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Abstract: This study aimed to analyze the structure of polysaccharides from eight different Dendrobium
species and their protective effects on gastric mucosa. Ultraviolet (UV) analysis showed that the con-
tents of eight polysaccharides ranged from 51.89 ± 6.91% to 80.57 ± 11.63%; the degree of acetylation
ranged from 0.17 ± 0.03 to 0.48 ± 0.03. High-performance liquid chromatography (HPLC) results
showed that these polysaccharides were mainly composed of mannose (Man) and glucose (Glc) with
a small amount of galactose (Gal) and arabinose (Ara), and the monosaccharide ratios of different
Dendrobium species were different. High-performance size exclusion chromatography—multi angle
light scattering—refractive index detector (HPSEC-MALS-RID) showed that the molecular weight
(Mw) of all Dendrobium polysaccharides was >1 × 105 Da; D. huoshanense had the lowest molecular
weight. Subsequently, an ethanol injured GES-1 cell model was constructed to evaluate the gastric
mucosal protective potential of polysaccharides from eight different Dendrobium species. The results
showed that the protective effect of the low concentration 50 µg/mL DHP treatment group was
similar to that of the control group (p > 0.05), and the cell viability could reach 97.32% of that of
the control group. Based on the polysaccharide composition, different kinds of Dendrobium have
different degrees of migration and repair effects on GES-1 damaged cells, and the effect of DHP is
slightly better than that of other varieties (83.13 ± 1.05%). Additionally, Dendrobium polysaccharides
alleviated ethanol-induced oxidative stress and inflammatory response in gastric mucosal cells by en-
hancing the activity of antioxidant enzymes (superoxide dismutase, glutathione peroxidase, catalase)
and reducing the levels of malondialdehyde and reactive oxygen species. Overall, DHP can most
effectively protect gastric mucosa. These findings enhance our understanding of the relationship
between the structure and biological activity of Dendrobium polysaccharides, providing a foundation
for the quality control of Dendrobium. Furthermore, these findings offer theoretical support for the
development of Dendrobium polysaccharides as nutraceuticals to treat digestive system diseases.

Keywords: Dendrobium; polysaccharide; physicochemical characterization; gastric mucosal protection;
D. huoshanense

1. Introduction

Dendrobium plant has medicinal and edible properties. Its medicinal value can be
traced back to Shennong Materia Medica Classic, which states, “Long-term consumption
strengthens the stomach and intestines [1,2].” The fresh and dried stems of Dendrobium
are regarded as precious species and are widely used in the production of healthcare
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products and herbal tea beverages in China and Southeast Asian countries [3,4]. The 2020
edition of the Chinese Pharmacopoeia lists five Dendrobium species: Dendrobium huoshanense
Z. Z. Tang & S. J. Cheng, Dendrobium officinale Kimura & Migo, Dendrobium nobile Lindl,
Dendrobium chrysotoxum Lindl, Dendrobium fimbriatum Hook [5]. Dendrobium contains a
variety of chemical components, such as polysaccharides, alkaloids, phenolic compounds,
flavonoids, and sesquiterpenes, that provide medicinal value to the species. Among them,
polysaccharides are the main active components of Dendrobium and have attracted signifi-
cant attention due to their potential medicinal value in exerting immunomodulatory, hep-
atoprotective, anti-inflammatory, antioxidant, anti-tumor, and gastrointestinal protection
effects [6–8].

Currently, many species of Dendrobium are available on the market, of which D. huoshanense
and D. officinale are frequently counterfeited due to their high cost. This phenomenon
severely affects the sustainable development of Dendrobium industry. The variations in
polysaccharide composition among different species of Dendrobium are likely to influence
their pharmacological and pharmacodynamic effects. Nonetheless, a comprehensive and
systematic analysis of the polysaccharide composition in Dendrobium species is lacking.
Xu et al. [9] compared the structures of different species of Dendrobium polysaccharides
using saccharide mapping. The results showed that different species of Dendrobium
polysaccharide components have similar properties, albeit with significant differences.
The varied impact of different types of Dendrobium polysaccharides on macrophage func-
tion [10] indicates the complex relationship between polysaccharide molecular structure
and biological activity.

Notably, the main function of Dendrobium, “nourishing the stomach”, is consistent
with the modern pharmacological understanding of its protective effect on gastric mucosa.
According to the World Health Organization’s 2024 report, alcohol is identified as a major
risk factor leading to gastric cancer, a fatal malignancy [11]. The global rise in alcohol
consumption levels [12] and long-term or excessive drinking can cause acute or chronic
damage to the gastric mucosa, thereby increasing the risk of gastric ulcers [13]. Currently,
some studies have confirmed the gastric mucosal protective effect of Dendrobium polysac-
charides [4,14–16]. For example, D. officinale leaf polysaccharide can prevent LPS-induced
GES-1 cell injury by inhibiting the release of inflammatory cytokines regulated via the
TLR4/NF-κB signal pathways [15]. D. huoshanense stem polysaccharide could strengthen
the gastric mucosal barrier to inhibit oxidative stress and NF-κB-driven inflammation-
induced gastric mucosal injury [16]. However, there is still a lack of in-depth comparative
studies in this field. That is, there is no consensus on the type of Dendrobium polysaccha-
rides with the better gastric mucosal protective effect. Hence, it is important to compare the
potential of different types of Dendrobium polysaccharides in the prevention and treatment
of ethanol-induced gastric mucosal damage protection.

