Standardized Grape (Vitis vinifera L.) Extract Improves Short- and Long-Term Cognitive Performances in Healthy Older Adults: A Randomized, Double-Blind, and Placebo-Controlled Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Trial Design
2.2. Participants
2.3. Interventions and Randomization
2.4. Outcomes
2.5. Statistical Methods
3. Results
3.1. Trial Population
3.2. Selective Attention
3.3. Cognitive Function
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brookmeyer, R.; Johnson, E.; Ziegler-Graham, K.; Arrighi, H.M. Forecasting the Global Burden of Alzheimer’s Disease. Alzheimer’s Dement. 2007, 3, 186–191. [Google Scholar] [CrossRef] [PubMed]
- United Nations, Department of Economic and Social Affairs, Population Division. World Population Prospects 2019: Ten Key Findings. 2019. Available online: https://population.un.org/wpp/Publications/Files/WPP2019_Highlights.pdf (accessed on 12 August 2024).
- World Health Assembly. The Global Strategy and Action Plan on Ageing and Health 2016–2020: Towards a World in Which Everyone Can Live a Long and Healthy Life; World Health Organization: Geneva, Switzerland, 2016. [Google Scholar]
- Restani, P.; Fradera, U.; Ruf, J.-C.; Stockley, C.; Teissedre, P.-L.; Biella, S.; Colombo, F.; Lorenzo, C.D. Grapes and Their Derivatives in Modulation of Cognitive Decline: A Critical Review of Epidemiological and Randomized-Controlled Trials in Humans. Crit. Rev. Food Sci. Nutr. 2021, 61, 566–576. [Google Scholar] [CrossRef] [PubMed]
- Harada, C.N.; Natelson Love, M.C.; Triebel, K.L. Normal Cognitive Aging. Clin. Geriatr. Med. 2013, 29, 737–752. [Google Scholar] [CrossRef] [PubMed]
- Jivraj, S.; Goodman, A.; Pongiglione, B.; Ploubidis, G.B. Living Longer but Not Necessarily Healthier: The Joint Progress of Health and Mortality in the Working-Age Population of England. Popul. Stud. 2020, 74, 399–414. [Google Scholar] [CrossRef]
- Kiefte-de Jong, J.C.; Mathers, J.C.; Franco, O.H. Nutrition and Healthy Ageing: The Key Ingredients. Proc. Nutr. Soc. 2014, 73, 249–259. [Google Scholar] [CrossRef]
- Garmany, A.; Yamada, S.; Terzic, A. Longevity Leap: Mind the Healthspan Gap. NPJ Regen. Med. 2021, 6, 57. [Google Scholar] [CrossRef]
- Tuttolomondo, A.; Simonetta, I.; Daidone, M.; Mogavero, A.; Ortello, A.; Pinto, A. Metabolic and Vascular Effect of the Mediterranean Diet. Int. J. Mol. Sci. 2019, 20, 4716. [Google Scholar] [CrossRef] [PubMed]
- Gardener, H.; Wright, C.B.; Gu, Y.; Demmer, R.T.; Boden-Albala, B.; Elkind, M.S.V.; Sacco, R.L.; Scarmeas, N. Mediterranean-Style Diet and Risk of Ischemic Stroke, Myocardial Infarction, and Vascular Death: The Northern Manhattan Study. Am. J. Clin. Nutr. 2011, 94, 1458–1464. [Google Scholar] [CrossRef]
