Unveiling the Nutritional Profile and Safety of Coffee Pulp as a First Step in Its Valorization Strategy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Nutritional and Chemical Composition
2.3. Amino Acid Composition
2.3.1. Amino Acid Extraction
2.3.2. Amino Acid Analysis
2.3.3. Estimation of Protein Quality
2.4. Elemental Composition
2.4.1. Digestion Treatment
2.4.2. Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) Analysis
2.5. Phytochemical Profile Analysis
2.5.1. Extraction
2.5.2. HPLC-DAD-ESI/MSn Analysis of Phenolic Compounds and Methylxanthines
2.6. Toxicity Assays in Experimental Animals
2.6.1. Preparation of the CPF and CPE Supplementation Animal Assay
2.6.2. Acute Toxicity and Sub-Chronic Toxicity Tests
2.7. Statistical Analysis
3. Results
3.1. Proximate Analysis Showed High-Fiber Content and Nutritional Potential of CPF and CPE
3.2. CPF Exhibited a Superior Amino Acid Profile and Protein Quality Compared to CPE
3.3. CPF and CPE Revealed a Rich Mineral Composition and a Safety Profile Adverse Minerals
3.4. CPE Exhibited a Higher Concentration of (Poly)phenols and Caffeine than CPF
3.5. CPF and CPE Showed No Toxic Effects in Acute and Sub-Chronic Toxicity Studies
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ico, T.; Indicator, C.; Milds, T.C.M.; York, N.; Futures, L.; York, T.N.; Milds, O.; Naturals, B.; Milds, C.; America, S.; et al. Colombian Milds-Other Milds Differential Tightens, I-CIP Averages. 2023, pp. 1–11. Available online: https://icocoffee.org/documents/cy2022-23/cmr-0323-e.pdf (accessed on 19 July 2024).
- Sangta, J.; Wongkaew, M.; Tangpao, T.; Withee, P.; Haituk, S.; Arjin, C.; Sringarm, K.; Hongsibsong, S.; Sutan, K.; Pusadee, T.; et al. Recovery of polyphenolic fraction from arabica coffee pulp and its antifungal applications. Plants 2021, 10, 1422. [Google Scholar] [CrossRef] [PubMed]
- Hall, R.D.; Trevisan, F.; de Vos, R.C.H. Coffee berry and green bean chemistry—Opportunities for improving cup quality and crop circularity. Food Res. Int. 2022, 151, 110825. [Google Scholar] [CrossRef]
- Klingel, T.; Kremer, J.I.; Gottstein, V.; Rajcic de Rezende, T.; Schwarz, S.; Lachenmeier, D.W. A Review of Coffee By-Products Including Leaf, Flower, Cherry, Husk, Silver Skin, and Spent Grounds as Novel Foods within the European Union. Foods 2020, 9, 665. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.; Gil-Ramírez, A.; Martín-Trueba, M.; Benítez, V.; Aguilera, Y.; Martín-Cabrejas, M.A. Valorization of coffee pulp as bioactive food ingredient by sustainable extraction methodologies. Curr. Res. Food Sci. 2023, 6, 100475. [Google Scholar] [CrossRef] [PubMed]
- Carmen, M.T.; Lorena, Z.C.; Alexander, V.A.; Amandio, V.; Raúl, S. Coffee pulp: An industrial by-product with uses in agriculture, nutrition and biotechnology. Rev. Agric. Sci. 2020, 8, 323–342. [Google Scholar] [CrossRef] [PubMed]
- Bhandarkar, N.S.; Mouatt, P.; Majzoub, M.E.; Thomas, T.; Brown, L.; Panchal, S.K. Coffee pulp, a by-product of coffee production, modulates gut microbiota and improves metabolic syndrome in high-carbohydrate, high-fat diet-fed rats. Pathogens 2021, 10, 1369. [Google Scholar] [CrossRef]
- Getachew, M.T.; Hiruy, A.M.; Mazharuddin, M.M.; Mamo, T.T.; Feseha, T.A.; Mekonnen, Y.S. Effect of chemical and biological additives on production of biogas from coffee pulp silage. Sci. Rep. 2023, 13, 12199. [Google Scholar] [CrossRef]
- Cañas, S.; Rebollo-Hernanz, M.; Braojos, C.; Benítez, V.; Ferreras-Charro, R.; Dueñas, M.; Aguilera, Y.; Martín-Cabrejas, M.A. Understanding the Gastrointestinal Behavior of the Coffee Pulp Phenolic Compounds under Simulated Conditions. Antioxidants 2022, 11, 1818. [Google Scholar] [CrossRef]