Therefore, the present study selected eight species of Dendrobium: D. huoshanense,
D. officinale, D. nobile, D. chrysotocum, D. fimbriatum, Dendrobium aphyllum (Roxb.) C.E.C.Fisch,
Dendrobium devonianum Paxton, and Dendrobium pierardii R.Br. The selection of these species
was based on an in-depth study of the market and origin. We compared the structural
differences between the various types of Dendrobium polysaccharides and investigated their
efficacy in protecting the gastric mucosa (See Figure 1 for a summary of the detailed
ideas). Our findings will provide a standard for the quality control of Dendrobium and
a theoretical foundation for developing nutraceuticals and pharmaceuticals to protect
gastric mucosa.
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chased from Cell Signaling Technology Co., Ltd. (Boston, MA, USA). Bradford Protein 
Assay Kit, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and 
Anti-GAPDH (glyceraldehyde-3-phosphate dehydrogenase) antibody were obtained 
from Boster (Wuhan, China). All the other chemicals and reagents used were of analytical 
grade. 
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2. Materials and Methods
2.1. Materials and Reagents

Eight species of Dendrobium, including D. huoshanense, D. officinale, D. nobile,
D. chrysotocum, D. fimbriatum, D. aphyllum, D. devonianum Paxton, and D. pierardii, were
collected in 26 batches (D. huoshanense: five batches; others: three batches each), mainly
from Anhui, Hubei, Zhejiang, and Yunnan provinces. The polysaccharides extracted from
these species were named in the order Dendrobium polysaccharides (1–8): 1. DHP, 2. DOP,
3. DNP, 4. DCP, 5. DFP, 6. DAP, 7. DDP, and 8. DPP, respectively. Standard monosaccha-
ride references, mannose (Man), glucose (Glc), and galactose (Gal), were obtained from
the National Institute for Food and Drug Control (Beijing, China). Arabinose (Ara) and
β-D-glucose pentaacetate were obtained from Shanghai Nature Standard Co., Ltd. (Shang-
hai, China). Phenyl-3-methyl-5-pyrazolone (PMP) was purchased from Sigma-Aldrich
(St. Louis, MO, USA). Trifluoroacetic acid (TFA) and FeCl3 were procured from Oka Co., Ltd.
(Beijing, China). Water was purified on a Millipore Milli-Q Plus system (Millipore, St. Louis,
MO, USA).

GES-1 cells were obtained from Tianjin Hongshunke Biotechnology Co., Ltd. (Tianjin,
China). Trypsin-EDTA, MTT Cell Proliferation and Cytotoxicity Assay Kit, and reactive
oxygen species (ROS) Assay Kit were purchased from Beijing Solepol Science and Tech-
nology Co., Ltd. (Beijing, China). Catalase (CAT) Assay Kit and Malondialdehyde (MDA)
Enzyme-Linked Immunosorbent Assay (ELISA) Kit were purchased from Wuhan Elite
Bio-technology Co., Ltd. (Wuhan, China). Superoxide Dismutase (SOD) and Glutathione
Peroxidase (GSH-Px) ELISA Kits were purchased from Wuhan Beinlai Biotechnology Co.,
Ltd. (Wuhan, China). Anti-ERK1/2, anti-JNK, and anti-p38 antibodies were purchased
from Cell Signaling Technology Co., Ltd. (Boston, MA, USA). Bradford Protein Assay Kit,
sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and Anti-GAPDH
(glyceraldehyde-3-phosphate dehydrogenase) antibody were obtained from Boster (Wuhan,
China). All the other chemicals and reagents used were of analytical grade.
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2.2. Preparation of Polysaccharides from Different Cultivars of Dendrobium

The herbs were crushed into powder and passed through a no. 3 sieve according to
the extraction method (water extraction and alcohol precipitation) of Dendrobium polysac-
charides described in Chinese Pharmacopoeia [5]. Approximately 2 g of the powder was
weighed precisely, mixed with 200 mL of water, heated, and refluxed for 2 h. The mixture
was filtered and concentrated to about 20 mL, and then anhydrous ethanol was added to
reach the concentration of 80% to precipitate the polysaccharides. The concentrate was
incubated at 4 ◦C, for 12 h before centrifugation at 5000 rpm for 10 min at room temperature.
The supernatant was discarded, and the precipitate was air-dried and solubilized in water.

In order to ensure the accuracy of the results of cellular experiments, we depro-
teinized the extracted Dendrobium polysaccharides to improve their purity using the Sevag
method [17]. First, the proteins in the crude polysaccharides were removed by adding
one-fifth volume of Sevag reagent (trichloromethane: n-butanol, 4:1, v/v), and shaken
thoroughly with an incubator shaker at 250 rpm for 30 min. The supernatant was collected
by centrifugation of the mixture at 5000 rpm for 10 min; the process was repeated several
times until no denatured protein remained at the junction. The deproteinized polysaccha-
ride extract was evaporated in a water bath to remove organic reagents and obtain the
crude compound.

