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Abstract: Tert-butylhydroquinone (TBHQ) is a phenolic substance that is commonly employed to
prevent food oxidation. Excessive or improper utilization of this antioxidant can not only impact
food quality but may also pose potential risks to human health. In this study, an ultrasensitive, stable,
and easily operable ratiometric electrochemical sensor was successfully fabricated by combining the
tubular (3,4-ethylenedioxythiophene) (T-PEDOT) with single-wall carbon nanohorns (SWCNHs) for
the detection of TBHQ antioxidants in food. The SWCNHs/T-PEDOT nanocomposite fabricated
through ultrasound-assisted and template approaches was employed as the modified substrate
for the electrode interface. The synergistic effect of SWCNHs and T-PEDOT, which possess excel-
lent electrical conductivity and catalytic properties, enabled the modified electrode to showcase
remarkable electrocatalytic performance towards TBHQ, with the redox signal of methylene blue
serving as an internal reference. Under optimized conditions, the SWCNHs/T-PEDOT-modified
electrode demonstrated good linearity within the TBHQ concentration range of 0.01–200.0 µg mL−1,
featuring a low limit of detection (LOD) of 0.005 µg mL−1. The proposed ratiometric electrochemical
sensor displayed favorable reproducibility, stability, and anti-interference capacity, thereby offering a
promising strategy for monitoring the levels of TBHQ in oil-rich food products.

Keywords: Tert-butylhydroquinone; ratiometric electrochemical sensor; SWCNHs; T-PEDOT

1. Introduction

Tert-butylhydroquinone (TBHQ) is a synthetic phenolic antioxidant that is commonly
used to prevent or delay the oxidation of food products. The phenolic hydroxyl group
of TBHQ breaks the O-H bond through an electrophilic substitution reaction, releasing
hydrogen atoms. The released hydrogen atoms prevent oxidation by combining with free
radicals to obtain stabilized products and antioxidant radicals, which interrupt the free
radical chain reaction. It usually exists in oil or oil-rich foods, but the illegal addition or
excessive use of TBHQ can affect food quality and even pose risks to human health [1–3].
To effectively control the potential risk of TBHQ, the maximum allowable residue levels
of TBHQ antioxidants in food are strictly regulated in many countries and regions. For
instance, both China and the U.S. Food and Drug Administration (FDA) have set the
maximum permissible amount of TBHQ in food at 0.2 g kg−1, the European Union prohibits
the use of TBHQ in soft drinks, while Japan has completely banned its use in food [4,5].
Given these regulations, it is important to develop an accurate, convenient, and sensitive
strategy for the detection and monitoring of TBHQ content in food products.

Up to now, a variety of analytical strategies have been developed to detect TBHQ
antioxidants in food samples. The chromatographic separation principle and large-scale
instruments-based analytical methods such as gas chromatography, liquid chromatography,
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or combined mass spectrometry have shown advantages of high accuracy, high sensitivity,
and good reproducibility [6,7]. However, these technologies involve expensive equipment
and complex sample pretreatment processes that are not suitable for on-site and rapid
quantitative detection [8,9].

Electrochemical sensors exhibit high sensitivity in rapidly detecting harmful sub-
stances in food due to their fast response speeds, low costs, and simplicity of operation,
among other characteristics, thus attracting significant attention from researchers, with
promising applications [10–12]. Nevertheless, the limited conductivity inherent in con-
ventional solid-state working electrodes like glassy carbon affects sensor selectivity and
sensitivity, hindering further advancement. To address this issue, various functional mate-
rials with distinct structures have been employed to modify electrode surfaces to enhance
electrode performance [13,14]. Moreover, traditional electrochemical sensors typically
generate a single signal susceptible to external interference from the environment or target
states, which may produce ‘false positive’ or ‘false negative’ results. In contrast, ratiometric
electrochemical sensors can effectively improve accuracy and reliability by incorporating
substances capable of reacting at diverse REDOX potentials while utilizing their signals
as references, thereby mitigating interference with targets [15,16]. Single-wall carbon
nanohorns (SWCNHs), a novel category of carbon-based nanomaterials, structurally resem-
ble carbon nanotubes and typically aggregate into a “dahlia” form. Owing to their porous
architecture, SWCNHs are a promising nanomaterial featuring excellent electrochemical
properties, catalytic capacity, and high adsorption capacity [17,18]. Tubular poly (3,4-
ethylenedioxythiophene) (T-PEDOT) is a heterocyclic molecular polymer synthesized from
the monomer 3, 4-ethylenedioxythiophene, which is a derivative of polythiophene [19]. The
conjugated polymer has been demonstrated to possess enhanced electronic stability and
improved kinetic parameters [20]. It is well known and frequently utilized as a modified
material to enhance the performance of electrochemical sensors [21].