- Rebollo-Hernanz, M.; Zhang, Q.; Aguilera, Y.; Martín-Cabrejas, M.A.; Gonzalez de Mejia, E. Phenolic compounds from coffee by-products modulate adipogenesis-related inflammation, mitochondrial dysfunction, and insulin resistance in adipocytes, via insulin/PI3K/AKT signaling pathways. Food Chem. Toxicol. 2019, 132, 110672. [Google Scholar] [CrossRef]
- Rebollo-Hernanz, M.; Aguilera, Y.; Martín-Cabrejas, M.A.; Gonzalez de Mejia, E. Activating Effects of the Bioactive Compounds From Coffee By-Products on FGF21 Signaling Modulate Hepatic Mitochondrial Bioenergetics and Energy Metabolism in vitro. Front. Nutr. 2022, 9, 866233. [Google Scholar] [CrossRef]
- Iriondo-DeHond, A.; Aparicio García, N.; Fernandez-Gomez, B.; Guisantes-Batan, E.; Velázquez Escobar, F.; Blanch, G.P.; San Andres, M.I.; Sanchez-Fortun, S.; del Castillo, M.D. Validation of coffee by-products as novel food ingredients. Innov. Food Sci. Emerg. Technol. 2019, 51, 194–204. [Google Scholar] [CrossRef]
- Turck, D.; Bohn, T.; Castenmiller, J.; De Henauw, S.; Hirsch-Ernst, K.I.; Maciuk, A.; Mangelsdorf, I.; McArdle, H.J.; Naska, A.; Pelaez, C.; et al. Safety of dried coffee husk (cascara) from Coffea arabica L. as a Novel food pursuant to Regulation (EU) 2015/2283. EFSA J. 2022, 20, e07085. [Google Scholar] [CrossRef]
- Eckhardt, S.; Franke, H.; Schwarz, S.; Lachenmeier, D.W. Risk Assessment of Coffee Cherry (Cascara) Fruit Products for Flour Replacement and Other Alternative Food Uses. Molecules 2022, 27, 8435. [Google Scholar] [CrossRef] [PubMed]
- Várady, M.; Ślusarczyk, S.; Boržíkova, J.; Hanková, K.; Vieriková, M.; Marcinčák, S.; Popelka, P. Heavy-Metal Contents and the Impact of Roasting on Polyphenols, Caffeine, and Acrylamide in Specialty Coffee Beans. Foods 2021, 10, 1310. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.G.; Cho, E.J.; Maskey, S.; Nguyen, D.T.; Bae, H.J. Value-Added Products from Coffee Waste: A Review. Molecules 2023, 28, 3562. [Google Scholar] [CrossRef] [PubMed]
- Rebollo-Hernanz, M.; Aguilera, Y.; Gil-Ramírez, A.; Benítez, V.; Cañas, S.; Braojos, C.; Martin-Cabrejas, M.A. Biorefinery and Stepwise Strategies for Valorizing Coffee By-Products as Bioactive Food Ingredients and Nutraceuticals. Appl. Sci. 2023, 13, 8326. [Google Scholar] [CrossRef]
- Rebollo-Hernanz, M.; Cañas, S.; Taladrid, D.; Benítez, V.; Bartolomé, B.; Aguilera, Y.; Martín-Cabrejas, M.A.; Rebollo-Hernanz, M.; Cañas, S.; Taladrid, D.; et al. Revalorization of coffee husk: Modeling and optimizing the green sustainable extraction of phenolic compounds. Foods 2021, 10, 653. [Google Scholar] [CrossRef]
- Official Methods of Analysis of AOAC International, 16th ed.; Association of Official Analytical Chemists: Rockville, MD, USA, 1995; Volume 52.
- Benítez, V.; Rebollo-Hernanz, M.; Braojos, C.; Cañas, S.; Gil-Ramírez, A.; Aguilera, Y.; Martín-Cabrejas, M.A. Changes in the cocoa shell dietary fiber and phenolic compounds after extrusion determine its functional and physiological properties. Curr. Res. Food Sci. 2023, 6, 100516. [Google Scholar] [CrossRef]
- Machado, M.; Machado, S.; Pimentel, F.B.; Freitas, V.; Alves, R.C.; Oliveira, M.B.P.P. Amino Acid Profile and Protein Quality Assessment of Macroalgae Produced in an Integrated Multi-Trophic Aquaculture System. Foods 2020, 9, 1382. [Google Scholar] [CrossRef]
- Hacham, Y.; Avraham, T.; Amir, R. The N-terminal region of Arabidopsis cystathionine γ-synthase plays an important regulatory role in methionine metabolism. Plant Physiol. 2002, 128, 454–462. [Google Scholar] [CrossRef]