2.3. Structural Characterization of Dendrobium Polysaccharides
2.3.1. Chemical Composition of the Polysaccharides

The carbohydrate content in the Dendrobiums was measured using the phenol-sulfuric
acid method [18], whereas the protein content was analyzed by the Bradford method [19].

2.3.2. Determination of Molecular Weight (Mw) and Polymer Dispersity Index (PDI)

The Mw distribution of Dendrobium polysaccharides was detected by high-performance
size-exclusion chromatography—multi-angle light-scattering—refractive index detection
(HPSEC–MALS–RID) method according to the method described by Fan et al. [20].
Dendrobium polysaccharide was resuspended in 5 mL of NaCl (0.1 mol/L) to achieve
the final concentration of about 5 mg/mL; the mixture was filtered through 0.45 µm
Millipore filter (Shanghai Anpu Co., Ltd., Shanghai, China) to remove impurities and sub-
jected to chromatographic separation on a Shodex SB-806 gel column (300 mm × 8.0 mm,
13 µm) and a Shodex SB-804 gel column (300 mm × 8.0 mm, 10 µm) using the following
parameters: the mobile phase consisted of 0.1 M NaCl aqueous solution at a flow rate of
0.6 mL/min for 50 min; the injection volume was 100 µL, and the column temperature
was 40 ◦C. Data were collected and analyzed using Astra software (version 7.1.3, Wyatt
Technology Co., Santa Barbara, CA, USA).

2.3.3. Monosaccharide Composition Analysis

Each sample (2 mg/mL) was hydrolyzed with TFA (1 mol/L) at 120 ◦C for 4 h. The
sample was blow-dried under nitrogen, mixed with 2 mL of methanol, and blow-dried
again. This process was repeated three times to remove the remaining TFA; the pellet was
resuspended in 1 mL of water. Then, 400 µL of 0.3 moL/L NaOH solution was added to
the solution, and 400 µL of 0.5 moL/L PMP-methanol mixture was added with continued
reaction at 70 ◦C for 100 min. After cooling to room temperature, 500 µL of 0.3 mol/L
HCl was added to the mixture, followed by extraction (three times) with 3 mL of CH3Cl
to remove the lower organic layer. The upper layer was retrieved and filtered through a
0.22-µm Millipore filter for high-performance liquid chromatography (HPLC) detection.

The separation was performed on an Agilent Zorbax SB-C18 column (4.6 mm × 250 mm,
5 µm) with acetonitrile and 0.02 mol/L ammonium acetate (20:80, v/v) as the mobile phase
and the following parameters: flow rate 1.0 mL/min, column temperature 35 ◦C, sample
size 10 µL, wavelength 250 nm, and duration 20 min. The monosaccharide standards were
derivatized using the above method. The mixture of all monosaccharide standards, includ-
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ing Man, Gal, Glc, and Ara, was measured under identical chromatographic conditions,
and the values were expressed as percentage molar ratios [4,21].

2.3.4. Acetylation Assay

The degree of acetylation (DA) of Dendrobium polysaccharides was determined using
a modified hydroxylamine colorimetric method [22]. FeCl3 served as the color developer,
and β-D-glucose pentaacetate was used as the standard.

2.4. Cell Experiments
2.4.1. Cell Model

GES-1 cells were inoculated in 96-well plates at a density of 8 × 103 cells/well, with
three replicate wells in each group, and cultured overnight in the incubator at 37 ◦C under
5% CO2. The cells were treated with different concentrations of ethanol to induce injury,
and cell survival was determined after 0, 24, 48, and 72 h for further experiments. Next, the
effects of eight groups of Dendrobium polysaccharides were investigated at different concen-
trations and time points on the viability of normal GES-1 cells. This approach determined
the cytotoxicity and concentration-dependent effects of the Dendrobium polysaccharides on
GES-1 cells and screened the most effective time and concentration of the polysaccharide
treatment. For cellular experiments, representative batches of each Dendrobium species were
screened, i.e., samples whose structural data were in the intermediate range were examined.
Thus, the selected samples reflected the typical characteristics of the respective Dendrobium
species, facilitating a broad application of the results of subsequent experiments. Then, to
test the effect of eight species of Dendrobium polysaccharides on ethanol-induced cell dam-
age, GES-1 cells were pretreated with different concentrations of the polysaccharides for
48 h. Except for the blank control group, all groups were treated with 1.0 mol/L ethanol for
4 h. After removing the supernatant, 90 µL of fresh culture medium was added, followed by
10 µL of MTT reagent to the cells. Finally, absorbance was measured on a microplate reader
(Shanghai, China) at 490 nm. Cellular modeling aimed to determine the most effective
concentration of Dendrobium polysaccharide for constructing an in vitro prophylactic model
for GES-1 cells.

2.4.2. Grouping of Cells

GES-1 cells were grouped as follows: Control; Model (cells in 1.0 mol/L ethanol for
4 h); Experimental (after 48-h pretreatment with different concentrations of Dendrobium
polysaccharides, cells were stimulated with 1.0 mol/L ethanol for 4 h). The experimental
group consisted of eight species of Dendrobium polysaccharides, each at four different con-
centrations (25, 50, 100, and 250 µg/mL, respectively), resulting in a total of 32 subgroups.