- Sofi, F.; Abbate, R.; Gensini, G.F.; Casini, A. Accruing Evidence on Benefits of Adherence to the Mediterranean Diet on Health: An Updated Systematic Review and Meta-Analysis. Am. J. Clin. Nutr. 2010, 92, 1189–1196. [Google Scholar] [CrossRef]
- Mitrou, P.N.; Kipnis, V.; Thiébaut, A.C.M.; Reedy, J.; Subar, A.F.; Wirfält, E.; Flood, A.; Mouw, T.; Hollenbeck, A.R.; Leitzmann, M.F.; et al. Mediterranean Dietary Pattern and Prediction of All-Cause Mortality in a US Population: Results from the NIH-AARP Diet and Health Study. Arch. Intern. Med. 2007, 167, 2461–2468. [Google Scholar] [CrossRef]
- Martínez-González, M.A.; de la Fuente-Arrillaga, C.; Nunez-Cordoba, J.M.; Basterra-Gortari, F.J.; Beunza, J.J.; Vazquez, Z.; Benito, S.; Tortosa, A.; Bes-Rastrollo, M. Adherence to Mediterranean Diet and Risk of Developing Diabetes: Prospective Cohort Study. BMJ 2008, 336, 1348–1351. [Google Scholar] [CrossRef] [PubMed]
- Antosh, M.; Whitaker, R.; Kroll, A.; Hosier, S.; Chang, C.; Bauer, J.; Cooper, L.; Neretti, N.; Helfand, S.L. Comparative Transcriptional Pathway Bioinformatic Analysis of Dietary Restriction, Sir2, P53 and Resveratrol Life Span Extension in Drosophila. Cell Cycle 2011, 10, 904–911. [Google Scholar] [CrossRef]
- Blagosklonny, M.V.; Campisi, J.; Sinclair, D.A. Aging: Past, Present and Future. Aging 2009, 1, 1–5. [Google Scholar] [CrossRef]
- Fontana, L.; Partridge, L.; Longo, V.D. Extending Healthy Life Span--from Yeast to Humans. Science 2010, 328, 321–326. [Google Scholar] [CrossRef]
- Gems, D.; Partridge, L. Genetics of Longevity in Model Organisms: Debates and Paradigm Shifts. Annu. Rev. Physiol. 2013, 75, 621–644. [Google Scholar] [CrossRef]
- López-Otín, C.; Blasco, M.A.; Partridge, L.; Serrano, M.; Kroemer, G. The Hallmarks of Aging. Cell 2013, 153, 1194–1217. [Google Scholar] [CrossRef] [PubMed]
- Tatar, M.; Bartke, A.; Antebi, A. The Endocrine Regulation of Aging by Insulin-like Signals. Science 2003, 299, 1346–1351. [Google Scholar] [CrossRef]
- Rajaram, S.; Jones, J.; Lee, G.J. Plant-Based Dietary Patterns, Plant Foods, and Age-Related Cognitive Decline. Adv. Nutr. 2019, 10 (Suppl. S4), S422–S436. [Google Scholar] [CrossRef] [PubMed]
- Geller, S.E.; Studee, L. Botanical and Dietary Supplements for Menopausal Symptoms: What Works, What Does Not. J. Women’s Health 2005, 14, 634–649. [Google Scholar] [CrossRef]