- Quaresma, M.A.G.; Pereira, G.; Nunes, M.L.; Sponda, C.; Jardim, A.; Gonçalves, H.; Santos, C.; Roseiro, L.C. Evaluating dried salted cod amino acid signature for nutritional quality assessment and discriminant analysis. Front. Nutr. 2023, 10, 1144713. [Google Scholar] [CrossRef] [PubMed]
- WHO/FAO/UNU Expert Consultation. Protein and amino acid requirements in human nutrition. World Health Organ. Tech. Rep. Ser. 2007, 935, 1–265. [Google Scholar]
- Rebollo-Hernanz, M.; Cañas, S.; Taladrid, D.; Segovia, Á.; Bartolomé, B.; Aguilera, Y.; Martín-Cabrejas, M.A. Extraction of phenolic compounds from cocoa shell: Modeling using response surface methodology and artificial neural networks. Sep. Purif. Technol. 2021, 270, 118779. [Google Scholar] [CrossRef]
- Ruvira, S.; Rodríguez-Rodríguez, P.; Cañas, S.; Ramiro-Cortijo, D.; Aguilera, Y.; Muñoz-Valverde, D.; Arribas, S.M. Evaluation of Parameters Which Influence Voluntary Ingestion of Supplements in Rats. Animals 2023, 13, 1827. [Google Scholar] [CrossRef] [PubMed]
- Duangjai, A.; Suphrom, N.; Wungrath, J.; Ontawong, A.; Nuengchamnong, N.; Yosboonruang, A. Comparison of antioxidant, antimicrobial activities and chemical profiles of three coffee (Coffea arabica L.) pulp aqueous extracts. Integr. Med. Res. 2016, 5, 324–331. [Google Scholar] [CrossRef]
- Bondam, A.F.; Diolinda da Silveira, D.; Pozzada dos Santos, J.; Hoffmann, J.F. Phenolic compounds from coffee by-products: Extraction and application in the food and pharmaceutical industries. Trends Food Sci. Technol. 2022, 123, 172–186. [Google Scholar] [CrossRef]
- Bader Ul Ain, H.; Saeed, F.; Ahmed, A.; Asif Khan, M.; Niaz, B.; Tufail, T. Improving the physicochemical properties of partially enhanced soluble dietary fiber through innovative techniques: A coherent review. J. Food Process. Preserv. 2019, 43, e13917. [Google Scholar] [CrossRef]
- Angulo-López, J.E.; Flores-Gallegos, A.C.; Ascacio-Valdes, J.A.; Contreras Esquivel, J.C.; Torres-León, C.; Rúelas-Chácon, X.; Aguilar, C.N. Antioxidant Dietary Fiber Sourced from Agroindustrial Byproducts and Its Applications. Foods 2023, 12, 159. [Google Scholar] [CrossRef]
- European Parliament & Council Regulation (EC) 1924/2006 on nutrition and health claims made on foods. Off. J. Eur. Communities 2006, L404, 1–15.
- Machado, M.; Ferreira, H.; Oliveira, M.B.P.P.; Alves, R.C.; Machado, M.; Ferreira, H.; Oliveira, M.B.P.P.; Alves, R.C. Coffee by-products: An underexplored source of prebiotic ingredients. Crit. Rev. Food Sci. Nutr. 2023, 64, 7181–7200. [Google Scholar] [CrossRef]
- Rosas-Sánchez, G.A.; Hernández-Estrada, Z.J.; Suárez-Quiroz, M.L.; González-Ríos, O.; Rayas-Duarte, P. Article coffee cherry pulp by-product as a potential fiber source for bread production: A fundamental and empirical rheological approach. Foods 2021, 10, 742. [Google Scholar] [CrossRef] [PubMed]
- Machado, M.; Espírito Santo, L.; Machado, S.; Lobo, J.C.; Costa, A.S.G.; Oliveira, M.B.P.P.; Ferreira, H.; Alves, R.C. Bioactive Potential and Chemical Composition of Coffee By-Products: From Pulp to Silverskin. Foods 2023, 12, 2354. [Google Scholar] [CrossRef] [PubMed]
- Patil, S.; Pimpley, V.; Warudkar, K.; Murthy, P.S. Valorisation of Coffee Pulp for Development of Innovative Probiotic Beverage Using Kefir: Physicochemical, Antioxidant, Sensory Analysis and Shelf Life Studies. Waste Biomass Valorization 2022, 13, 905–916. [Google Scholar] [CrossRef]
- Grossmann, L.; McClements, D.J. Current insights into protein solubility: A review of its importance for alternative proteins. Food Hydrocoll. 2023, 137, 108416. [Google Scholar] [CrossRef]
- Penaloza, W.; Molina, M.R.; Gomez Brenes, R.; Bressani, R. Solid-state fermentation: An alternative to improve the nutritive value of coffee pulp. Appl. Environ. Microbiol. 1985, 49, 388–393. [Google Scholar] [CrossRef]