2.4.3. Cell Scratch Test

The cell scratch assay was used to assess the migratory ability of GES-1 cells. A marker
was used to draw lines evenly on the back of the six-well plate, with each line about
0.5 cm apart. The cells were inoculated into six-well plates at a density of 1 × 105 cells/well
and incubated for monolayer formation. Then, the cell wound was scribed perpendicular
to the labeled lines with a 20-mL pipette tip. The detached cells were washed three times
with phosphate-buffered saline (PBS). Serum-free medium was added to the blank and
model groups, and eight different Dendrobium polysaccharide solutions (50 µg/mL) were
added to the experimental group. Each concentration group was set up in triplicate wells
and incubated at 37 ◦C under 5% CO2. The healing of the scratched wounds was measured
at 0, 24, and 48 h. The cell migration ability was measured using ImageJ (version 1.54 h,
National Institutes of Health, Bethesda, MD, USA).
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2.4.4. Measurements of Oxidative Stress and Antioxidant Biomarkers via a
Biochemical Approach

Cell samples were collected from the Control, Model, and Experimental groups
(eight groups of Dendrobium polysaccharides, 50 µg/mL). After centrifugation at
1000 rpm for 10 min, the medium was discarded, and the cell pellet was rinsed three
times with pre-cooled PBS. Subsequently, the pellet was resuspended in an appropri-
ate volume of pre-cooled PBS and lysed by repeated freeze-thawing: three cycles of
freezing at −20 ◦C or −80 ◦C for 30 min and thawed at 37 ◦C. The lysate was clarified
by centrifugation at 10,000 rpm, 4 ◦C for 10 min. Finally, the supernatant was used to
measure the activities and levels of SOD, CAT, GSH-Px, and MDA according to the
manufacturer’s instructions.

2.4.5. ROS Detection

Intracellular ROS levels were measured using 2,7-dichlorofluorescein-diacetate (DCFH-
DA) and ROS Kit, according to the manufacturer’s instructions. Briefly, the grouped cells
were collected, suspended in diluted 10 µmol/L DCFH-DA at a concentration of 106/mL
and incubated at 37 ◦C for 20 min in the cell culture incubator. ROS production in the cells
was detected by flow cytometry on the FACSCalibur and analyzed by BD CellQuest Pro
Software version 5.1.

2.5. Statistical Analysis

Data were presented as the mean ± standard deviation. Statistical significance was
assessed using one-way analysis of variance (ANOVA), and the Tukey–Kramer test was
used as a post-hoc test at a significance level of p < 0.05. The correlation analysis was carried
out using Origin 2021 software (OriginLab, Northampton, MA, USA). All calculations and
graphs were performed and constructed using GraphPad Prism 8.3.0 software (San Diego,
CA, USA).

3. Results and Discussion
3.1. Physicochemical Properties of Polysaccharides from Different Dendrobium Species
3.1.1. Chemical Compositions

Firstly, Table 1 lists the physicochemical properties of polysaccharides from different
species of Dendrobium. The extraction rates of the polysaccharides vary widely, ranging
from 1.47 ± 0.20% to 15.93 ± 1.07%. This discrepancy reflects the intrinsic characteristics
of different Dendrobium species. Sevag reagent is commonly used for deproteinization of
polysaccharides due to its mild reaction; however, this process inevitably leads to the loss
of some protein-polysaccharide complexes, which might reduce the overall extraction rate
of polysaccharides [23]. Therefore, the extraction rates shown in the table are lower than
the actual content. Conversely, the highest extraction rate of 15.93 ± 1.07% was achieved
by DHP. The next highest extraction rates were for DOP and DDP, which were greater
than 8%. The extraction rates of DNP, DCP, DFP, and DAP were overall low and did not
differ significantly (p > 0.05), ranging from 1.47 ± 0.20% to 3.54 ± 0.26%. The total con-
tent of the eight groups of Dendrobium polysaccharides ranged from 51.89 ± 6.91% to
80.57 ± 11.63%, and the protein content ranged from 1.3 ± 0.6% to 6.4 ± 3.9%, in-
dicating that polysaccharides are the primary components of Dendrobiums. A higher
polysaccharide extraction rate indicates that a significant proportion of target compo-
nents can be obtained from the same unit mass of Dendrobium. This estimation will ben-
efit the efficient utilization of Dendrobium and may also have a positive impact on its
pharmacological effects.

Acetylation-modified polysaccharides can increase water solubility, thereby affecting
the activity of polysaccharides [24,25]. Therefore, it is essential to determine the degree
of acetylation of Dendrobium polysaccharides. According to Table 1, DOP has the highest
degree of acetylation, followed by DDP and DHP. This finding suggested that these sam-
ples have high water solubility and altered bioactivity. Conversely, the other species of
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Dendrobium polysaccharides had lower levels of acetylation that did not differ significantly
(p > 0.05). Previous studies have shown that O-acetyl-rich Dendrobium polysaccharides are
beneficial to colon health [26], whereas deacetylation inactivates Dendrobium polysaccha-
rides [27]. Specifically, the DAP sample had the lowest acetylation level, which might affect
its water solubility and related biological functions.