- Morris, M.C.; Tangney, C.C.; Wang, Y.; Sacks, F.M.; Barnes, L.L.; Bennett, D.A.; Aggarwal, N.T. MIND Diet Slows Cognitive Decline with Aging. Alzheimer’s Dement. 2015, 11, 1015–1022. [Google Scholar] [CrossRef]
- Tresserra-Rimbau, A.; Medina-Remón, A.; Pérez-Jiménez, J.; Martínez-González, M.A.; Covas, M.I.; Corella, D.; Salas-Salvadó, J.; Gómez-Gracia, E.; Lapetra, J.; Arós, F.; et al. Dietary Intake and Major Food Sources of Polyphenols in a Spanish Population at High Cardiovascular Risk: The PREDIMED Study. Nutr. Metab. Cardiovasc. Dis. 2013, 23, 953–959. [Google Scholar] [CrossRef] [PubMed]
- Budovsky, A.; Muradian, K.K.; Fraifeld, V.E. From Disease-Oriented to Aging/Longevity-Oriented Studies. Rejuven. Res. 2006, 9, 207–210. [Google Scholar] [CrossRef] [PubMed]
- Musillo, C.; Borgi, M.; Saul, N.; Möller, S.; Luyten, W.; Berry, A.; Cirulli, F. Natural Products Improve Healthspan in Aged Mice and Rats: A Systematic Review and Meta-Analysis. Neurosci. Biobehav. Rev. 2021, 121, 89–105. [Google Scholar] [CrossRef] [PubMed]
- Guilford, J.M.; Pezzuto, J.M. Wine and Health: A Review. Am. J. Enol. Vitic. 2011, 62, 471–486. [Google Scholar] [CrossRef]
- Calapai, G.; Bonina, F.; Bonina, A.; Rizza, L.; Mannucci, C.; Arcoraci, V.; Laganà, G.; Alibrandi, A.; Pollicino, C.; Inferrera, S.; et al. A Randomized, Double-Blinded, Clinical Trial on Effects of a Vitis Vinifera Extract on Cognitive Function in Healthy Older Adults. Front. Pharmacol. 2017, 8, 776. [Google Scholar] [CrossRef]
- Joseph, J.A.; Shukitt-Hale, B.; Willis, L.M. Grape Juice, Berries, and Walnuts Affect Brain Aging and Behavior. J. Nutr. 2009, 139, 1813S–18137S. [Google Scholar] [CrossRef]
- Zhou, D.-D.; Li, J.; Xiong, R.-G.; Saimaiti, A.; Huang, S.-Y.; Wu, S.-X.; Yang, Z.-J.; Shang, A.; Zhao, C.-N.; Gan, R.-Y.; et al. Bioactive Compounds, Health Benefits and Food Applications of Grape. Foods 2022, 11, 2755. [Google Scholar] [CrossRef] [PubMed]
- Haskell-Ramsay, C.F.; Stuart, R.C.; Okello, E.J.; Watson, A.W. Cognitive and Mood Improvements Following Acute Supplementation with Purple Grape Juice in Healthy Young Adults. Eur. J. Nutr. 2017, 56, 2621–2631. [Google Scholar] [CrossRef]
- Rodrigo-Gonzalo, M.J.; González-Manzano, S.; Pablos-Hernández, M.C.; Méndez-Sánchez, R.; Ayuda Duran, B.; González-Sánchez, J.; Barbero-Iglesias, F.; González-Paramás, A.M.; Recio-Rodríguez, J.I. Effects of a Raisin Supplement on Cognitive Performance, Quality of Life, and Functional Activities in Healthy Older Adults-Randomized Clinical Trial. Nutrients 2023, 15, 2811. [Google Scholar] [CrossRef]