- Machado, S.; Costa, A.S.G.; Pimentel, B.F.; Oliveira, M.B.P.P.; Alves, R.C. A study on the protein fraction of coffee silverskin: Protein/non-protein nitrogen and free and total amino acid profiles. Food Chem. 2020, 326, 126940. [Google Scholar] [CrossRef]
- Campos-Vega, R.; Loarca-Piña, G.; Vergara-Castañeda, H.; Oomah, B.D. Spent coffee grounds: A review on current research and future prospects. Trends Food Sci. Technol. 2015, 45, 24–36. [Google Scholar] [CrossRef]
- Körner, P. Hydrothermal Degradation of Amino Acids. ChemSusChem 2021, 14, 4947–4957. [Google Scholar] [CrossRef]
- Wen, L.; Álvarez, C.; Zhang, Z.; Poojary, M.M.; Lund, M.N.; Sun, D.W.; Tiwari, B.K. Optimisation and characterisation of protein extraction from coffee silverskin assisted by ultrasound or microwave techniques. Biomass Convers. Biorefin. 2021, 11, 1575–1585. [Google Scholar] [CrossRef]
- Dong, W.; Tan, L.; Zhao, J.; Hu, R.; Lu, M. Characterization of fatty acid, amino acid and volatile compound compositions and bioactive components of seven coffee (Coffea robusta) cultivars grown in Hainan Province, China. Molecules 2015, 20, 16687–16708. [Google Scholar] [CrossRef]
- van Gassel, R.J.; Weijzen, M.E.; Kouw, I.W.; Senden, J.M.; Wodzig, W.K.; Olde Damink, S.W.; van de Poll, M.C.; van Loon, L.J. Administration of Free Amino Acids Improves Exogenous Amino Acid Availability when Compared with Intact Protein in Critically Ill Patients: A Randomized Controlled Study. J. Nutr. 2024, 154, 554–564. [Google Scholar] [CrossRef] [PubMed]
- Prandi, B.; Ferri, M.; Monari, S.; Zurlini, C.; Cigognini, I.; Verstringe, S.; Schaller, D.; Walter, M.; Navarini, L.; Tassoni, A.; et al. Extraction and Chemical Characterization of Functional Phenols and Proteins from Coffee (Coffea arabica) By-Products. Biomolecules 2021, 11, 1571. [Google Scholar] [CrossRef] [PubMed]
- Holeček, M. Branched-chain amino acids in health and disease: Metabolism, alterations in blood plasma, and as supplements. Nutr. Metab. 2018, 15, 33. [Google Scholar] [CrossRef] [PubMed]
- Jiamjariyatam, R.; Samosorn, S.; Dolsophon, K.; Tantayotai, P.; Lorliam, W.; Krajangsang, S. Effects of drying processes on the quality of coffee pulp. J. Food Process. Preserv. 2022, 46, e16876. [Google Scholar] [CrossRef]
- Zoca, S.M.; Penn, C.J.; Rosolem, C.A.; Alves, A.R.; Neto, L.O.; Martins, M.M. Coffee processing residues as a soil potassium amendment. Int. J. Recycl. Org. Waste Agric. 2014, 3, 155–165. [Google Scholar] [CrossRef]
- Farag, M.A.; Abib, B.; Qin, Z.; Ze, X.; Ali, S.E. Dietary macrominerals: Updated review of their role and orchestration in human nutrition throughout the life cycle with sex differences. Curr. Res. Food Sci. 2023, 6, 100450. [Google Scholar] [CrossRef]
- National Institutes of Health; Office of Dietary Supplements. List of Dietary Supplements Fact Sheets (2021–2023 Update). Available online: https://ods.od.nih.gov/factsheets/list-all/ (accessed on 19 July 2024).
- Omer, E.O.M.; Labib, O.A.; Zafar, M. Physicochemical Parameters and Toxic Heavy Metals Concentration in Coffee. Asian J. Appl. Chem. Res. 2019, 24, 25. [Google Scholar] [CrossRef]
- European Commission Commission Regulation (EU) 2023/915 of 25 April 2023 on maximum levels for certain contaminants in food and repealing Regulation (EC) No 1881/2006. Off. J. Eur. Union 2023, 119, 103–157.
- Schrenk, D.; Bignami, M.; Bodin, L.; Chipman, J.K.; del Mazo, J.; Grasl-Kraupp, B.; Hogstrand, C.; Hoogenboom, L.; Leblanc, J.C.; Nebbia, C.S.; et al. Update of the risk assessment of inorganic arsenic in food. EFSA J. 2024, 22, e8488. [Google Scholar] [CrossRef]
- European Food Safety Authority. Cadmium dietary exposure in the European population. EFSA J. 2012, 10, 2551–2588. [Google Scholar] [CrossRef]
