Reduced Nitrogen Application with Dense Planting Achieves High Eating Quality and Stable Yield of Rice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site and Growth Conditions
2.2. Experimental Material and Design
2.3. Sampling and Measures
2.3.1. Grain Yield and Its Components
2.3.2. Amylose Content, Protein Content, and Gel Consistency
2.3.3. Taste and Cooking Properties
2.3.4. Flour and Starch Isolation
2.3.5. X-ray Diffraction Analysis of Starch
2.3.6. Small Angle X-ray Scattering Analysis of Starch
2.3.7. Attenuated Total Reflectance-Fourier Transform Infrared Analysis of Starch
2.3.8. Gelatinization Properties
2.3.9. Pasting Properties
2.4. Statistical Analysis
3. Results
3.1. Grain Yield
3.2. Grain Eating Quality
3.3. Amylose Content, Protein Content, and Gel Consistency
3.4. Starch Crystal Structure
3.5. Thermal Properties of Starch
3.6. Pasting Properties of Rice Flour
3.7. Correlation between Grain Eating Quality and Starch Properties
4. Discussion
4.1. Effects of Reduced N Rate with Dense Planting on Rice Grain Yield
4.2. Effects of Reduced N Rate with Dense Planting on Rice Eating Quality and Starch Structure and Properties
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Godfray, H.C.J.; Beddington, J.R.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Pretty, J.; Robinson, S.; Thomas, S.M.; Toulmin, C. Food security: The challenge of feeding 9 billion people. Science 2010, 327, 812–818. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.; Zou, Y. Integrating mechanization with agronomy and breeding to ensure food security in China. Field Crops Res. 2018, 224, 22–27. [Google Scholar] [CrossRef]
- Yang, G.T.; Peng, Y.L.; Liu, R.; Huang, M.; Xiao, Y.; Yang, Z.Y.; Sun, Y.J.; Hu, Y.G.; Chen, H.; Ma, J. Effect of chemical fertilizer reduction on the quality of hybrid rice of different amylose contents. J. Food Biochem. 2022, 46, e14066. [Google Scholar] [CrossRef]
- Martin, M.; Fitzgerald, M.A. Proteins in rice grains influence cooking properties! J. Cereal Sci. 2002, 36, 285–294. [Google Scholar] [CrossRef]
- Siriphollakul, P.; Nakano, K.; Kanlayanarat, S.; Ohashi, S.; Sakai, R.; Rittiron, R.; Maniwara, P. Eating quality evaluation of Khao Dawk Mali 105 rice using near-infrared spectroscopy. LWT—Food Sci. Technol. 2017, 79, 70–77. [Google Scholar] [CrossRef]
- Huang, S.J.; Zhao, C.F.; Zhu, Z.; Zhou, L.H.; Zheng, Q.H.; Wang, C.L. Characterization of eating quality and starch properties of two Wx alleles japonica rice cultivars under different nitrogen treatments. J. Integr. Agric. 2020, 19, 988–998. [Google Scholar] [CrossRef]
- Zhu, Y.; Xu, D.; Ma, Z.T.; Chen, X.Y.; Zhang, M.Y.; Zhang, C.; Liu, G.D.; Wei, H.Y.; Zhang, H.C. Differences in eating quality attributes between japonica rice from the Northeast Region and semiglutinous japonica rice from the Yangtze River Delta of China. Foods 2021, 10, 2770. [Google Scholar] [CrossRef]
- Kanokwan, K.; Keasinee, T.; Sriprapai, C.; Numphet, S.; Thiwawan, W.; Natjaree, P.; Khanittha, D.; Kannika, S.; Qi, Y.; Sukanya, D.; et al. Development of new aromatic rice lines with high eating and cooking qualities. J. Integr. Agric. 2023, 22, 679–690. [Google Scholar]