Table 1. Physicochemical properties of Dendrobiums (n indicates batch). Values are mean ± standard
deviation (SD), superscripts a–d indicate significant differences (p < 0.05) among various species of
Dendrobium polysaccharides; statistical significance was analyzed by ANOVA and Duncan’s test.

Parameter 1. DHP
(n = 5)

2. DOP
(n = 3)

3. DNP
(n = 3)

4. DCP
(n = 3)

5. DFP
(n = 3)

6. DAP
(n = 3)

7. DDP
(n =3)

8. DPP
(n =3)

Polysaccharide
yields (%) 15.93 ± 1.07 a 8.46 ± 0.62 b 2.53 ± 0.36 c 1.47 ± 0.20 c 1.76 ± 0.10 c 3.54 ± 0.26 c 10.12 ± 0.68 a 5.20 ± 0.689 b

Total
polysaccharides

(%)
65.88 ± 4.30 b 58.00 ± 3.01b 63.20 ± 13.07 b 51.89 ± 6.91 c 72.40 ± 13.29 a 80.57 ± 11.63 a 66.46 ± 3.87 b 57.71 ± 4.50 b

Protein content
(%) 1.62 ± 1.10 c 1.25 ± 0.62 c 4.40 ± 1.72 b 6.43 ± 3.88 a 5.83 ± 3.61 a 3.30 ± 1.71 b 1.86 ± 0.31 c 3.12 ± 1.72 b

Acetylation
degree 0.33 ± 0.03 b 0.48 ± 0.03 a 0.28 ± 0.10 b 0.26 ± 0.11 b 0.23 ± 0.07 b 0.17 ± 0.03 c 0.37 ± 0.04 a 0.23 ± 0.07 b

Mw
(×105 Da) 1.31 ± 0.17 c 1.82 ± 0.34 c 1.80 ± 0.04 c 2.14 ± 0.24 b 1.70 ± 0.06 c 1.91 ± 0.27 c 2.24 ± 0.31 b 5.84 ± 2.49 a

PDI 1.50 ± 0.14 c 1.44 ± 0.05 c 1.84 ± 0.17 b 1.75 ± 0.15 b 1.63 ± 0.04 c 1.75 ± 0.36 b 1.47 ± 0.09 c 3.43 ± 0.78 a

Man (%) 74.95 ± 1.94 b 83.10 ± 2.43 a 35.76 ± 7.45 d 42.51 ± 14.82 c 52.62 ± 2.28 c 75.17 ± 1.35 a 93.86 ± 1.20 a 66.88 ± 10.52 b

Glc (%) 23.32 ± 1.64 b 15.81 ± 2.44 c 61.59 ± 7.70 a 54.02 ± 17.36 a 41.74 ± 3.51a 22.59 ± 0.98 b 4.86 ± 1.24 c 30.08 ± 9.95 b

Gal (%) 0.94 ± 0.34 c 0.66 ± 0.05 c 1.49 ± 0.25 b 2.20 ± 1.87 b 3.68 ± 3.36 a 1.28 ± 1.00 b 0.73 ± 0.03 c 1.63 ± 0.67 b

Ara (%) 0.79 ± 0.46 c 0.43 ± 0.08 c 1.15 ± 0.40 b 1.26 ± 0.68 b 1.97 ± 1.82 a 0.96 ± 0.52 c 0.55 ± 0.04 c 1.41 ± 0.59 b

Man/Glc 2.05 ± 0.20 b 3.41 ± 0.68 b 0.38 ± 0.13 d 0.59 ± 0.44 c 0.80 ± 0.06 c 2.12 ± 0.10 b 12.86 ± 3.56 a 1.55 ± 0.62 b

3.1.2. Mw and PDI Data

The present study analyzed the molecular weights of different Dendrobium polysac-
charides using HPSEC-MALS-RID (Figure 2). The Mw and PDI (Mw/Mn) of the eight
Dendrobium polysaccharides are shown in Table 1. The Mw of the different Dendrobium
polysaccharides was above 1 × 105 Da, indicating the high molecular weights of these
polysaccharides. The order of specific Mw is DHP < DFP < DNP < DOP < DAP < DCP
< DDP < DPP. Among these, 8. DDP had the highest Mw, while no significant difference
(p > 0.05) was observed between the Mw of the other species of Dendrobium polysaccha-
rides. The PDI indicates the breadth of Mw distribution for polysaccharides. A low PDI
value indicates a narrow Mw distribution, suggesting a high degree of uniformity in
the polysaccharides [28]. Different Dendrobium polysaccharides showed a range of Mw
distribution from the lowest 1.44 ± 0.05 to the highest 3.43 ± 0.78. Especially, DPP had
the highest PDI value, indicating that its polysaccharides have a wide Mw distribution.
Conversely, DHP had the lowest PDI value, indicating the most uniform Mw distribution
of polysaccharides.