- Chen, F.; Ma, J.; Akhtar, S.; Khan, Z.I.; Ahmad, K.; Ashfaq, A.; Nawaz, H.; Nadeem, M. Assessment of chromium toxicity and potential health implications of agriculturally diversely irrigated food crops in the semi-arid regions of South Asia. Agric. Water Manag. 2022, 272, 107833. [Google Scholar] [CrossRef]
- Dubale, W. Levels of Essential and Non-Essential Metals in Coffee Beans and Soils of the Three Major Coffee Producing Woredas of Gedeo Zone. Anal. Chem. Indian J. 2021, 21, 156. [Google Scholar]
- EFSA CONTAM Panel. Scientific Opinion on the risks to public health related to the presence of chromium in food and drinking water. EFSA J. 2014, 12, 3595–3856. [Google Scholar] [CrossRef]
- Adler, G.; Nȩdzarek, A.; Tórz, A. Concentrations of selected metals (NA, K, CA, MG, FE, CU, ZN, AL, NI, PB, CD) in coffee. Zdr. Varst. 2019, 58, 187–193. [Google Scholar] [CrossRef] [PubMed]
- EFSA CONTAM Panel. Scientific Opinion on the risks to public health related to the presence of nickel in food and drinking water. EFSA J. 2015, 13, 6268–6369. [Google Scholar] [CrossRef]
- Clifford, M.N.; Ramirez-Martinez, J.R. Phenols and caffeine in wet-processed coffee beans and coffee pulp. Food Chem. 1991, 40, 35–42. [Google Scholar] [CrossRef]
- Behne, S.; Franke, H.; Schwarz, S.; Lachenmeier, D.W. Risk Assessment of Chlorogenic and Isochlorogenic Acids in Coffee By-Products. Molecules 2023, 28, 5540. [Google Scholar] [CrossRef]
- Mengesha, D.; Retta, N.; Woldemariam, H.W.; Getachew, P. Changes in biochemical composition of Ethiopian Coffee arabica with growing region and traditional roasting. Front. Nutr. 2024, 11, 1390515. [Google Scholar] [CrossRef]
- Ahmed, S.; Brinkley, S.; Smith, E.; Sela, A.; Theisen, M.; Thibodeau, C.; Warne, T.; Anderson, E.; Van Dusen, N.; Giuliano, P.; et al. Climate Change and Coffee Quality: Systematic Review on the Effects of Environmental and Management Variation on Secondary Metabolites and Sensory Attributes of Coffea arabica and Coffea canephora. Front. Plant Sci. 2021, 12, 708013. [Google Scholar] [CrossRef]
- Ramirez-Martinez, J.R. Phenolic compounds in coffee pulp: Quantitative determination by HPLC. J. Sci. Food Agric. 1988, 43, 135–144. [Google Scholar] [CrossRef]
- Esquivel, P.; Viñas, M.; Steingass, C.B.; Gruschwitz, M.; Guevara, E.; Carle, R.; Schweiggert, R.M.; Jiménez, V.M. Coffee (Coffea arabica L.) by-Products as a Source of Carotenoids and Phenolic Compounds—Evaluation of Varieties with Different Peel Color. Front. Sustain. Food Syst. 2020, 4, 590597. [Google Scholar] [CrossRef]
- Fernandes, A.; Mateus, N.; de Freitas, V. Polyphenol-Dietary Fiber Conjugates from Fruits and Vegetables: Nature and Biological Fate in a Food and Nutrition Perspective. Foods 2023, 12, 1052. [Google Scholar] [CrossRef] [PubMed]
- Rocchetti, G.; Gregorio, R.P.; Lorenzo, J.M.; Barba, F.J.; Oliveira, P.G.; Prieto, M.A.; Simal-Gandara, J.; Mosele, J.I.; Motilva, M.J.; Tomas, M.; et al. Functional implications of bound phenolic compounds and phenolics–food interaction: A review. Compr. Rev. Food Sci. Food Saf. 2022, 21, 811–842. [Google Scholar] [CrossRef] [PubMed]
- Haminiuk, C.W.I.; Plata-Oviedo, M.S.V.; de Mattos, G.; Carpes, S.T.; Branco, I.G. Extraction and quantification of phenolic acids and flavonols from Eugenia pyriformis using different solvents. J. Food Sci. Technol. 2014, 51, 2862–2866. [Google Scholar] [CrossRef] [PubMed]
- Rebollo-Hernanz, M.; Zhang, Q.; Aguilera, Y.; Martín-Cabrejas, M.A.; Gonzalez de Mejia, E. Relationship of the phytochemicals from coffee and cocoa by-products with their potential to modulate biomarkers of metabolic syndrome in vitro. Antioxidants 2019, 8, 279. [Google Scholar] [CrossRef] [PubMed]