In this study, by combining the tubular (3,4-ethylenedioxythiophene) (T-PEDOT) with
single-wall carbon nanohorns (SWCNHs), we have created an ultrasensitive, stable, and
easy-to-use ratiometric electrochemical sensor for the detection of TBHQ antioxidants
in food. T-PEDOT was synthesized via the template method, and SWCNHs/T-PEDOT
nanocomposites were fabricated with the assistance of ultrasound. T-PEDOT not only pos-
sessed excellent electrical conductivity and catalytic properties but also had a considerably
specific surface area. Its structure offered effective loading for SWCNHs, effectively avert-
ing the stacking and aggregation of SWCNHs and facilitating the exposure of active sites.
Based on the synergy between SWCNHs/T-PEDOT nanocomposites, a highly catalytic and
reliable electrochemical sensing strategy was further developed for the determination of
antioxidant TBHQ. This sensing strategy utilized the redox signal of methylene blue as
the internal parameter to guarantee the accuracy of target TBHQ detection and provided a
convenient and effective approach for the quality control and assurance of oil-rich foods,
presenting great application potential.

2. Materials and Methods
2.1. Chemicals and Materials

The analytes (TBHQ, 98%), epigallocatechin gallate (EGCG, 98%), butylated hy-
droxytoluene (BHT, 98%), glucose (Glu), hydroquinone (HQ, 98%), propyl gallate (PG,
98%), α-Vitamin E (VE, 98%), ascorbic acid (AA, 98%), methylene blue (MB, 99%) and
tri(Hydroxymethyl) amino methane hydrochloride (Tri-HCl, 99%) were purchased from Al-
addin Chemical Reagent Co., Ltd. (Shanghai, China). SWCNHs (97%) were acquired from
Aiwan Chemical Technology Co., Ltd. (Shanghai, China). The 3,4-ethylenedioxythiophene
(EDOT, 98%), ferric chloride (FeCl3, 98%), KCl (99%), NaCl (99%), Na2SO4 (99%), and
CH3COONa (99%) were purchased from Shanghai BiDe Pharmaceutical Technology Co.,
Ltd. (Shanghai, China). Bis(2-ethylhexyl) sulfosuccinate (AOT) and nafion (NF, 5 wt%)
were obtained from Sigma-Aldrich (St. Louis, MO, USA). All the reagents utilized in the
experiment were of analytical grade.
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2.2. Instruments

The morphology and structure of the materials synthesized in this work were character-
ized by field emission scanning electron microscope (SEM, FEI-FEG25, FEI, Hillsboro, OR,
USA) and transmission electron microscope (TEM, FEI-F20, FEI, Hillsboro, OR, USA), X-ray
powder diffractometer (XRD, SmartLab 9kW, SHIMADZU, Kyoto, Japan), and X-ray pho-
toelectron spectrometer (XPS, ESCALAB Xi+, Thermo, Waltham, MA, USA). The molecular
structures of T-PEDOT, SWCNHs, and SWCNHs/T-PEDOT were analyzed using an inVia
Reflex spectrometer from Renishaw, UK. Electrochemical experiments were conducted on
the CHI440C and Princeton 2273 electrochemical workstation with a three-electrode system.

2.3. Synthesis of the SWCNHs/T-PEDOT Composites

The synthesis of T-PEDOT was carried out according to a previously reported
method [22,23] with minor modifications (Figure 1). Initially, 8.0 g of sodium AOT was
accurately weighed and dissolved in 70.0 mL of hexane with stirring (Solution A). Simul-
taneously, 1.6 g of FeCl3 was accurately weighed and dissolved in 1.0 mL of ultrapure
water to prepare Solution B. Subsequently, Solution B was gradually added to Solution
A and stirred for 10 min at room temperature, resulting in an orange–yellow solution.
While stirring continuously, 0.5 mL of EDOT was added, resulting in a color change from
orange–yellow to dark green. Following an additional 3 h of stirring at room temperature,
the solution was centrifuged and the resulting solid product (T-PEDOT) was collected and
thoroughly washed with acetone and methanol. Finally, the solid product was dried under
vacuum at 75 ◦C for 12 h. The SWCNHs/T-PEDOT nanocomposites were synthesized
via ultrasonic replication. Specifically, 2.0 mg of SWCNHs and 2.0 mg of T-PEDOT were
individually weighed and dispersed into 2.0 mL of N, N-Dimethylformamide (DMF). The
mixture was then ultrasonicated at room temperature for 30 min to obtain a homogeneous
dispersion. The two dispersions were then combined and subjected to further ultrasoni-
cation for 3 h. Afterward, the resulting mixture was centrifuged to collect the precipitate,
which was subsequently dried under vacuum at 75 ◦C for 12 h.