- Shukitt-Hale, B.; Carey, A.; Simon, L.; Mark, D.A.; Joseph, J.A. Effects of Concord Grape Juice on Cognitive and Motor Deficits in Aging. Nutrition 2006, 22, 295–302. [Google Scholar] [CrossRef]
- Measso, G.; Cavarzeran, F.; Zappalà, G.; Lebowitz, B.D.; Crook, T.H.; Pirozzolo, F.J.; Amaducci, L.A.; Massari, D.; Grigoletto, F. The Mini-Mental State Examination: Normative Study of an Italian Random Sample. Dev. Neuropsychol. 1993, 9, 77–85. [Google Scholar] [CrossRef]
- Folstein, M.F.; Folstein, S.E.; McHugh, P.R. “Mini-Mental State”. A Practical Method for Grading the Cognitive State of Patients for the Clinician. J. Psychiatr. Res. 1975, 12, 189–198. [Google Scholar] [CrossRef] [PubMed]
- Dick, J.P.; Guiloff, R.J.; Stewart, A.; Blackstock, J.; Bielawska, C.; Paul, E.A.; Marsden, C.D. Mini-Mental State Examination in Neurological Patients. J. Neurol. Neurosurg. Psychiatry 1984, 47, 496–499. [Google Scholar] [CrossRef] [PubMed]
- Tombaugh, T.N.; McIntyre, N.J. The Mini-Mental State Examination: A Comprehensive Review. J. Am. Geriatr. Soc. 1992, 40, 922–935. [Google Scholar] [CrossRef]
- Chipi, E.; Fruttini, D.; Salvadori, N.; Montanucci, C.; Siena, E.; Menculini, G.; Mazzeschi, C.; Parnetti, L. Repeatable Battery for the Assessment of Neuropsychological Status: Italian Normative Data for Older Adults. Arch. Clin. Neuropsychol. 2023, 38, 72–79. [Google Scholar] [CrossRef]
- Randolph, C.; Tierney, M.C.; Mohr, E.; Chase, T.N. The Repeatable Battery for the Assessment of Neuropsychological Status (RBANS): Preliminary Clinical Validity. J. Clin. Exp. Neuropsychol. 1998, 20, 310–319. [Google Scholar] [CrossRef]
- McKay, C.; Wertheimer, J.C.; Fichtenberg, N.L.; Casey, J.E. The Repeatable Battery for the Assessment of Neuropsychological Status (RBANS): Clinical Utility in a Traumatic Brain Injury Sample. Clin. Neuropsychol. 2008, 22, 228–241. [Google Scholar] [CrossRef] [PubMed]
- Mondini, S.; Mapelli, D.; Vestri, A.; Arcara, G.; Bisiacchi, P.S. Esame neuropsicologico breve 2. In Una Batteria di Test per lo Screening Neuropsicologico; Raffello Cortina Editore: Milano, Italy, 2011. [Google Scholar]
- Mapelli, D.; Bardi, L.; Mojoli, M.; Volpe, B.; Gerosa, G.; Amodio, P.; Daliento, L. Neuropsychological Profile in a Large Group of Heart Transplant Candidates. PLoS ONE 2011, 6, e28313. [Google Scholar] [CrossRef]
- Stoppa, E.; Biancardi, A. Il test delle Campanelle Modificato: Una proposta per lo studio dell’attenzione in età evolutiva. Psich. Inf. Adolesc. 1997, 64, 73–84. [Google Scholar]
- Gauthier, L.; Dehaut, F.; Joanette, Y. The Bells Test: A Quantitative and Qualitative Test for Visual Neglect. Int. J. Clin. Neuropsychol. 1989, 11, 49–54. [Google Scholar]