The Mw range of all relevant studies on water-extracted Dendrobium polysaccharides
is between 3 × 103 and 1 × 107 Da [29]. Generally, the bioactivity of polysaccharides
is related to their Mw [30]. Another study showed varying antioxidant activity of dif-
ferent Mw components of Dendrobium polysaccharides [31]. Zhao et al. [32] showed
that Mw is one of the key factors influencing the immunomodulatory activity of DOPs.
These results indicate differences in Mw and molecular weight distribution of Dendrobium
polysaccharides from different species, which might be related to the biological activities of
the polysaccharides.
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3.1.3. Monosaccharide Composition

Monosaccharides are the natural basic units that determine the unique structure and
properties of polysaccharides. In this study, HPLC was used to determine the monosac-
charide composition of different Dendrobium polysaccharides. The results show (Figure 3
and Table 1) that the samples of Dendrobium polysaccharides share similarities in their
monosaccharide composition, primarily consisting of Man and Glc, along with minor
amounts of Gal and Ara. However, the ratio of Man to Glc varies among the differ-
ent Dendrobium polysaccharides. Among all the tested samples, DDP had the highest
Man content, accounting for 93.86 ± 1.20% of the total composition, with the highest
Man/Glc ratio of 12.86 ± 3.56. The content of Man as the primary monosaccharide compo-
nent was the highest in DDP, followed by DOP, DAP, DHP, DPP, and DFP ranging from
52.62 ± 2.28% to 83.10 ± 2.43%, and the Man/Glc ratio was between 2.05 ± 0.20 and
3.41 ± 0.68. In contrast, DNP and DCP had high Glc content of 61.59 ± 7.70% and
54.02 ± 17.36%, and the Man/Glc ratio was 0.38 ± 0.13 and 0.59 ± 0.44, respectively.

These findings are consistent with those of a previous study on the polysaccharide
composition of the Dendrobium genus, mainly consisting of Man and Glc, with small
amounts of Gal [29]. Furthermore, according to the quality standards for D. officinale
in the 2020 edition of the Chinese Pharmacopoeia, the specified Man/Glc peak area ra-
tio is between 2.4 and 8.0, and fluctuations in this ratio are considered normal statisti-
cal variations. Lin [33] determined that the Man/Glc peak area ratio of 18 batches of
D. huoshanense herbs was 0.36 to 3.23. This finding indicates that the natural fluctuation
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of the Man/Glc ratio is a normal phenomenon within the same species of Dendrobium
polysaccharides. In summary, this information is crucial for understanding the structural
and functional characteristics of Dendrobium polysaccharides that may serve as a reference
for evaluating the quality and consistency of the herb.
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3.2. Biological Experiments
3.2.1. Construction of Models In Vitro for Preventing Oxidative Damage of GES-1 Cells

Ethanol can cause cell dehydration, degeneration, and necrosis. Ethanol induction
is a common method for modeling gastric mucosal injury. As shown in Figure 4A, the
viability of ethanol-treated GES-1 cells decreased with increasing ethanol concentration
after 48 h. The greater the ethanol concentration, the more serious the cell damage. When
the cells were treated with 1.0 M ethanol for 48 h, their cell viability was approximately
50.35 ± 5.19% of that of the control, a significant difference (p < 0.01). Consecutively, the
cell state was stable and met the requirements of this experiment. Therefore, the model
group comprised ethanol (0.1 M)-damaged GES-1 cells.

Next, we determined whether Dendrobium polysaccharides exhibited cytotoxicity
in GES-1 cells. Also, the most effective Dendrobium polysaccharides treatment time and
concentration were screened to establish an in vitro prevention model for GES-1 cells
(Figure 4B). Cell proliferation was enhanced after intervening normal GES-1 cells with eight
groups of different species of Dendrobium polysaccharides (25–250 µg/mL) for 24 h. This
phenomenon indicated that 25–250 µg/mL concentrations of Dendrobium polysaccharides
are non-toxic to GES-1 cells and promote cell growth. Therefore, Dendrobium polysaccharide
can be used as an intervention in damaged GES-1 cells. DHP was more effective than other
Dendrobium polysaccharides when added to the cells at a lower concentration of 50 µg/mL
for 48-h potency.
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with different species of Dendrobium polysaccharides. (C) Effects of treatments with different species
of Dendrobium polysaccharides on preventing ethanol damage in GES-1 cells in the model. Data
are mean of three independent experiments (* p < 0.05, ** p < 0.01, *** p < 0.001 denote statistically
significant differences between the treated and model groups; ### p < 0.001 indicate a statistically
significant difference between the control and model groups; ns, no significance).

After Dendrobium polysaccharide treatment for 48 h, the GES-1 cells were exposed
to 1.0 M ethanol for 4 h. Consequently, the cell survival rate of the model group was
45.34%, which differed significantly (p < 0.001) compared to that of the control group,
indicating successful modeling. Figure 4C shows the concentration dependence of the
polysaccharide treatment groups of DOP, DNP, DFP, DAP, and DPP, whereas DHP, DCP,
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and DDP decreased cell viability at a specific concentration. This phenomenon may be
attributed to the saturation effect at the plateau phase. Overall, the protective effect of the
low concentration of 50 µg/mL DHP polysaccharide treatment group was similar to that of
the control group (p > 0.05), and the cell viability could reach 97.32% of the control group.