2.4. Construction of the MB@SWCNHs/T-PEDOT/GCE

Prior to modification, the bare glassy carbon electrode (GCE) underwent sequen-
tial polishing with 0.1, 0.5, and 0.05 µm alumina (Al2O3) powder, followed by rinsing
with ultrapure water. Subsequently, the electrode was immersed in a 5.0 mmol L−1

[Fe(CN)6]4−/3− electrolyte solution containing 1.0 mol L−1 KCl, and cyclic voltamme-
try (CV) scanning was performed until the redox potential difference was less than 70 mV.
After washing with ultrapure water, the electrode was dried and set aside. The fabrication
process for the MB@SWCNHs/T-PEDOT/GCE was as follows: Initially, 2.0 mg of the
prepared SWCNHs/T-PEDOT composites was uniformly dispersed in 2.0 mL of DMF
solvent through ultrasonication. Subsequently, 40.0 µL of the previously prepared MB-DMF
solution (1.0 mg mL−1) was added to the dispersion and sonicated for 15 min. Then, 7 µL
of the resulting MB@SWCNHs/T-PEDOT mixture was applied dropwise to the surface
of the bare GCE. After drying, 5 µL of 0.1% Nafion solution was further applied to the
electrode surface to obtain the MB@SWCNHs/T-PEDOT/GCE.

2.5. Electrochemical Behavior of the MB@SWCNHs/T-PEDOT Sensing Interface

The electrochemical behavior of the developed MB@SWCNHs/T-PEDOT sensing
interface was evaluated in a 5.0 mmol L−1 [Fe(CN)6]4−/3− electrolyte solution contain-
ing 0.1 mol L−1 KCl using CV scanning, electrochemical impedance spectroscopy (EIS)
analysis, and differential pulse voltammetry (DPV) scanning in a CHI440C and Princeton
2273 electrochemical workstation. CV measurements were performed at a scan rate of
20–300 mV s−1 within potential ranges of −0.2 to 0.6 V and −0.4 to 0.4 V. For EIS analysis,
the frequency range was set from 0.01 to 10,000 Hz, with an amplitude of 5.0 mV.
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2.6. Electrochemical Detection of TBHQ

The constructed MB@SWCNHs/T-PEDOT/GCE was employed for the electrochemi-
cal detection of the target TBHQ by the DPV method. A three-electrode system using the
MB@SWCNHs/T-PEDOT/GCE as the working electrode, a Pt electrode as the counter
electrode, and a saturated calomel electrode as the reference electrode was immersed in
phosphate-buffered saline (PBS) solutions containing various concentrations of TBHQ at
room temperature. DPV measurements were taken at a scanning voltage range of −0.4 to
0.4 V, a pulse width of 0.6 s, and a pulse amplitude of 50 mV.

2.7. Real Sample Analysis

In this study, wafer biscuits, peanut oil, and instant noodles were used as real samples
to evaluate the capability of the MB@SWCNHs/T-PEDOT/GCE sensor to detect TBHQ in
real samples. All samples tested were obtained from a local supermarket in Tianjin, China.
Initially, 1.0 g of each sample was accurately weighed and placed in a 10.0 mL centrifuge
tube, followed by the addition of 5.0 mL of ethanol. The resulting mixture was shaken
vigorously for 5 min and then subjected to ultrasonication for 30 min. Subsequently, the
supernatant was collected by centrifugation at 8000 rpm for 15 min. This extraction process
was repeated twice, and the collected supernatants were combined, concentrated with
nitrogen, and then made up to 10.0 mL with ethanol. Finally, after filtration through a
0.22 µm filter membrane, the amount of TBHQ was determined by electrochemical and
HPLC methods.

The verification of TBHQ content using the HPLC method was in accordance with
the GB/T 21512-2008 standard [24]. Chromatographic separation was performed on a
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C18 column (250 mm × 4.6 mm, 5 µm), with the mobile phase consisting of 5% acetic
acid solution (A) and methanol/acetonitrile (1/1, v/v, B) mixture with a flow rate of
1.0 mL min−1. The elution gradient proceeded as follows: phase B gradually increased from
30% to 100% over min 0–8, was maintained at 100% from min 9 to 14, and then decreased
from 100% to 30% over min 15–22. The column temperature, detection wavelength, and
injection volume were set at 40 ◦C, 280 nm, and 20 µL, respectively.