- Narpinder, S.; Nisha, P.; Gulshan, M.; Sandeep, S.; Khetan, S. Rice grain and starch properties: Effects of nitrogen fertilizer application. Carbohydr. Polym. 2011, 86, 219–225. [Google Scholar]
- Hu, Y.J.; Cong, S.M.; Zhang, H.C. Comparison of the grain quality and starch physicochemical properties between japonica rice cultivars with different contents of amylose, as affected by nitrogen fertilization. Agriculture 2021, 11, 616. [Google Scholar] [CrossRef]
- Chen, X.; Cui, Z.; Fan, M.; Vitousek, P.; Zhao, M. Producing more grain with lower environmental costs. Nature 2014, 514, 486. [Google Scholar] [CrossRef]
- Zhou, C.C.; Huang, Y.C.; Jia, B.Y.; Wang, S.; Dou, F.G.; Samonte, S.; Chen, K.; Wang, Y. Optimization of nitrogen rate and planting density for improving the grain yield of different rice genotypes in Northeast China. Agronomy 2019, 9, 555. [Google Scholar] [CrossRef]
- Zhu, X.C.; Zhang, J.; Zhang, Z.P.; Deng, A.X.; Zhang, W.J. Dense planting with less basal nitrogen fertilization might benefit rice cropping for high yield with less environmental impacts. Eur. J. Agron. 2016, 75, 50–59. [Google Scholar] [CrossRef]
- Liu, F.; Zhou, F.; Wang, X.L.; Zhan, X.X.; Guo, Z.X.; Liu, Q.L.; Wei, G.; Lan, T.Q.; Feng, D.J.; Kong, F.L.; et al. Optimizing nitrogen management enhances stalk lodging resistance and grain yield in dense planting maize by improving canopy light distribution. Eur. J. Agron. 2023, 148, 126871. [Google Scholar] [CrossRef]
- Zhang, X.Q.; Du, S.Z.; Xu, Y.J.; Cao, C.F.; Chen, H. Reducing N application by increasing plant density based on evaluation of root, photosynthesis, N accumulation and yield of wheat. Agronomy 2021, 11, 1080. [Google Scholar] [CrossRef]
- Chen, J.; Zhu, X.C.; Xie, J.; Deng, G.Q.; Tu, T.H.; Guan, X.J.; Yang, Z.; Huang, S.; Chen, X.M.; Qiu, C.F.; et al. Reducing nitrogen application with dense planting increases nitrogen use efficiency by maintaining root growth in a double-rice cropping system. Crop J. 2021, 9, 805–815. [Google Scholar] [CrossRef]
- Chong, H.T.; Jiang, Z.Y.; Shang, L.Y.; Shang, C.; Deng, J.; Zhang, Y.; Huang, L.Y. Dense planting with reduced nitrogen input improves grain yield, protein quality, and resource use efficiency in hybrid rice. J. Plant Growth Regul. 2023, 42, 960–972. [Google Scholar] [CrossRef]
- Liu, W.Y.; Bao, S.Y.; Lu, Y.Y.; Zhang, Q.; Geng, Y.Q.; Shao, X.W.; Guo, L.Y. Effects of dense planting with less nitrogen fertilization on rice yield and nitrogen use efficiency in Northeast China. Int. J. Plant Prod. 2021, 15, 625–634. [Google Scholar] [CrossRef]
- Luo, Z.; Song, H.X.; Huang, M.; Zhang, Z.H.; Peng, Z.; Yang, Z.C.; Shen, T.; Luo, G.W. Dense planting with reducing nitrogen rate increased nitrogen use efficiency and translocated nitrogen in grains in double-cropped rice. Agronomy 2022, 12, 1090. [Google Scholar] [CrossRef]
- Fu, Y.Q.; Zhong, X.H.; Zeng, J.H.; Liang, K.M.; Pan, J.F.; Xin, Y.F.; Liu, Y.Z.; Hu, X.Y.; Peng, B.L.; Chen, R.B.; et al. Improving grain yield, nitrogen use efficiency and radiation use efficiency by dense planting, with delayed and reduced nitrogen application, in double cropping rice in South China. J. Integr. Agric. 2021, 20, 565–580. [Google Scholar] [CrossRef]