In conclusion, all the Dendrobium polysaccharides from different groups exerted a
protective effect against ethanol-induced GES-1 cell damage. Nonetheless, based on the
polysaccharide composition, Dendrobium huoshanense was slightly better than other
varieties in the protective effect of GES-1 cells.

3.2.2. Effects of Dendrobium Polysaccharides on Scratch Repair in GES-1 Cells

The proliferation and migration ability of GES-1 cells are critical factors affecting the
healing of mucosal injuries [34,35]. Thus, promoting cell proliferation and migration to
the site of mucosal injury is the key to improving mucosal protection. Figure 5 shows that
different species of Dendrobium polysaccharides can promote the migration and growth
of GES-1 cells to the damaged area (i.e., reduce the cell average gaps) to different degrees.
After incubating the damaged GES-1 cells with eight different Dendrobium polysaccha-
rides, each at 50 µg/mL for 24 h, the repair rates of the damaged areas were 13.53–38.10%.
Among these, DHP and DOP showed the best repair performance with 38.08 ± 3.12% and
33.33 ± 1.10%, respectively, which was significantly higher than that of the model group
with 4.77 ± 2.56% (p < 0.001). The repair effect of Dendrobium polysaccharide was more obvi-
ous after 48-h damage of GES-1 cells, but the gap between the repair rates of eight different
Dendrobium polysaccharides increased gradually (35.28–83.13%). Among these polysaccha-
rides, DHP had the best repair effect (83.13 ± 1.05%), followed by DOP with a high repair
rate (72.26 ± 2.65%); these values were significantly higher than that of the model group
(46.51 ± 6.22%) (p < 0.001). In conclusion, different species of Dendrobium polysaccharides
showed different degrees of migration and repair effects on GES-1-damaged cells, among
which DHP had the better effect.

3.2.3. SOD, CAT, and GSH-px Activity Measurements and MDA Content Assay

Oxidative stress is one of the major factors in gastric mucosal injury, and antioxi-
dant enzymes play a crucial role in gastric mucosal homeostatic balance [36]. Antioxi-
dant enzymes, such as SOD, CAT, and GSH-px, eliminate excess ROS to protect gastric
mucosal cells from oxidative stress damage [37]. Overall, the activities of antioxidant
enzymes SOD, CAT, and GSH-px were significantly reduced (p < 0.001) in the injury model
group compared to the control group (Figure 6). GES-1 cells pretreated with different
groups of Dendrobium polysaccharides showed a variable increase in SOD, CAT, and GSH-
px activities. The DHP pretreatment group had the better recovery effect on SOD and
CAT activity, with no statistically significant difference compared to the control group
(p > 0.05), and improved the activity of GSH-px. These results showed that different groups
of Dendrobium polysaccharide pretreatment can effectively increase the activities of SOD,
CAT, and GSH-px and inhibit the ethanol-induced oxidative stress damage to cells.

MDA is a lipid peroxidation product, a vital marker of oxidative damage [38]. The
ethanol-induced injury increased the MDA content and lipid peroxidation reaction in GES-1
cells [39]. Compared to the control group, the MDA level in the model group was increased
significantly (p < 0.001). The different groups of Dendrobium polysaccharides-pretreated
GES-1 cells reduced the MDA content to varying degrees. DHP, DCP, DPP, DDP, and
DPP showed extremely significant differences compared to the model group (p < 0.001)
under the same effective concentration (50 µg/mL). DOP and DAP have similar effects
(p < 0.01), with a highly significant difference, whereas DNP had the lowest significance
compared to the model group (p < 0.05). These results indicated that polysaccharides from
different species of Dendrobium can alleviate ethanol-induced lipid oxidative damage in
GES-1 cells. DHP had the most significant effect among these polysaccharides, with a
decrease in MDA content of about 48.14% compared to the model group. Overall, DHP
pretreatment alleviates ethanol-induced lipid oxidative damage in GES-1 cells.
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3.2.4. Effects of Dendrobium Polysaccharides on ROS Level in GES-1 Cells

ROS are involved in the mechanism of cellular oxidative stress, and inflammatory
factors released by damaged cells can promote the production and accumulation of ROS [40].
In the present study, ROS levels were used as oxidative stress markers. Flow cytometry
was used to assess ROS levels in GES-1 cells treated with different species of Dendrobium
polysaccharides (Figure 7). The horizontal axis represents the DCFH-DA fluorescence
signal value, i.e., the fluorescence intensity of the detected DCF. Compared to the control,
the fluorescence peak shifted when GES-1 cells were treated with ethanol. These shifts of
the fluorescence peaks in each group were alleviated to different degrees after pretreatment
with Dendrobium polysaccharides. Compared to the control group, the ROS level in the
model group increased by about 5.7 times, indicating that ROS is produced in GES-1 cells in
the presence of ethanol. Different Dendrobium polysaccharides exhibited varying degrees of
intracellular ROS scavenging effects. Moreover, the ROS levels were decreased significantly
in all pretreatment groups compared to the ethanol-induced model group (p < 0.01). Only
the ROS level of DHP was closest to that of the control group, indicating that the DHP
group is the most effective in eliminating intracellularly generated ROS. These results
suggested that DHP attenuates cellular ROS accumulation and exerts a protective effect on
ethanol-induced oxidative stress in gastric mucosal cells.
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Figure 7. Effect of treatment with different species of Dendrobium polysaccharides on ROS levels
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(B) Relative fluorescence intensity of ROS. (** p < 0.01, *** p < 0.001 denote statistically significant
differences between the treated and model groups; ### p < 0.001 denotes a statistically significant
difference between the control and model groups).

