in
similar conditions.
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2.3. Data Analysis

A Partial Least Squares (PLS1) regression model was developed to correlate spectral
data with ethanol and methanol concentrations in wine. The model was calibrated using
35 standard solutions (ethanol: 0–20% v/v, methanol: 0.04–3.2 g/L) and pre-processed. The
full spectral range (950–4000 cm−1) was utilized, applying Standard Normal Variate (SNV)
Detrending for noise reduction. Deconvolution was performed to reduce interference
between overlapping spectral features, followed by the application of the 4th derivative
with 13 data points to further enhance spectral resolution. Model stability was evaluated by
analyzing both spectral and concentration outliers, and cross-validation was performed to
assess prediction accuracy. External validation of the model also took place. The predicted
ethanol and methanol concentrations of 20 wine samples were compared to reference
measurements using regression analysis to establish correlations between the new method
and reference methods. The data analysis was conducted using Perkin Elmer Spectrum IR
Version 10.6.2 software.

3. Results
3.1. Identification of Spectra Modifications

To identify the spectra modifications for methanol and ethanol, pure ethanol, pure
methanol, and mixtures of ethanol and methanol in two different ratios—(v:v) 9:1 (11.1%
methanol in ethanol) and 1:1 (50% methanol in ethanol)—were used (total volume of
10 mL). The region of the IR spectra between 4000 and 2500 cm−1 is particularly affected
by the contributions of the OH stretching of H2O, which overlap with the OH stretching
modes originating from the organic molecules [25,26]. Small differences observed between
3700 and 3000 cm−1 mostly reflect the different water content of the reference solutions.
As illustrated in Figure 1, the most remarkable changes occurred in the spectral region
1000–1200 cm−1.
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Figure 1. FTIR spectra of pure ethanol, pure methanol, and mixtures of ethanol and methanol.

Moreover, standard solutions of ethanol in water (0–25% v/v) and methanol in water
(0.1–1.4% v/v) were used to identify the respective characteristic bands. According to
Figure 2, ethanol solutions presented characteristic vibration frequencies at 1047 cm−1

(major signal) and 1087 cm−1 (minor signal), while methanol had characteristic frequencies
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at 1020 cm−1 (major signal) and 1112 cm−1 (minor signal). These frequencies are specific to
stretching vibrations of C-O bonds in these molecules [27].
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Figure 2. FTIR spectra for different concentrations of (A) ethanol standards and (B) methanol
standards.

Different standard solutions of methanol and ethanol were used to build a calibration
curve based on Beer–Lambert’s law [28], showing a good correlation for ethanol (correlation:
0.989, Standard Error: 1.349, Standard Error of Prediction: 1.656) and methanol (correlation:
0.999, Standard Error: 0.021, Standard Error of Prediction: 0.021).

However, when considering solutions of both methanol and ethanol in water, Beer–
Lambert’s law did not give satisfactory results. When using different ratios of ethanol and
methanol mixtures, such as 9:1 and 1:1, we observed changes in absorbance at specific
bands. Increasing the amount of methanol in the mixture led to decreases in absorbance
at the 1047 and 1087 cm−1 bands and increases in absorbance at the 1020–1030 cm−1 and
1112 cm−1 bands, as expected. However, there is some overlap of the bands (Figure 3).
Beer–Lambert’s law requires clear and isolated absorbance for accurate quantification, so
it was not possible to use it. As a result, a specific range should be used to accurately
measure methanol and ethanol concentration in wine samples rather than relying on a
single characteristic band. Multivariate techniques and the development of a PLS model
were necessary for this purpose [29]. Standard solutions containing both ethanol and
methanol were used to develop the model, with concentration ranges of 0–20% v/v for
ethanol and 0.04–3.2 g/L for methanol (and all their possible combinations) based on their
typical levels in wine samples.
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Figure 3. FTIR spectra for different concentrations of ethanol–methanol solutions in water.

It can be challenging to simultaneously determine the levels of methanol and ethanol
in wine samples due to the low levels of methanol and the proximity of their characteristic
bands [30], as shown in Figure 3. To address this issue, a pre-treatment process called
deconvolution was employed. Deconvolution involves a line-narrowing process to reduce
interference between unresolved features. It is used to estimate the positions and intensities
of overlapping absorption bands [31]. The FTIR spectra of the ethanol and methanol
mixtures after the deconvolution process are presented in Figure 4. After the deconvolution
process, the fourth derivative order with 13 data points of calculation was also applied
(Figure 5).

Derivative curves usually have sharper features than the original spectra, which
enables them to reduce the effects of overlapping bands and suppress background effects.
The derivative process uses the Savitzky–Golay procedure to estimate the derivative of
a smooth curve, constructed through the original data points of the original spectrum.
Also, it uses a number of neighboring data points to estimate the curve. As the number of
data points used in the calculation increases, the contribution of broader features increases
relative to narrow features [32].