- Wei, H.H.; Meng, T.Y.; Ge, J.L.; Zhang, X.B.; Shi, T.Y.; Ding, E.H.; Lu, Y.; Li, X.Y.; Tao, Y.; Chen, Y.L.; et al. Reduced nitrogen application rate with dense planting improves rice grain yield and nitrogen use efficiency: A case study in east China. Crop J. 2021, 9, 954–961. [Google Scholar] [CrossRef]
- Hu, Y.J.; Cai, Q.; Xu, Y.; Xue, J.T.; Yu, E.W.; Wei, H.Y.; Xu, K.; Huo, Z.Y.; Zhang, H.C. One-time fertilization of controlled-release urea with compound fertilizer and rapeseed cake maintains rice grain yield and improves nitrogen use efficiency under reduced nitrogen conditions. Front. Plant Sci. 2023, 14, 1281309. [Google Scholar] [CrossRef]
- Hou, W.; Khan, M.R.; Zhang, J.; Lu, J.; Ren, T.; Cong, R.; Li, X. Nitrogen rate and plant density interaction enhances radiation interception, yield and nitrogen use efficiency of mechanically transplanted rice. Agr. Ecosyst. Environ. 2019, 269, 183–192. [Google Scholar] [CrossRef]
- Huang, L.; Sun, F.; Yuan, S.; Peng, S.; Wang, F. Different mechanisms underlying the yield advantage of ordinary hybrid and super hybrid rice over inbred rice under low and moderate N input conditions. Field Crops Res. 2018, 216, 150–157. [Google Scholar] [CrossRef]
- Ning, H.; Liu, Z.; Wang, Q.; Lin, Z.; Chen, S.; Li, G.; Wang, S.; Ding, Y. Effect of nitrogen fertilizer application on grain phytic acid and protein concentrations in japonica rice and its variations with genotypes. J. Cereal Sci. 2009, 50, 49–55. [Google Scholar] [CrossRef]
- Fei, L.W.; Yang, S.C.; Ma, A.L.Y.; Lunzhu, C.; Wang, M.; Wang, G.J.; Guo, S.W. Grain chalkiness is reduced by coordinating the biosynthesis of protein and starch in fragrant rice (Oryza sativa L.) grain under nitrogen fertilization. Field Crops Res. 2023, 302, 109098. [Google Scholar] [CrossRef]
- Cao, X.M.; Sun, H.Y.; Wang, C.G.; Ren, X.J.; Liu, H.F.; Zhang, Z.J. Effects of late-stage nitrogen fertilizer application on the starch structure and cooking quality of rice. J Sci. Food Agric. 2018, 98, 2332–2340. [Google Scholar] [CrossRef]
- Wang, L.L.; Gong, Y.; Li, Y.X.; Tian, Y.Q. Structure and properties of soft rice starch. Int. J Biol. Macr. 2020, 157, 10–16. [Google Scholar] [CrossRef]
- Guo, X.Q.; Wang, L.Q.; Zhu, G.L.; Xu, Y.J.; Meng, T.Y.; Zhang, W.Y.; Li, G.H.; Zhou, G.S. Impacts of inherent components and nitrogen fertilizer on eating and cooking quality of rice: A review. Foods 2023, 12, 2495. [Google Scholar] [CrossRef]
- Zhou, T.Y.; Zhou, Q.; Li, E.P.; Yuan, L.M.; Wang, W.L.; Zhang, H.; Liu, L.J.; Wang, Z.Q.; Yang, J.C.; Gu, J.F. Effects of nitrogen fertilizer on structure and physicochemical properties of ‘super’ rice starch. Carbohydr. Polym. 2020, 239, 116237. [Google Scholar] [CrossRef]
- Shi, S.J.; Zhang, G.Y.; Li, L.N.; Chen, D.D.; Liu, J.; Cao, C.G.; Jiang, Y. Effects of nitrogen fertilizer on the starch structure, protein distribution, and quality of rice. ACS Food Sci. Technol. 2022, 2, 1347–1354. [Google Scholar] [CrossRef]