- Bouhzam, I.; Cantero, R.; Margallo, M.; Aldaco, R.; Bala, A.; Fullana-i-Palmer, P.; Puig, R. Extraction of Bioactive Compounds from Spent Coffee Grounds Using Ethanol and Acetone Aqueous Solutions. Foods 2023, 12, 4400. [Google Scholar] [CrossRef]
- Aguilera, Y.; Rebollo-Hernanz, M.; Cañas, S.; Taladrid, D.; Martín-Cabrejas, M.A. Response surface methodology to optimise the heat-assisted aqueous extraction of phenolic compounds from coffee parchment and their comprehensive analysis. Food Funct. 2019, 10, 4739–4750. [Google Scholar] [CrossRef]
- Bailey, S.A.; Zidell, R.H.; Perry, R.W. Relationships Between Organ Weight and Body/Brain Weight in the Rat: WhaT Is the Best Analytical Endpoint? Toxicol. Pathol. 2004, 32, 448–466. [Google Scholar] [CrossRef]
- Michael, B.; Yano, B.; Sellers, R.S.; Perry, R.; Morton, D.; Roome, N.; Johnson, J.K.; Schafer, K.; Pitsch, S. Evaluation of organ weights for rodent and non-rodent toxicity studies: A review of regulatory guidelines and a survey of current practices. Toxicol. Pathol. 2007, 35, 742–750. [Google Scholar] [CrossRef]
- Khristian, E. Liver Histopathological Measurement Due to Maximum Dosage for Acute Oral Toxicity Test Using Ethanol Extract Of Coffee Pulp In Female Mice. KnE Life Sci. 2021, 1046–1053. [Google Scholar] [CrossRef]
- Braojos, C.; Rebollo-Hernanz, M.; Cañas, S.; Aguilera, Y.; Gil-Ramírez, A.; Martín-Cabrejas, M.A.; Benítez, V. Coffee pulp simulated digestion enhances its in vitro ability to decrease emulsification and digestion of fats, and attenuates lipid accumulation in HepG2 cell model. Curr. Res. Food Sci. 2024, 9, 100804. [Google Scholar] [CrossRef]
- Fernandez-Gomez, B.; Ramos, S.; Goya, L.; Mesa, M.D.; del Castillo, M.D.; Martín, M.Á. Coffee silverskin extract improves glucose-stimulated insulin secretion and protects against streptozotocin-induced damage in pancreatic INS-1E beta cells. Food Res. Int. 2016, 89, 1015–1022. [Google Scholar] [CrossRef]
- Huynh, F.K.; Neumann, U.H.; Wang, Y.; Rodrigues, B.; Kieffer, T.J.; Covey, S.D. A role for hepatic leptin signaling in lipid metabolism via altered very low density lipoprotein composition and liver lipase activity in mice. Hepatology 2013, 57, 543–554. [Google Scholar] [CrossRef] [PubMed]
- Heimbach, J.T.; Marone, P.A.; Hunter, J.M.; Nemzer, B.V.; Stanley, S.M.; Kennepohl, E. Safety studies on products from whole coffee fruit. Food Chem. Toxicol. 2010, 48, 2517–2525. [Google Scholar] [CrossRef] [PubMed]
- Oropeza-Mariano, E.; Ortega Cerrilla, M.E.; Herrera-Haro, J.G.; Ramírez-Bribiesca, E.J.; Salinas-Ríos, T. Use of pulp and husk of coffee in animal feed. Agro Product. 2022, 15, 149–158. [Google Scholar] [CrossRef]
- Augur, C.; Gutiérrez-Sánchez, G.; Ramirez-Coronel, A.; Contreras-Dominguez, M.; Perraud-Gaime, I.; Roussos, S. Analysis of antiphysiological components of coffee pulp. Curr. Top. Bioprocesses Food Ind. 2006, 1, 391–402. [Google Scholar]
- European Food Safety Authority. Technical Report on the notification of dried cherry pulp from Coffea arabica L. and Coffea canephora Pierre ex A. Froehner as a traditional food from a third country pursuant to Article 14 of Regulation (EU) 2015/2283. EFSA Support. Publ. 2021, 18, 6808E. [Google Scholar] [CrossRef]
- Rivas-Vela, C.I.; Amaya-Llano, S.L.; Castaño-Tostado, E. Effect of extrusion process on the obtention of a flour from coffee pulp Coffea arabica variety red Caturra and its use in bakery products. J. Food Sci. Technol. 2023, 60, 2792–2801. [Google Scholar] [CrossRef]