- Alharbi, M.H.; Lamport, D.J.; Dodd, G.F.; Saunders, C.; Harkness, L.; Butler, L.T.; Spencer, J.P.E. Flavonoid-Rich Orange Juice Is Associated with Acute Improvements in Cognitive Function in Healthy Middle-Aged Males. Eur. J. Nutr. 2016, 55, 2021–2029. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Torosyan, N.; Silverman, D.H. Examining the Impact of Grape Consumption on Brain Metabolism and Cognitive Function in Patients with Mild Decline in Cognition: A Double-Blinded Placebo Controlled Pilot Study. Exp. Gerontol. 2017, 87 Pt A, 121–128. [Google Scholar] [CrossRef]
- Evans, H.M.; Howe, P.R.C.; Wong, R.H.X. Effects of Resveratrol on Cognitive Performance, Mood and Cerebrovascular Function in Post-Menopausal Women; A 14-Week Randomised Placebo-Controlled Intervention Trial. Nutrients 2017, 9, 27. [Google Scholar] [CrossRef] [PubMed]
- Ide, K.; Yamada, H.; Takuma, N.; Kawasaki, Y.; Harada, S.; Nakase, J.; Ukawa, Y.; Sagesaka, Y.M. Effects of Green Tea Consumption on Cognitive Dysfunction in an Elderly Population: A Randomized Placebo-Controlled Study. Nutr. J. 2016, 15, 49. [Google Scholar] [CrossRef]
- Anton, S.D.; Ebner, N.; Dzierzewski, J.M.; Zlatar, Z.Z.; Gurka, M.J.; Dotson, V.M.; Kirton, J.; Mankowski, R.T.; Marsiske, M.; Manini, T.M. Effects of 90 Days of Resveratrol Supplementation on Cognitive Function in Elders: A Pilot Study. J. Altern. Complement. Med. 2018, 24, 725–732. [Google Scholar] [CrossRef] [PubMed]
- Basaria, S.; Wisniewski, A.; Dupree, K.; Bruno, T.; Song, M.-Y.; Yao, F.; Ojumu, A.; John, M.; Dobs, A.S. Effect of High-Dose Isoflavones on Cognition, Quality of Life, Androgens, and Lipoprotein in Post-Menopausal Women. J. Endocrinol. Investig. 2009, 32, 150–155. [Google Scholar] [CrossRef]
- Miller, M.G.; Hamilton, D.A.; Joseph, J.A.; Shukitt-Hale, B. Dietary Blueberry Improves Cognition among Older Adults in a Randomized, Double-Blind, Placebo-Controlled Trial. Eur. J. Nutr. 2018, 57, 1169–1180. [Google Scholar] [CrossRef] [PubMed]
- McNamara, R.K.; Kalt, W.; Shidler, M.D.; McDonald, J.; Summer, S.S.; Stein, A.L.; Stover, A.N.; Krikorian, R. Cognitive Response to Fish Oil, Blueberry, and Combined Supplementation in Older Adults with Subjective Cognitive Impairment. Neurobiol. Aging 2018, 64, 147–156. [Google Scholar] [CrossRef]
- Moher, D.; Hopewell, S.; Schulz, K.F.; Montori, V.; Gøtzsche, P.C.; Devereaux, P.J.; Elbourne, D.; Egger, M.; Altman, D.G. CONSORT 2010 Explanation and Elaboration: Updated Guidelines for Reporting Parallel Group Randomised Trials. BMJ 2010, 340, c869. [Google Scholar] [CrossRef]