4. Discussion

All eight Dendrobium polysaccharides mainly consist of Man and Glc, with a small
amount of Gal and Ara; however, the proportion of monosaccharides is varied. The
molecular weights of all the Dendrobium polysaccharides are >1 × 105 Da, among which
DHP has the smallest molecular weight. Additionally, Dendrobium polysaccharides alleviate
ethanol-induced oxidative stress and inflammatory response in gastric mucosal cells by
enhancing the activity of antioxidant enzymes (SOD, GSH-PX, and CAT) and reducing
the levels of MDA and ROS. The components also promote cell migration and repair,
protecting the gastric mucosa from damage. Based on the polysaccharide composition,
although all Dendrobium had protective effects on gastric mucosa, DHP showed better
protective effects in general. Pan et al. [41] compared the hypoglycemic and antioxidant
activities of four Dendrobium polysaccharides (DHP, DOP, DNP, DCP) and found that
DHP was the most effective. However, this difference in activity was only presumed
to be the difference between the physicochemical properties of the polysaccharides, and
the correlation between activity and structure was not elucidated in detail. In contrast,
Liu et al. [42] found that the anti-gastric cancer activity of DHP was closely related to its
Mw and O-acetyl groups.

In order to further investigate the structure-activity relationship of Dendrobium polysac-
charides in gastric mucosal protection, we further carried out a correlation analysis. First,
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Figure 8A corresponds to the structural composition of Dendrobium polysaccharides. A
positive correlation was established between M/G and DA with a Pearson’s correlation
coefficient of r = 0.40, indicating that an increased M/G ratio is associated with an increased
degree of acetylation in the polysaccharides. Concurrently, a negative correlation was ob-
served between Mw and DA (Pearson’s correlation coefficient of r = −0.30), suggesting that
polysaccharides with higher molecular weights tend to have lower degrees of acetylation.
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Figure 8B elucidates the influence of Mw, DA, and M/G on various bioactivity indices.
Interestingly, a significant correlation was established between DA and CAT, ROS, and
the average gaps of cells (Pearson’s correlation coefficients were r = 0.50, r = −0.33, and
r = −0.48, respectively). This finding suggests that an elevated DA may be conducive to
increased CAT activity, decreased ROS production, and reduced cell average gaps; these
phenomena are indicators of enhanced cellular proliferation and migration. In addition,
Mw is correlated with SOD, CAT, GSH-Px, MDA, and average gaps (Pearson’s correlation
coefficients were r = −0.65, r = −0.43, r = −0.45, r = 0.60, and r = 0.63, respectively). These
data suggested that polysaccharides with low Mw may enhance the activity of antioxidant
enzymes, decrease lipid peroxidation product MDA levels, and promote cellular prolifera-
tion and migration. The M/G ratio is weakly correlated with SOD and average gaps, with
correlation coefficients of r = −0.28 and r = 0.33; these values indicate that variations in
M/G have a lesser pronounced effect on these parameters compared to other factors.

In summary, the Mw of polysaccharides has the most significant impact on biochemi-
cal indicators related to gastric mucosal protective effects, followed by DA, while the M/G
ratio does not exhibit significant correlations. Overall, DOP is second only to DHP in terms
of gastric mucosal protection. Although the composition of DOP and DHP monosaccha-
rides is similar, the ratio is different. Moreover, DOP has the highest DA value, with a
slightly larger Mw. Large Mw makes it difficult for organisms to absorb DOP, and small
Mw causes loss of the activity of the monosaccharide [43,44]. Secondly, high DA values
can destabilize the complex molecular structure, resulting in reduced or loss of biolog-
ical activity and function [45]. Thus, DA and Mw may affect the biological activity of
Dendrobium polysaccharides.

5. Conclusions

In summary, eight different Dendrobium polysaccharides were extracted and charac-
terized in this study, and their gastric mucosal protective effects were compared. All the
Dendrobium polysaccharides involved in the comparison have been proven to alleviate the
harmful effects of ethanol on the acute gastric mucosal injury model induced by GES-1
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cells to varying degrees, through enhancing antioxidant capacity and suppressing oxida-
tive stress. Among them, the cell viability of DHP (50 µg/mL) was 97.32% of that of the
control group, and the cell repair effect was the better (83.13 ± 1.05%), and its antioxidant
capacity was the strongest. Overall, DHP has the greatest potential for gastric mucosal
protection. These phenomena could be attributed to the smallest Mw and DA that prompt
the manifestation of the biological activities of the polysaccharides. Taken together, these
findings provide an in-depth understanding of the chemical structure and bioactivity of
Dendrobium polysaccharides and theoretical support for their practical application as gastric
mucosa-protecting components in dietary supplements and functional foods. Although
the present study has provided a comprehensive and systematic assessment at the cellular
level, future studies need to be further confirmed by animal model experiments.
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