3. Results and Discussion
3.1. Characterization of T-PEDOT, SWCNHs, and SWCNHs/T-PEDOT

The elemental composition of the synthesized T-PEDOT was investigated using XPS
analysis. Figure 2a confirms the presence of C, O, Cl, and S elements in the T-PEDOT
material. The high-resolution spectra shown in Figure 2b of C 1s revealed distinctive
peaks at 283.7 eV, 284.2 eV, 285.0 eV, and 287.7 eV corresponding to C-S, C-Cl, C-C, and
C=O bonds, respectively. The Cl 2p spectra exhibited characteristic peaks at 195.2 eV and
198.5 eV, which corresponded to Cl 2p1/2 and Cl 2p3/2, respectively. The peak at 195.2 eV
indicated the presence of Cl ions, while the peak at 198.5 eV suggested the presence of
organic chlorine compounds, with 196.8 eV corresponding to the C-Cl bonds (Figure 2c). In
the XPS spectrum of S 2p (Figure 2d), two distinct peaks were observed, corresponding to
the C-S bonds (162.1 eV) and cation S+ (163.3 eV). The formations of C-S, C-Cl, C-C, and
C=O bonds suggested that the T-PEDOT had been successfully synthesized. Figure 3a,b
presented the TEM images of SWCNHs, illustrating the formation of “dahlia” cluster-like
aggregate structures with diameters ranging from 30 to 60 nm. Due to the action of high-
energy electron beams, the tube walls of SWCNHs were damaged, resulting in blurred
edges [25]. Upon partial enlargement (Figure 3b), it was evident that the “petals” exhibited
a tubular structure with a conical shape (yellow), while retaining a small minor graphite
flake structure. The SEM image of SWCNHs/T-PEDOT in Figure 3c revealed a typical
tubular structure with a rough surface. Subsequent TEM results (Figure 3d,e) further
highlighted the presence of internal voids within the material and attributed the rough
surface to the SWCNHs coating. The elemental mapping analysis (EDS) confirmed the
distribution of primary elements C, S, and Cl within the SWCNHs/T-PEDOT material,
providing conclusive evidence of successful synthesis (Figure 3f). The synthesized T-
PEDOT and SWCNHs were further used to construct the ratiometric electrochemical sensor
for TBHQ.

Figure 3g displays the XRD spectra of the synthesized T-PEDOT and SWCNHs/T-
PEDOT materials. The T-PEDOT material exhibited prominent diffraction peaks at 6.59◦

and 25.14◦, consistent with previous studies in the literature [26], indicating its successful
synthesis and a disordered growth state. Meanwhile, the XRD patterns of the SWCNHs/T-
PEDOT composite preserved the diffraction peak of T-PEDOT and featured a distinct sharp
peak at 26.46◦, which was attributed to graphene, confirming the presence of the typical
graphene structure within SWCNHs as observed in the TEM images (Figure 3a,b). Further-
more, the SWCNHs/T-PEDOT material exhibited less prominent broad diffraction peaks
at 26.00◦ and 42.76◦, corresponding to the (002) and (100) crystal planes of the hexagonal
graphite structure, respectively [27]. The results of Raman spectrum analysis of T-PEDOT,
SWCNHs, and SWCNHs/T-PEDOT are presented in Figure 3h. The characteristic peaks
observed at 986 cm−1 and 1259 cm−1 in the T-PEDOT Raman spectrum were attributed to
the stretching vibration of the C-O-C bond and the vibration of the C-C bond in PEDOT.
Additionally, the peaks at 1430 cm−1 and 1509 cm−1 corresponded to the symmetric stretch-
ing vibrations of the benzene-type and quinone-type Cα=Cβ bonds on the thiophene ring
of PEDOT, respectively, while the peak at 1550 cm−1 corresponded to the antisymmetric
stretching vibration of Cα=Cβ. Compared to the benzene-type chain, the quinone-type
PEDOT main chain promoted structural order in PEDOT molecules, providing enhanced
carrier transfer and improved electrical conductivity [27]. The formed composite material
retained the characteristic peaks of SWCNHs and T-PEDOT. Due to the strong interaction
between the components, the characteristic peaks of the D band of SWCNHs at 1341 cm−1
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and the G band at 1582 cm−1 shifted slightly to the right, appearing at 1343 cm−1 and
1585 cm−1, respectively [28]. The obvious differences in the XRD and Raman spectrum of
the SWCNHs/T-PEDOT compared with T-PEDOT indicated that the materials have been
successfully fabricated.
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3.2. Electrochemical Behavior of the MB@SWCNHs/T-PEDOT/GCE

The electron transfer characteristics of various materials were investigated through EIS
and CV scanning in a solution comprising 5.0 mmol L−1 [Fe(CN)6]4−/3− and 0.1 mol L−1