- Ruan, W.; Shen, S.; Xu, Y.; Ran, N.; Zhang, H. Mechanistic Insights into Procyanidins as Therapies for Alzheimer’s Disease: A Review. J. Funct. Foods 2021, 86, 104683. [Google Scholar] [CrossRef]
- Salehi, B.; Sharifi-Rad, J.; Cappellini, F.; Reiner, Ž.; Zorzan, D.; Imran, M.; Sener, B.; Kilic, M.; El-Shazly, M.; Fahmy, N.M.; et al. The Therapeutic Potential of Anthocyanins: Current Approaches Based on Their Molecular Mechanism of Action. Front. Pharmacol. 2020, 11, 1300. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.; Simon, J.E.; Wu, Q. A Critical Review on Grape Polyphenols for Neuroprotection: Strategies to Enhance Bioefficacy. Crit. Rev. Food Sci. Nutr. 2020, 60, 597–625. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Wang, Y.; Li, D.; Ho, C.-T.; Li, J.; Wan, X. The Absorption, Distribution, Metabolism and Excretion of Procyanidins. Food Funct. 2016, 7, 1273–1281. [Google Scholar] [CrossRef] [PubMed]
- Kent, K.; Charlton, K.E.; Netzel, M.; Fanning, K. Food-Based Anthocyanin Intake and Cognitive Outcomes in Human Intervention Trials: A Systematic Review. J. Hum. Nutr. Diet 2017, 30, 260–274. [Google Scholar] [CrossRef]
Active (n = 48) | Placebo (n = 48) | p-Value | |
---|---|---|---|
Sex | |||
Male | 16 (33.3%) | 17 (35.4%) | n.a. |
Female | 32 (66.7%) | 31 (64.6%) | n.a. |
Age | 60.7 ± 0.7 [min 56; max 72] | 60.1 ± 0.7 [min 56; max 74] | 0.5345 |
Cognitive function | |||
MMSE | 27.0 ± 0.2 | 27.5 ± 0.2 | n.d. |
RBANS | 93.1 ± 1.4 | 94.0 ± 1.7 | n.d. |
ENB-2 | 74.6 ± 0.9 | 76.1 ± 1.1 | n.d. |
Selective attention | |||
MBT | 28.8 ± 0.3 | 30.2 ± 0.2 | n.d. |
Active (n = 48) | Placebo (n = 48) | |
---|---|---|
D0 | 28.8 ± 0.3 a | 30.2 ± 0.2 a |
D0+90 min | 31.8 ± 0.2 (+8.8% b) | 31.9 ± 0.2 (4.9%) |
Active (n = 44) | Placebo (n = 44) | |||||||
---|---|---|---|---|---|---|---|---|
D0 | D14 | D28 | D84 | D0 | D14 | D28 | D84 | |
Immediate memory | 86.7 ± 3.1 | 92.8 ± 3.1 * | 94.5 ± 3.2 * | 93.8 ± 3.2 * | 89.5 ± 3.2 | 86.1 ± 3.0 | 82.6 ± 3.4 | 87.8 ± 3.2 |
(+11.2%) | (+16.0% *) | (+12.8% *) | (+2.4%) | (+1.5%) | (+4.5%) | |||
Visuospatial/constructional abilities | 83.2 ± 3.2 | 84.6 ± 3.7 | 92.6 ± 3.2 * | 102.1 ± 3.2 *** | 89.2 ± 3.0 | 89.0 ± 3.5 | 89.1 ± 3.3 | 90.3 ± 2.9 |
(+8.4%) | (+18.1%) | (+30.2% ***) | (+4.1%) | (+4.1%) | (+5.3%) | |||
Language | 78.5 ± 3.6 | 85.8 ± 3.8 | 89.6 ± 3.0 ** | 93.4 ± 3.6 *** | 87.8 ± 3.4 | 88.8 ± 2.8 | 91.7 ± 3.4 | 91.3 ± 3.4 |
(+20.4%) | (+24.2%) | (+27.3% *) | (+7.8%) | (+7.9%) | (+7.6%) | |||