Simultaneously quantifying ethanol and methanol in wines using reference methods
also presents challenges. Ethanol is usually present in much lower concentrations, and
its effect on the overall density of a wine is minimal and indistinguishable from other
components in the matrix [1]. Therefore, densimetry cannot differentiate between ethanol
and methanol or provide accurate measurements of methanol in the presence of ethanol.
GC-FID also presents difficulties due to ethanol’s significantly higher concentration com-
pared to methanol. The high ethanol concentration can lead to column saturation, where
the stationary phase becomes overloaded, resulting in poor separation of methanol from
ethanol. Additionally, the flame ionization detector (FID) might experience saturation, as
the strong signal from ethanol can overwhelm the detector, reducing its ability to accurately
measure the lower concentrations of methanol. These factors complicate the simultaneous
and accurate quantification of both compounds [18,24].
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3.2. Development of the PLS Regression Model

These spectra were used to develop a PLS regression model. PLS1 is an algorithm
in which each property is analyzed individually with respect to the spectral data. PLS
seeks to express the variation in the property information by correlating it with the spectral
information. The spectra are modeled by a different set of factors for each property, and the
concentration values are modeled by the respective factors. As a result, it contains separate
calibrations equal to the number of properties in the method.

3.2.1. Standards

For the development of the model, 35 standard solutions of ethanol and methanol in
water in different concentrations were used (0–20% v/v ethanol range and 0.04–3.2 g/L
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methanol range) after the previous pre-treatment procedures. The pre-treatment was
conducted using Perkin Elmer Spectrum IR Version 10.6.2.

3.2.2. Pre-Processing

For the development of the model, the full range was used (950–4000 cm−1), along
with an instrument response weighting and the use of Standard Normal Variate Scaling
(SNV) Detrending.

3.2.3. Model Review

After the calibration of the model with the use of Perkin Elmer Spectrum Quant
Version 10.6.2, final regression data were obtained, which are summarized in Table 1.

Table 1. Regression model summary.

Property Number
of PCs

%Variance
(R Squared)

Std. Error of Estimate
(SEE)

Std. Error of Prediction
(SEP)

Cross-Validation
SEP

Mean Property
Value

Ethanol 10 99.9977 0.03447 0.03879 1.33 12.5
Methanol 9 99.9183 0.03799 0.04243 0.51 0.9

The model is considered stable because, in both graphs of the estimated values in
relation to the specified values for ethanol and methanol, the standards appear on the
regression line for the concentrations tested.

The outlier graphs display two cutoff lines on both axes. The vertical cutoff represents
spectral outliers and the horizontal cutoff represents concentration outliers. Both spectral
outlier tests for ethanol and methanol were successful, as no standard appeared to exceed
the cutoff. Regarding the concentration outliers, both of them presented two concentration
outliers. Finally, considering the values of Standard Error of Prediction (SEP) for both
properties and analyzing the relative graphs representing the effect of principal components’
PCs on the SEP, we conclude that the model can predict the values of independent samples
with a relatively low error rate.

3.3. Independent Validation

For an external validation of the model, the ethanol and methanol levels of 20 wine
samples were identified [Figure 6]. The reference method used for ethanol determination
was electronic densimetry, and for methanol, gas chromatography with flame ionization
detection (GC-FID) was used. The measurements took place in duplicates, and the results
are shown in Table 2.

The ethanol and methanol content of the 20 wine samples previously described was
predicted by the developed model. To compare a new analytical method with a reference
method, the typical approach involves constructing a regression line that plots the results of
the new method against those obtained by the reference method [33]. The results showed
a good correlation with the reference values for the ethanol determination (y = 0.9557x,
R2 = 0.988). However, the model did not show satisfactory prediction capacity for the
methanol content. This was attributed to the poor sensitivity of FTIR in quantifying low
concentration levels, as most of the samples exhibited methanol concentrations very close
to zero. FTIR is better at determining compounds with a concentration higher than 1 g/L
due to its ability to engage absorption phenomena [19,20]. Moreover, keeping in mind
that for the reference methods, the determination was carried out with the wine distillate,
direct FTIR measurement can be considered more affected by the matrix effect [34] (see
Section 2.1.3).
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Table 2. Alcoholic strength values obtained by electronic densimetry (A) and FTIR (B) and methanol
concentrations obtained by GC-FID (C) and FTIR (D).