KCl at a frequency of 0.01~10,000 Hz and an amplitude of 5.0 mV. In the Nyquist plot,
the semicircle and linear segments, respectively, represent the electron transfer and dif-
fusion processes occurring on the electrode surface, with the diameter of the semicircle
correlating to the resistance value. The Rct of the different electrodes were fitted by the
equivalent circuit. Here, Rs stands for the solution resistance, Rct represents charge transfer
resistance, Cdl is the Warburg impedance, and Zw refers to double-layer capacitance. As
depicted in Figure 4a, the Nyquist curve of the bare GCE exhibited the largest semicircle
diameter (Rct = 80 Ω), indicating lower electron transfer ability and poor conductivity.
Conversely, the modification of the electrode with materials such as T-PEDOT, SWCNHs,
and SWCNHs/T-PEDOT resulted in a reduction in the semicircular portion of the Nyquist
curve, indicating improved electron transfer ability at the electrode interface facilitated by
the materials’ enhanced conductivity. The Rct value of T-PEDOT/GCE was 30 Ω, while that
of MB/SWCNHs/T-PEDOT/GCE was reduced to about 25 Ω. The impedance values of
the SWCNHs/T-PEDOT-modified electrodes are much lower than those of the single mate-
rial and the other materials (such as Ni-MOF/T-PEDOT [19] and SWCNHs@ZIF-67 [25])
mainly because of the synergistic catalytic effect of T-PEDOT and SWCNHs. The CV results
(Figure 4b) revealed distinct quasi-reversible redox peak pairs in the [Fe(CN)6]4−/3− elec-
trolyte for each modified electrode. It is particularly worth mentioning that the oxidation
peak current of the SWCNHs/T-PEDOT-modified electrode (168.9 µA) is higher than that
of the SWCNHs- (147.9 µA) and T-PEDOT (158.6 µA)-modified electrodes. This observation
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indicated that the SWCNHs/T-PEDOT composite-modified electrode had a faster electron
transfer rate, rendering it more suitable for electrochemical sensing applications. The
chronocoulometric method was further employed to evaluate the effective working area of
each modified electrode, as illustrated in Figure 4c,d, showcasing the corresponding linear
relationship obtained for each electrode. According to Anson’s equation [28],

Q = (2 × F × A × c × D1/2t1/2)/π1/2 + Qdl + Qads

where F represents the Faraday’s constant (96,485 C mol−1), A denotes the effective work-
ing area, c represents the substrate concentration, and D represents the diffusion coefficient
(1.0 mmol L−1 [Fe(CN)6]4−/3−: 7.6 × 10−6 cm2 s−1). Qdl and Qads indicate the Faraday
electric charge and the electric double-layer electric charge, respectively. The linear equa-
tions for various electrodes were as follows: GCE: Q (mC) = 0.007 t1/2 (s1/2) + 7.197,
with R2 of 0.999; SWCNHs/GCE: Q (mC) = 0.064 t1/2 (s1/2) + 0.046, with R2 of 0.988;
T-PEDOT/GCE: Q (mC) = 0.571 t1/2 (s1/2) − 0.074, with R2 of 0.998; MB@SWCNHs/T-
PEDOT/GCE: Q (mC) = 0.839 t1/2 (s1/2) − 0.173, with R2 of 0.999. The effective working
area was calculated as 0.0018 cm2 (GCE), 0.0021 cm2 (SWCNHs/GCE), 0.0191 cm2 (T-
PEDOT/GCE), and 0.0281 cm2 (SWCNHs/T-PEDOT/GCE). These results indicated that
the SWCNHs/T-PEDOT composite material significantly enhanced the effective working
area of the electrode and provided more active sites, which facilitated achieving highly
sensitive electrochemical detection of TBHQ.
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3.3. Electrochemical Redox Mechanism of TBHQ

The electrochemical oxidation mechanism of TBHQ, having part of the phenol group,
typically involves proton transfer, leading to the generation of quinones. Therefore, the
proton concentration in the buffer environment played a crucial role in influencing the
electrochemical oxidation process. In this study, the DPV method was utilized to investigate
the electrochemical response of the SWCNHs/T-PEDOT-modified electrode to TBHQ in
PBS with varying pH. As illustrated in Figure 5a, the oxidation peak potential (Epa) of TBHQ
exhibited a significant negative shift as the buffer pH increased from 2.0 to 7.0. Furthermore,
the correlation between buffer pH and the Epa of TBHQ revealed a robust linear relationship
described by Epa (V) = 0.345–0.060 pH (R2 = 0.989) (Figure S1). The slope (−60 mV pH−1) of
this equation closely matched the theoretical value of −59.0 mV pH−1, suggesting that the
TBHQ reaction at the electrode followed an isoelectron–isoproton transfer mechanism [29].
The DPV curves in Figure 5b for each modified electrode in PBS solution (0.1 mol L−1,
pH 2.0) containing 10.0 µg mL−1 TBHQ provided important insights. The oxidation
peak potential of TBHQ was found to be close to 0.22 V, with the bare GCE displaying
a modest oxidation peak (Epa) and a peak current (Ipa) of 6.94 µA. Upon modification
of the GCE with T-PEDOT, possessing remarkable catalytic capability, the Ipa increased
significantly to 84.35 µA, attributed to the conductivity and tubular features of T-PEDOT,
which provided a larger surface area for improved target adsorption. The SWCNHs-
modified GCE exhibited an Ipa for TBHQ of 183.50 µA, attributed to the catalytic capability
and porosity of SWCNHs facilitating target diffusion to the electrochemical interface. The
composite SWCNHs/T-PEDOT-modified electrode demonstrated the highest Ipa value
for TBHQ at 202.80 µA, indicating a significant electrocatalytic efficiency of the composite
material on TBHQ. This was attributed to the synergistic effect between T-PEDOT and
SWCNHs: the high surface area of T-PEDOT served as an effective carrier for the loading of
SWCNHs, preventing their aggregation on the sensing interface, while SWCNHs, with its
surface defects, provided electroactive sites for TBHQ adsorption through π-π interaction.
This facilitation of enhanced electron transfer during the TBHQ redox process significantly
improved detection sensitivity. Furthermore, an oxidation peak at −0.076 V was observed
for MB@SWCNHs/T-PEDOT/GCE, with the current remaining stable despite changes in
the TBHQ concentration. The results indicate that incorporating MB does not interfere with
the detection signal, establishing a foundation for a ratiometric electrochemical quantitative
analyzer using MB as a reference for TBHQ detection.