Attention | 85.3 ± 3.4 | 92.4 ± 3.5 | 93.2 ± 3.2 * | 103.6 ± 3.0 *** | 93.3 ± 3.4 | 92.5 ± 3.6 | 97.7 ± 3.5 | 91.0 ± 3.0 |
(+15.6%) | (+15.9%) | (+28.3% ***) | (+6.0%) | (+11.8%) | (+1.5%) | |||
Delayed memory | 135.8 ± 1.3 | 136.1 ± 1.4 | 135.6 ± 1.0 | 138.9 ± 1.2 * | 135.8 ± 1.5 | 133.6 ± 1.7 | 132.8 ± 2.0 | 134.8 ± 1.7 |
(+0.5%) | (+0.2%) | (+2.5% *) | (−1.3%) | (−2.0%) | (−0.6%) |
Active (n = 48) | Placebo (n = 48) | |||||||
---|---|---|---|---|---|---|---|---|
D0 | D14 | D28 | D84 | D0 | D14 | D28 | D84 | |
01 Digit span | 5.5 ± 0.2 | 5.9 ± 0.1 | 6.3 ± 0.1 *** | 6.7 ± 0.1 *** | 5.9 ± 0.2 | 5.9 ± 0.1 | 6.1 ± 0.2 | 6.2 ± 0.2 |
(+22.9% **) | (+31.0% **) | (+40.9% ***) | (−1.0%) | (+3.4%) | (+4.9%) | |||
02 Im. rec. pr. mem. | 19.6 ± 0.5 | 20.9 ± 0.4 | 22.2 ± 0.4 *** | 23.3 ± 0.4 *** | 20.8 ± 0.5 | 21.1 ± 0.5 | 21.9 ± 0.5 | 22.1 ±0.6 |
(+15.2% *) | (+22.6% *) | (+29.2% **) | (+1.3%) | (+5.5%) | (+6.6%) | |||
03 Del. rec. pr. mem. | 20.0 ± 0.5 | 20.9 ± 0.4 | 22.3 ± 0.5 ** | 23.4 ± 0.4 *** | 20.8 ± 0.6 | 21.4 ± 0.6 | 21.9 ± 0.5 | 22.2 ± 0.6 |
(+9.5%) | (+16.5% *) | (+23.0% **) | (+2.8%) | (+5.8%) | (+7.5%) | |||
04 Interf. mem. @10 s | 6.6 ± 0.2 | 6.8 ± 0.1 | 7.2 ± 0.2 * | 7.6 ± 0.1 *** | 6.8 ± 0.2 | 6.9 ± 0.2 | 7.1 ± 0.2 | 7.2 ± 0.2 |
(+5.6%) | (+11.5%) | (+17.4% **) | (+1.5%) | (+4.9%) | (+5.8%) | |||
05 Interf. mem. @30 s | 6.5 ± 0.1 | 6.9 ± 0.1 | 7.3 ± 0.2 ** | 7.6 ± 0.1 *** | 6.8 ± 0.2 | 6.9 ± 0.2 | 7.1 ± 0.2 | 7.2 ± 0.2 |
(+6.9%) | (+14.0% *) | (+18.6% **) | (+1.3%) | (+4.9%) | (+6.9%) | |||
06 Trial mak. test A | 55.4 ± 1.6 | 51.6 ± 1.3 | 47.8 ± 1.4 *** | 42.8 ± 1.3 *** | 55.4 ± 1.9 | 51.5 ± 1.9 | 47.8 ± 1.8 * | 43.2 ± 1.8 *** |
(−6.3%) | (−13.3%) | (−22.3%) | (−7.2%) | (−13.9%) | (−22.5%) | |||
07 Trial mak. test B | 110.5 ± 2.8 | 103.9 ± 2.5 | 96.6 ± 2.5 *** | 89.7 ± 2.1 *** | 109.9 ± 3.1 | 103.2 ± 2.8 | 97.4 ± 2.6 ** | 90.2 ± 2.4 *** |
(−5.7%) | (−12.2%) | (−18.2%) | (−5.8%) | (−10.9%) | (−17.3%) | |||
08 Token test | 3.6 ± 0.1 | 3.8 ± 0.1 | 3.9 ± 0.1 | 4.3 ± 0.1 *** | 3.7 ± 0.1 | 3.8 ± 0.1 | 4.0 ± 0.1 | 4.0 ± 0.1 |
(+3.8%) | (+8.8%) | (+19.2%) | (+3.5%) | (+10.8%) | (+11.3%) | |||
09 Word ph. fluency | 7.6 ± 0.2 | 7.8 ± 0.2 | 8.3 ± 0.2 | 8.7 ± 0.2 ** | 7.7 ± 0.2 | 7.9 ± 0.2 | 8.1 ± 0.2 | 8.2 ± 0.2 |
(+2.7%) | (+8.5%) | (+14.8% **) | (+2.7%) | (+5.1%) | (+6.7%) | |||
10 Abs. reas. test | 4.6 ± 0.1 | 4.7 ± 0.1 | 4.9 ± 0.1 | 5.1 ± 0.1 | 4.5 ± 0.1 | 4.7 ± 0.1 | 4.8 ± 0.1 | 4.9 ± 0.1 |
(+2.3%) | (+7.8%) | (+11.7%) | (+4.3%) | (+9.4%) | (+11.6%) | |||
11 Cogn. est. test | 3.7 ± 0.1 | 3.8 ± 0.1 | 4.0 ± 0.1 | 4.2 ± 0.1 * | 3.7 ± 0.1 | 3.9 ± 0.1 | 4.0 ± 0.1 | 4.1 ± 0.1 |