Wine Sample Type Alcoholic Strength (A)
(% v/v)

Alcoholic Strength (B)
(% v/v)

Methanol (C)
(mg/L)

Methanol (D)
(mg/L)

‘Alvarinho’ 2016 White 13.45 ± 0.01 13.37 ± 0.24 22.5 ± 0.7 250 ± 353.6
‘Alvarinho’ 2019 White 13.68 ± 0.02 12.66 ± 0.22 38.0 ± 9.9 150 ± 212.1

‘Arinto’ 2019 White 12.34 ± 0.00 11.59 ± 0.26 51.0 ± 4.2 55 ± 77.8
‘Cabernet Sauvignon’ 2016 Red 12.12 ± 0.01 14.2 ± 0.28 102.5± 6.4 400 ± 565.7
‘Cabernet Sauvignon’ 2018 Red 13.00 ± 0.01 13.49 ± 0.27 83.5 ± 9.2 80 ± 28.3
‘Cabernet Sauvignon’ 2019 Red 12.23 ± 0.01 11.27 ± 0.23 111.0 ± 2.8 200 ± 282.8

‘Encruzado’ 2019 White 12.96 ± 0.06 11.78 ± 0.25 23.5 ± 2.1 115 ± 120.2
‘Moscatel de Setúbal’ 2019 White 13.27 ± 0.01 12.96 ± 0.23 22.5 ± 2.1 45 ± 63.6

‘Macabeo’ 2019 White 10.99 ± 0.01 10.55 ± 0.21 75.0 ± 9.9 80 ± 113.1
‘Moscatel de Setúbal’ 2016 White 13.19 ± 0.02 10.06 ± 0.23 17.0 ± 1.4 60 ± 84.9

‘Moscatel Galego’ 2019 White 15.53 ± 0.05 15.89 ± 0.26 53.5 ± 7.8 300 ± 424.3
‘Syrah’ 2016 Red 15.25 ± 0.04 17.58 ± 0.25 174.5 ± 4.9 200 ± 282.8
‘Syrah’ 2018 Red 16.10 ± 0.02 14.69 ± 0.27 124.5 ± 3.5 135 ± 190.9
‘Syrah’ 2019 Red 16.93 ± 0.02 15.78 ± 0.25 135.0 ± 8.5 200 ± 282.8

‘Touriga Nacional’ 2016 Red 10.75 ± 0.01 12.57 ± 0.23 137.0 ± 8.5 150 ± 212.1
‘Touriga Nacional’ 2018 Red 16.28 ± 0.01 15.89 ± 0.26 172.5 ± 4.9 0 ± 0
‘Touriga Nacional’ 2019 Red 15.71 ± 0.01 12.06 ± 0.23 214.0 ± 32.5 150 ± 212.1

‘Trincadeira’ 2019 Red 13.58 ± 0.01 12.28 ± 0.25 211.5 ± 19.1 200 ± 282.8
‘Trincadeira’ 2016 Red 14.24 ± 0.00 15.11 ± 0.30 194.0 ± 29.7 400 ± 565.7

‘Viosinho’ 2019 White 13.45 ± 0.03 12.68 ± 0.46 21.5 ± 3.5 100 ± 141.4

4. Conclusions

Methods developed based on FTIR measurements in winemaking are usually focused
on specific parameters or chemical compounds or are applied to a particular stage of
the winemaking process. However, simultaneously determining multiple parameters
has proven to be quite challenging in most cases. As FTIR combined with chemometrics
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is already used for routine analysis in wine production, there is a growing interest in
developing a new chemometric model that can identify both ethanol and methanol.

The simultaneous determination of methanol and ethanol content in wine production
is crucial for several reasons. It allows for efficient quality control, ensuring that both
compounds are within safe and acceptable limits. This is critical for maintaining wine
quality and consumer safety. This dual measurement is also vital from a technological
standpoint, as it reflects proper fruit handling during harvest and processing, directly
impacting the final product’s quality. By simultaneously monitoring both methanol and
ethanol, winemakers can optimize production processes, ensure regulatory compliance, and
detect potential adulteration, all while improving overall efficiency and cost-effectiveness.

In our study, the wine samples were obtained from the same winery but from dif-
ferent grapevine cultivars and harvests, without including other types of wines. This
limited sample diversity may result in poor representation. Additionally, the complex-
ity of the wine matrix and the chemical similarity of the compounds under study make
interpreting the spectra quite challenging. Also, comparing a single method for the simul-
taneous determination of two parameters with two different reference methods for the
individual determination of the two parameters can lead to inaccurate results. Therefore,
simultaneously determining both properties in this study presents higher difficulty.

In conclusion, the developed model demonstrates the feasibility of using FTIR for
the simultaneous quantification of ethanol and methanol in wine samples through dedi-
cated models. The model could be reliable enough for quality control in wine production.
However, in the future, the model should be enhanced with more samples from different
wine types and origins, including other grapevine cultivars and different winemaking tech-
nologies from various wineries. For better prediction capacity in methanol determination,
another set of samples with different and higher levels of methanol is required.
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