Figure 5c displays the CV curves obtained for the fabricated MB@SWCNHs/T-PEDOT/
GCE in PBS (0.1 mol L−1, pH 2.0) containing 10.0 µg mL−1 TBHQ at different scan rates
(v ranging from 20 to 300 mV s−1). It is evident that with increasing scan rate (v), both
the peak currents (Ipa and Ipc) of TBHQ and MB increased accordingly. In addition, the
peak potential values (Epa and Epc) of TBHQ and MB shifted towards positive and negative
potentials, respectively. At lower scan rates (20–100 mV s−1), the Ipa and Ipc values of TBHQ
exhibited a linear correlation with the square root of the scan rate (v1/2) (Figure 5d,g). The
linear equations derived from the relationship for TBHQ were Ipa (µA) = −93.781 + 21.647
v1/2 (mV s−1)1/2 (r2 = 0.991) and Ipc (µA) = 60.933–149.062 v1/2 (mV s−1)1/2 (r2 = 0.995),
indicating that the electrode surface reaction followed a diffusion-controlled process at
low scan rates. Conversely, at higher scan rates (100–300 mV s−1), the Ipa and Ipc of
TBHQ exhibited a linear relationship with the scan rate v (mV s−1) (Figure 5e,h). The
linear equations for TBHQ were Ipa (µA) = −33.140 + 1.619 v (mV s−1) (r2 = 0.999) and
Ipc (µA) = −25.693–0.745 v (mV s−1) (r2 = 0.997), indicating that at higher scan rates, the elec-
trochemical oxidation–reduction reaction of TBHQ on the MB@SWCNHs/T-PEDOT/GCE
were adsorption-controlled processes. Figure 5f,i illustrate the correlation between Epa, Epc,
and ln v of TBHQ. At higher scanning rates, the linear equations describing the relationship
between Epa, Epc, and ln v were as follows: Epa (V) = 0.095 + 0.0334 ln v (r2 = 0.996) and Epc
(V) = 0.348–0.031 ln v (r2 = 0.989), indicating the quasi-reversible electrochemical process of
TBHQ on the MB@SWCNHs/T-PEDOT/GCE. According to the Laviron equation [30], the
electron transfer coefficient α and the electron transfer number n of TBHQ were determined
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to be 0.48 and approximately 1.71 (rounded up to 2.0), respectively. This indicated that
the electrochemical reaction of TBHQ on the MB@SWCNHs/T-PEDOT/GCE involves
the transfer of approximately 2 electrons. The analysis confirmed that the overall surface
reaction on the electrode involved an isoelectron–isoproton process, indicating that TBHQ
underwent the transfer of two protons and two electrons during the electrochemical redox
process on the MB@SWCNHs/T-PEDOT/GCE surface.
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3.4. Experimental Parameter Optimizations