- Sánchez-Martín, V.; López-Parra, M.B.; Iriondo-DeHond, A.; Haza, A.I.; Morales, P.; del Castillo, M.D. Instant Cascara: A Potential Sustainable Promoter of Gastrointestinal Health. In Proceedings of the ICC 2023 IEEE International Conference on Communications, Rome, Italy, 28 May–1 June 2023; p. 21. [Google Scholar]
- Iriondo-DeHond, M.; Iriondo-DeHond, A.; Herrera, T.; Fernández-Fernández, A.M.; Sorzano, C.O.S.; Miguel, E.; del Castillo, M.D. Sensory Acceptance, Appetite Control and Gastrointestinal Tolerance of Yogurts Containing Coffee-Cascara Extract and Inulin. Nutrients 2020, 12, 627. [Google Scholar] [CrossRef]
CPF | CPE | |
---|---|---|
Total Carbohydrates | 76.7 ± 2.0 | 70.9 ± 2.9 |
Available Carbohydrates | 26.9 ± 3.7 * | 42.9 ± 4.8 |
Free sugars | 10.8 ± 1.3 * | 19.9 ± 1.2 |
Rhamnose | 0.1 ± 0.0 * | 0.0 ± 0.0 |
Arabinose | 1.6 ± 0.1 * | 3.0 ± 0.3 |
Xylose | 0.0 ± 0.0 * | 0.2 ± 0.0 |
Fructose | 7.6 ± 0.3 * | 14.0 ± 0.8 |
Glucose | 1.6 ± 0.8 * | 2.8 ± 0.1 |
Total Dietary Fiber | 49.8 ± 1.7 * | 28.0 ± 1.9 |
Soluble Dietary Fiber | 11.2 ± 1.2 * | 28.0 ± 1.9 |
Insoluble Dietary Fiber | 38.6 ± 0.5 | n.d. |
Polysaccharides | 25.8 ± 1.8 * | 12.3 ± 1.1 |
Arabinose | 3.6 ± 0.8 * | 1.4 ± 0.7 |
Xylose | 1.6 ± 0.7 | n.d. |
Mannose | 1.0 ± 0.1 | n.d. |
Galactose | 1.6 ± 0.7 | n.d. |
Glucose | 7.7 ± 0.5 * | 0.3 ± 0.0 |
Uronic acids | 10.3 ± 0.9 | 10.7 ± 0.7 |
Proteins | 12.9 ± 0.0 * | 7.5 ± 0.1 |
Total N | 2.1 ± 0.0 * | 1.2 ± 0.0 |
Fat | 2.8 ± 0.2 * | 3.8 ± 0.3 |
Ash | 7.6 ± 0.1 * | 14.6 ± 0.0 |
Energy (kJ) | 1188.3 ± 837.0 | 1274.4 ± 119.2 |
Energy (Kcal) | 284.0 ± 20.0 | 304.6 ± 28.5 |
Amino Acids | Total Amino Acids | Free Amino Acids | ||
---|---|---|---|---|
CPF | CPE | CPF | CPE | |
Essential amino acids (EAA) | ||||
Histidine | 55.7 ± 1.7 hi*# | 9.8 ± 0.8 hi | 0.03 ± <0.1 d* | 0.08 ± <0.01 j# |
Isoleucine | 68.3 ± 3.7 h*# | 13.3 ± 0.5 hi | 0.3 ± <0.1 d* | 1.0 ± <0.1 ghij# |
Leucine | 130.0 ± 6.9 f*# | 24.1 ± 1.3 ghi | 0.2 ± <0.1 d* | 0.7 ± <0.01 ij# |
Lysine | 55.5 ± 1.4 hi*# | 8.3 ± 2.8 hi | 0.01 ± <0.01 d* | 0.2 ± <0.1 ij# |
Methionine | 15.4 ± 0.8 k*# | 4.1 ± 1.5 i | 0.04 ± <0.1 d | 0.03 ± <0.01 j# |
Phenylalanine | 125.3 ± 5.5 fg*# | 40.2 ± 1.0 fg | 6.6 ± 0.8 b* | 2.4 ± 0.1 fgh# |
Threonine | 65.2 ± 3.6 h*# | 29.9 ± 0.3 fgh | 0.1 ± <0.1 d* | 0.8 ± <0.1 ij# |
Valine | 115.0 ± 4.7 g*# | 41.2 ± 0.9 fg | 0.9 ± <0.1 cd* | 2.5 ± <0.1 fg# |
Non-essential amino acids (NEAA) | ||||
Alanine | 203.4 ± 8.8 cd*# | 116.7 ± 9.8 d | 6.2 ± 0.7 b* | 14.9 ± 0.5 d# |
Arginine | 60.7 ± 1.4 hi# | 65.8 ± 4.4 e | 2.0 ± 0.4 c* | 10.7 ± <0.1 e# |
Aspartic acid | 333.2 ± 2.3 a# | 308.9 ± 14.8 a | 6.3 ± 1.0 b* | 30.3 ± 0.1 b# |
Cysteine | 34.4 ± 1.0 j# | 25.4 ± 9.3 ghi | 0.4 ± <0.1 d* | 0.8 ± 0.1 hij# |
Glutamic acid | 216.8 ± 11.5 bc*# | 131.7 ± 7.6 c | 0.6 ± 0.1 cd* | 3.2 ± 0.1 f# |
Glycine | 224.3 ± 15.2 b*# | 51.4 ± 0.4 ef | 0.2 ± 0.1 d* | 1.8 ± <0.1 fghi# |
Proline | 197.1 ± 4.2 d*# | 235.4 ± 21.6 b | 26.4 ± 2.2 a* | 74.2 ± 2.9 a# |
Serine | 175.1 ± 6.8 e*# | 112.3 ± 8.4 d | 6.7 ± 1.4 b* | 27.1 ± <0.1 c# |
Tyrosine | 48.4 ± 9.3 ij*# | 10.9 ± 2.0 hi | 0.1 ± <0.1 d* | 0.9 ± <0.1 ghij# |
∑AA | 2123.7 ± 75.8 *# | 1229.3 ± 56.8 | 57.3 ± 6.8 * | 171.7 ± 3.5 # |
∑EAA | 630.4 ± 28.3 *# | 170.8 ± 1.0 | 8.4 ± 0.8 | 7.7 ± <0.1 # |
∑NEAA | 1493.3 ± 47.5 *# | 1058.6 ± 55.8 | 48.9 ± 6.0 * | 163.9 ± 3.5 # |
% EAA | 29.7 ± 0.3 *# | 13.9 ± 0.6 | 14.6 ± 0.4 * | 4.5 ± 0.1 # |
% NEAA | 70.3 ± 0.3 *# | 86.1 ± 0.6 | 85.4 ± 0.4 * | 95.5 ± 0.1 # |
EAA/NEAA | 0.4 ± <0.1 *# | 0.2 ± <0.1 | 0.2 ± <0.1 * | 0.1 ± <0.1 # |
EAAI (%) | 76.4 ± 0.8 * | 38.0 ± 2.0 | - | - |
Element | CPF | CPE |
---|---|---|
Macroelements (mg g−1 sample, dw) | ||
Calcium (Ca) | 2.4 ± 0.2 b* | 5.1 ± 0.2 b |
Magnesium (Mg) | 0.9 ± 0.1 b* | 1.5 ± <0.1 c |
Phosphorus (P) | 1.2 ± 0.1 b* | 0.6 ± <0.1 c |