(+3.3%) | (+9.5%) | (+16.0%) | (+4.5%) | (+6.8%) | (+10.3%) | |||
12 Test of ov. fig. | 24.0 ± 0.8 | 24.5 ± 0.8 | 25.6 ± 0.9 | 27.0 ± 0.7 | 24.5 ± 0.7 | 24.6 ± 0.8 | 25.6 ± 0.8 | 25.5 ± 0.7 |
(+1.7%) | (+6.6%) | (+13.2% ***) | (+0.8%) | (+4.8%) | (+4.7%) | |||
13 Spont. draw. test | 1.3 ± 0.1 | 1.5 ± 0.1 | 1.7 ± 0.1 ** | 1.9 ± 0.1 *** | 1.5 ± 0.1 | 1.5 ± 0.1 | 1.6 ± 0.1 | 1.6 ± 0.1 |
(+15.6%) | (+40.6% *) | (+56.8% ***) | (+9.4%) | (+20.8%) | (+20.8%) | |||
14 Copy draw. test | 1.3 ± 0.1 | 1.6 ± 0.1 * | 1.8 ± 0.1 *** | 1.9 ± 0.1*** | 1.4 ± 0.1 | 1.5 ± 0.1 | 1.7 ± 0.1 | 1.6 ± 0.1 |
(+28.8% *) | (+46.5% *) | (+55.9% **) | (+9.0%) | (+23.6%) | (+22.6%) | |||
15 Clock draw. test | 8.0 ± 0.3 | 8.1 ± 0.3 | 8.6 ± 0.4 | 9.1 ± 0.4 | 7.9 ± 0.3 | 8.2 ± 0.3 | 8.4 ± 0.3 | 8.5 ± 0.3 |
(+1.1%) | (+7.3%) | (+14.2% **) | (+3.6%) | (+5.7%) | (+7.5%) | |||
16 Praxis test | 4.9 ± 0.2 | 5.0 ± 0.2 | 5.3 ± 0.2 | 5.5 ± 0.3 | 4.9 ± 0.2 | 5.0 ± 0.2 | 5.2 ± 0.2 | 5.1 ± 0.2 |
(+2.0%) | (+7.9%) | (+11.3% *) | (+1.6%) | (+6.9%) | (+5.9%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amone, F.; Spina, A.; Perri, A.; Lofaro, D.; Zaccaria, V.; Insolia, V.; Lirangi, C.; Puoci, F.; Nobile, V. Standardized Grape (Vitis vinifera L.) Extract Improves Short- and Long-Term Cognitive Performances in Healthy Older Adults: A Randomized, Double-Blind, and Placebo-Controlled Trial. Foods 2024, 13, 2999. https://doi.org/10.3390/foods13182999
Amone F, Spina A, Perri A, Lofaro D, Zaccaria V, Insolia V, Lirangi C, Puoci F, Nobile V. Standardized Grape (Vitis vinifera L.) Extract Improves Short- and Long-Term Cognitive Performances in Healthy Older Adults: A Randomized, Double-Blind, and Placebo-Controlled Trial. Foods. 2024; 13(18):2999. https://doi.org/10.3390/foods13182999
Chicago/Turabian StyleAmone, Fabio, Amelia Spina, Anna Perri, Danilo Lofaro, Vincenzo Zaccaria, Violetta Insolia, Chiara Lirangi, Francesco Puoci, and Vincenzo Nobile. 2024. "Standardized Grape (Vitis vinifera L.) Extract Improves Short- and Long-Term Cognitive Performances in Healthy Older Adults: A Randomized, Double-Blind, and Placebo-Controlled Trial" Foods 13, no. 18: 2999. https://doi.org/10.3390/foods13182999
APA StyleAmone, F., Spina, A., Perri, A., Lofaro, D., Zaccaria, V., Insolia, V., Lirangi, C., Puoci, F., & Nobile, V. (2024). Standardized Grape (Vitis vinifera L.) Extract Improves Short- and Long-Term Cognitive Performances in Healthy Older Adults: A Randomized, Double-Blind, and Placebo-Controlled Trial. Foods, 13(18), 2999. https://doi.org/10.3390/foods13182999