To improve the detection performance of the MB@SWCNHs/T-PEDOT/GCE for
TBHQ, comprehensive optimization studies were carried out on a series of experimental
parameters, including the ratio of T-PEDOT/SWCNHs, the amount of SWCNHs/T-PEDOT
composite, the amount of 0.1% Nafion, the adsorption potential, time, and scan rate.
Figure S2a shows the effects of different mass ratios of T-PEDOT and SWCNH on the TBHQ
oxidation peak current (Ipa). Notably, when the mass ratio of T-PEDOT/SWCNHs reached
1/2, there was a significant increase in the Ipa value compared to other ratios. Additionally,
at a SWCNHs/T-PEDOT concentration of 1.0 mg mL−1, increasing the dispensing volume
from 3 µL to 7 µL resulted in a gradual increase in the Ipa of TBHQ. However, after
exceeding 7 µL, the Ipa started to decrease due to the excessive thickness of the modified
material’s film layer, which hindered electron transfer at the electrode interface (Figure S2b).
To ensure the stability of the constructed sensor, a 0.1% Nafion solution was used to
anchor the modified materials onto the electrode surface. As shown in Figure S3, the
Ipa (TBHQ)/Ipa (MB) ratio consistently decreased as the dispensing volume of 0.1% Nafion
(5–10 µL) increased. A dispensing volume of 5 µL of Nafion (0.1%) effectively stabilized the
material on the electrode surface and was consequently selected as the optimal condition.
The effect of various adsorption potentials (−0.15–0.10 V) and durations (25–325 s) on
the Ipa (TBHQ)/Ipa (MB) ratio was investigated, and the results are presented in Figure S4a,b.
It was observed that when the same conditions were maintained, the Ipa (TBHQ)/Ipa (MB)
ratio reached its peak at an adsorption potential of 0.0 V, indicating the optimal adsorption
potential. Additionally, the Ipa (TBHQ)/Ipa (MB) ratio gradually increased with extended
adsorption time, stabilizing after 180 s, indicating the optimal duration of the process.

Figure S5 shows the DPV response curves of the prepared MB@SWCNHs/T-PEDOT/
GCE when exposed to the target TBHQ in different buffers, including Tris buffer, acetate
buffer (NaAc-HAc), Britton–Robinson (BR) buffer and PBS (pH 2.0). The results demon-
strate that clear and pronounced oxidation peaks for TBHQ were observed in PBS and
NaAc-HAc, with the peak current for TBHQ oxidation reaching its maximum in PBS
(183.7 µA). In contrast, oxidation peaks for TBHQ were virtually absent in the BR and
Tris-HCl electrolytes.

3.5. Analytical Performance of the Ratiometric Electrochemical Sensing Platform

Under the optimized experimental conditions, the analytical capabilities of the devel-
oped electrochemical sensing strategy for TBHQ were evaluated using the DPV method.
Figure 6a displays the oxidation peaks of MB and TBHQ at −0.076 V and 0.228 V, respec-
tively. It is observed that the oxidation peak currents of TBHQ increased with increasing
concentrations of TBHQ, whereas the oxidation peak current of MB remained largely
unchanged. Figure 6b shows that the ratio of TBHQ and MB oxidation peak currents
(ITBHQ/IMB) is directly proportional to the concentration of TBHQ (CTBHQ). The relation-
ship is quantified by the following regression equations:

(CTBHQ: 0.01–0.1 µg mL−1): ITBHQ/IMB (µA) = 0.653 CTBHQ (µg mL−1) + 2.987 (R2 = 0.999)

(CTBHQ: 0.1–200.0 µg mL−1): ITBHQ/IMB (µA) = 0.074 CTBHQ (µg mL−1) + 3.320 (R2 = 0.998)

Figure 6a,b demonstrate that the sensitivity of the sensor for detecting TBHQ was
enhanced at low concentrations (0.01–0.1 µg mL−1). This might be attributed to the pre-
dominance of adsorption-controlled characteristics at the electrode interface at lower TBHQ
concentrations. In contrast to other analytes, the abundant catalytic sites on the electrode
surface facilitate the rapid catalytic oxidation of TBHQ to tert-butylhydroquinone (TQ).
In the high concentration range (0.1–200.0 µg mL−1), sensitivity to TBHQ declined. This
reduction was due to a considerable amount of TBHQ accumulating on the electrode sur-
face, leading to an increase in mass transfer resistance and a decrease in available catalytic
sites. In comparison with previously reported electrochemical sensing strategies for TBHQ
(Table 1), the proposed ratiometric electrochemical sensor MB@SWCNHs/T-PEDOT/GCE
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possessed a broader linear range (0.01–200.0 µg mL−1) and a lower detection limit (LOD,
0.005 µg mL−1). The wide detection range and high sensitivity of our reported method for
TBHQ shows great promise for application in food safety and environment analysis. The
excellent analytical performance for TBHQ is mainly attributed to the high conductivity
and catalytic capacity of T-PEDOT.
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ability, and (f) Stability.



Foods 2024, 13, 2996 13 of 16

Table 1. Comparisons of the different electrochemical strategies for TBHQ determination.