Potasium (K) | 24.2 ± 1.7 a* | 35.1 ± 1.3 a |
Microelements (µg g−1 sample, dw) | ||
Boron (B) | 22.7 ± 1.7 b* | 6.0 ± 4.2 b |
Copper (Cu) | 17.6 ± 1.2 b* | 0.2 ± 0.2 b |
Iron (Fe) | 76.9 ± 1.0 b* | 19.5 ± 2.9 b |
Manganese (Mn) | 62.0 ± 6.0 b* | 15.3 ± 0.5 b |
Silicon (Si) | 504.4 ± 136.7 a* | 102.0 ± 22.9 a |
Zinc (Zn) | 17.3 ± 0.5 b | 18.6 ± 18.1 b |
Contaminants (µg 100 g−1 sample, dw) | ||
Arsenic (As) | 18.2 ± <0.1 b* | n.d. |
Cadmiun (Cd) | 2.5 ± 2.3 b | 6.1 ± 6.1 b |
Chromium (Cr) | 136.6 ± <0.1 a | 90.2 ± 33.2 a |
Lead (Pb) | n.d. | 0.5 ± 0.5 b |
Nickel (Ni) | 105.4 ± 7.3 a | 53.0 ± 33.7 ab |
Compounds | CPF | CPE |
---|---|---|
Phenolic compounds | ||
Hydroxybenzoic acids | ||
3,4,5-Trihydroxybenzoic acid (Gallic acid) | 46.9 ± 2.0 c* | 68.5 ± 4.0 c |
3,4-Dihydroxybenzoic acid (Protocatechuic acid) | 175.7 ± 0.7 a* | 312.2 ± 7.5 a |
Hydroxycinnamic acids | ||
3-(3′,4′-Dihydroxycinnamoyl)quinic acid (3-Caffeoylquinic acid, 3-CQA) | 5.3 ± 0.6 ef* | 12.1 ± 1.0 d |
4-(3′,4′-Dihydroxycinnamoyl)quinic acid (4-Caffeoylquinic acid, 4-CQA) (cis) | 6.6 ± 0.5 de* | 12.7 ± 0.6 d |
4-(3′,4′-Dihydroxycinnamoyl)quinic acid (4-Caffeoylquinic acid, 4-CQA) (trans) | 85.3 ± 1.4 b* | 145.0 ± 0.4 b |
5-(3′,4′-Dihydroxycinnamoyl)quinic acid (5-Caffeoylquinic acid, 5-CQA) | 3.9 ± 0.3 fgh | n.d. |
5-(4′-Hydroxy-3′-methoxycinnamoyl)quinic acid (5-Feruloylquinic acid, 5-FQA) | 2.0 ± 0.1 h* | 8.7 ± 0.1 d |
3,5-bis(3′,4′-Dihydroxycinnamoyl)quinic acid (3,5-Dicaffeoylquinic acid, 3,5-diCQA) | 4.9 ± 0.1 efg* | 7.0 ± 0.1 d |
5-(4′-Hydroxycinnamoyl)quinic acid (5-p-Coumaroylquinic acid, 5-CoQA) | 2.8 ± 0.0 gh | n.d. |
Flavones | ||
5,7,4′-Trihydroxyflavone-6,8-di-C-glucoside (Apigenin-6,8-di-C-glucoside) | 6.4 ± 0.2 de* | 8.0 ± 1.1 d |
Flavonols | ||
3,3′,4′,5,7-Pentahydroxyflavone 3,7-di-β-glucoside (Quercetin-3,7-di-O-glucoside) | 2.6 ± 0.1 h | n.d. |
3,3′,4′,5,7-Pentahydroxyflavone-3-rutinoside (Quercetin-3-O-rutinoside) | 7.9 ± 0.2 d* | 14.5 ± 0.2 d |
3,3′,4′,5,7-Pentahydroxyflavone 3-β-glucoside (Quercetin-3-O-glucoside) | 6.1 ± 0.3 def* | 8.9 ± 0.2 d |
Total phenolic compounds | 356.4 ± 6.5 * | 597.6 ± 15.2 |
Methylxanthines | ||
1,3,7-Trimethylxanthine (Caffeine) | 473.1 ± 6.1 * | 787.9 ± 34.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gil-Ramírez, A.; Rebollo-Hernanz, M.; Cañas, S.; Monedero Cobeta, I.; Rodríguez-Rodríguez, P.; Gila-Díaz, A.; Benítez, V.; Arribas, S.M.; Aguilera, Y.; Martín-Cabrejas, M.A. Unveiling the Nutritional Profile and Safety of Coffee Pulp as a First Step in Its Valorization Strategy. Foods 2024, 13, 3006. https://doi.org/10.3390/foods13183006
Gil-Ramírez A, Rebollo-Hernanz M, Cañas S, Monedero Cobeta I, Rodríguez-Rodríguez P, Gila-Díaz A, Benítez V, Arribas SM, Aguilera Y, Martín-Cabrejas MA. Unveiling the Nutritional Profile and Safety of Coffee Pulp as a First Step in Its Valorization Strategy. Foods. 2024; 13(18):3006. https://doi.org/10.3390/foods13183006
Chicago/Turabian StyleGil-Ramírez, Alicia, Miguel Rebollo-Hernanz, Silvia Cañas, Ignacio Monedero Cobeta, Pilar Rodríguez-Rodríguez, Andrea Gila-Díaz, Vanesa Benítez, Silvia M. Arribas, Yolanda Aguilera, and María A. Martín-Cabrejas. 2024. "Unveiling the Nutritional Profile and Safety of Coffee Pulp as a First Step in Its Valorization Strategy" Foods 13, no. 18: 3006. https://doi.org/10.3390/foods13183006
APA StyleGil-Ramírez, A., Rebollo-Hernanz, M., Cañas, S., Monedero Cobeta, I., Rodríguez-Rodríguez, P., Gila-Díaz, A., Benítez, V., Arribas, S. M., Aguilera, Y., & Martín-Cabrejas, M. A. (2024). Unveiling the Nutritional Profile and Safety of Coffee Pulp as a First Step in Its Valorization Strategy. Foods, 13(18), 3006. https://doi.org/10.3390/foods13183006