Modified Electrode Method Linear Range
(µg mL−1)

LOD
(µg mL−1) Refs

MIP/PdAuNPs/ERGO/GCE 1 DPV 0.5–60 0.046 [31]
Co3O4@PPy/GCE 2 DPV 0.03–100 0.008 [32]

ZnCuMg TMO/β-CD-CB/SPCE 3 DPV 2.0–20.0 0.0001 [33]
MIP/ZC/GCE 4 DPV 0.02–12.5 0.07 [34]

MB@SWCNHs/T-PEDOT/GCE DPV 0.01–0.1
0.1–200.0 0.005 This work

1 MIP/PdAuNPs/ERGO/GCE: molecularly imprinted/PdAu bimetal/electrochemical reduction graphene oxide-
modified electrode. 2 Co3O4@PPy/GCEb: core-shell Co3O4@PPy-modified electrode. 3 ZnCuMg TMO/β-CD-
CB/GCE: zinc–copper–magnesium ternary metal oxide/β-cyclodextrin-functionalized carbon black-modified
electrode. 4 MIP/ZC/GCE: molecularly imprinted/ZIF-8-derived porous carbon-modified electrode.

To precisely assess the reproducibility of the ratiometric electrochemical sensing plat-
form, a series of MB@SWCNHs/T-PEDOT/GCE-modified electrodes were meticulously
fabricated and employed for TBHQ detection at a constant concentration of 10.0 µg mL−1.
The DPV results (ITBHQ/IMB) were determined, as depicted in Figure 6c. The relative
standard deviation (RSD) of the six parallel measurements was 2.9% (n = 3), suggest-
ing that the constructed sensor possesses remarkable repeatability. Additionally, the
identical MB@SWCNHs/T-PEDOT/GCE was utilized to concurrently determine TBHQ
(10.0 µg mL−1) six times, and the calculated RSD was 1.7% (n = 6), indicating good repro-
ducibility in TBHQ quantification (Figure 6d).

During the TBHQ detection process, interference from the food matrix will affect the
redox signal. To evaluate the anti-interference ability of the method, the DPV current of this
developed MB@SWCNHs/T-PEDOT/GCE sensor was examined in the presence of various
concentrations of structural analogs, antioxidants (10.0 µg mL−1), and common metal and
acid radical ions (50.0 µg mL−1), including EGCG, BHT, Glu, HQ, PG, VE, AA, K+, Na+,
Fe3+, Cl−, SO4

2−, and CH2COO−. As shown in Figure 6e, in the presence of interferents,
the ratiometric response to TBHQ remained within 90–110% of the original value. This
indicated that the constructed ratiometric electrochemical sensing platform had good anti-
interference capability for the detection of TBHQ. After storage at room temperature for
30 days, the DPV current response of the designed ratiometric electrochemical sensor with
the same concentration of TBHQ remained at 88.7% (Figure 6f). These results underscore
the superior reproducibility, repeatability, and stability of the proposed MB@SWCNHs/T-
PEDOT/GCE sensor, demonstrating the feasibility of quantitative detection of TBHQ.

3.6. Real Sample Detection

Wafer biscuits, peanut oil, and instant noodles were deliberately spiked with three
different levels of TBHQ (0, 10, 50 µg mL−1) and analyzed to verify the applicability of
the proposed ratiometric electrochemical sensing platform. As presented in Table 2, the
recoveries of TBHQ in the three selected samples ranged from 92.2 to 103.0%, accompanied
by low RSDs (≤4.1%, n = 3). This outcome indicated that the constructed ratiometric
sensor had good accuracy and reliability for the quantitative analysis of TBHQ in complex
food matrices.

Table 2. Results of TBHQ in real samples measured by MB@SWCNHs/T-PEDOT/GCE.

Samples Spiked
(µg mL−1)

Found
(µg mL−1) Recovery (%) RSD (%, n = 3)

Wafer biscuits
0 0.29 - 4.1

10 10.06 103.0 1.5
50 49.63 98.7 1.0
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Table 2. Cont.

Samples Spiked
(µg mL−1)

Found
(µg mL−1) Recovery (%) RSD (%, n = 3)

Peanut oil
0 Not detected - -

10 9.29 92.3 1.3
50 46.11 92.2 2.5

Instant noodles
0 0.85 - 2.9

10 10.28 102.8 1.8
50 50.77 101.5 0.8

4. Conclusions

In this study, the T-PEDOT composites integrated with SWCNHs were employed to
fabricate a rapid and highly sensitive ratiometric electrochemical sensing device specifically
tailored for antioxidant TBHQ detection in food. The proposed SWCNHs/T-PEDOT-
modified GCE displayed good electrocatalytic properties for the target TBHQ, which
was mainly attributed to the remarkable synergistic effects between SWCNHs and T-
PEDOT with electrical conductivity and specific surface area. The constructed ratiometric
electrochemical sensor achieved high sensitivity and reliability in the detection of TBHQ.
After appropriate modification, this ratiometric electrochemical sensing strategy could be
applied to detect other targets with conductive properties, showing great potential for food
safety and environmental analyses.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/foods13182996/s1, Figure S1: The relationship between oxidation
peak potential and different pH; Figure S2: Influence of (a) m(T-PEDOT)/m(SWCNHs) and (b) drop
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potential and time; Figure S5: Effects of different buffers on oxidation peak currents of TBHQ.
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