- Guo, C.C.; Wuza, R.; Tao, Z.L.; Yuan, X.J.; Luo, Y.H.; Li, F.J.; Yang, G.T.; Chen, Z.K.; Yang, Z.Y.; Sun, Y.J.; et al. Effects of elevated nitrogen fertilizer on the multi-level structure and thermal properties of rice starch granules and their relationship with chalkiness traits. J. Sci. Food Agric. 2023, 103, 7302–7313. [Google Scholar] [CrossRef]
- Li, Y.M.; Liang, C.; Liu, J.F.; Zhou, C.C.; Wu, Z.Z.; Guo, S.M.; Liu, J.X.; Na, A.; Wang, S.; Xin, G.; et al. Moderate reduction in nitrogen fertilizer results in improved rice quality by affecting starch properties without causing yield loss. Foods 2023, 12, 2601. [Google Scholar] [CrossRef]
- Jiang, Y.; Chen, Y.; Zhao, C.; Liu, G.M.; Shi, Y.; Zhao, L.T.; Wang, Y.; Wang, W.L.; Xu, K.; Li, G.H.; et al. The Starch physicochemical properties between superior and inferior grains of japonica rice under panicle nitrogen fertilizer determine the difference in eating quality. Foods 2022, 11, 2489. [Google Scholar] [CrossRef]
- Zhu, D.W.; Zhang, H.C.; Guo, B.W.; Xu, K.; Dai, Q.G.; Wei, C.X.; Zhou, G.S.; Huo, Z.Y. Effects of nitrogen level on structure and physicochemical properties of rice starch. Food Hydrocoll. 2017, 63, 525–532. [Google Scholar] [CrossRef]
Year | Treatment | Appearance | Hardness | Stickiness | Balance | Taste Value |
---|---|---|---|---|---|---|
2019 | CN | 6.55 ± 0.05 b | 6.55 ± 0.05 a | 6.80 ± 0.00 b | 6.55 ± 0.05 b | 69.85 ± 0.45 b |
RN | 7.50 ± 0.10 a | 6.10 ± 0.00 b | 7.60 ± 0.30 a | 7.50 ± 0.10 a | 75.70 ± 0.90 a | |
RNDP | 7.30 ± 0.10 a | 6.20 ± 0.20 b | 7.50 ± 0.30 a | 7.30 ± 0.00 a | 74.45 ± 0.05 a | |
2020 | CN | 6.70 ± 0.40 b | 6.45 ± 0.25 a | 6.95 ± 0.35 b | 6.75 ± 0.45 b | 70.95 ± 2.65 b |
RN | 7.30 ± 0.00 a | 6.15 ± 0.05 a | 7.55 ± 0.05 a | 7.40 ± 0.00 a | 75.05 ± 0.15 a | |
RNDP | 7.20 ± 0.10 a | 6.15 ± 0.05 a | 7.40 ± 0.10 a | 7.30 ± 0.10 a | 74.20 ± 0.60 a |
Year | Treatment | Amylose Content (%) | Protein Content (%) | Gel Consistency (mm) |
---|---|---|---|---|
2019 | CN | 11.35 ± 0.05 a | 8.23 ± 0.18 a | 86.55 ± 0.15 b |
RN | 12.08 ± 0.19 a | 7.49 ± 0.17 b | 92.15 ± 1.45 a | |
RNDP | 11.69 ± 0.14 a | 7.71 ± 0.09 ab | 91.35 ± 1.15 a | |
2020 | CN | 11.33 ± 0.08 a | 8.21 ± 0.05 a | 87.65 ± 4.85 b |
RN | 12.18 ± 0.27 a | 7.45 ± 0.10 b | 90.60 ± 0.10 a | |
RNDP | 11.76 ± 0.20 a | 7.68 ± 0.65 ab | 88.50 ± 2.10 ab |
Year | Treatment | Relative Crystallinity (%) | IR Ratio of 1045/1022 cm−1 | SAXS Parameters | |
---|---|---|---|---|---|
Imax (Counts) | D (nm) | ||||
2019 | CN | 21.15 ± 0.92 a | 0.702 ± 0.01 a | 238.56 ± 7.50 a | 9.03 ± 1.41 a |
RN | 18.90 ± 0.28 b | 0.710 ± 0.01 a | 204.39 ± 8.68 b | 9.08 ± 0.92 a | |
RNDP | 19.20 ± 0.71 ab | 0.711 ± 0.00 a | 190.97 ± 5.34 b | 9.09 ± 0.75 a | |
2020 | CN | 21.35 ± 0.78 a | 0.741 ± 0.02 a | 209.27 ± 15.17 a | 9.18 ± 0.44 a |
RN | 19.75 ± 0.92 b | 0.751 ± 0.01 a | 193.48 ± 12.11 b | 9.06 ± 0.65 a | |
RNDP | 20.00 ± 1.70 ab | 0.758 ± 0.01 a | 191.23 ± 6.45 b | 9.12 ± 0.42 a |
Year | Treatment | To (°C) | Tp (°C) | Tc (°C) | ΔHgel (J/g) | ΔHret (J/g) | %R |
---|---|---|---|---|---|---|---|
2019 | CN | 61.03 ± 0.24 a | 67.14 ± 0.29 a | 73.34 ± 0.44 a | 10.00 ± 1.07 a | 2.86 ± 0.22 a | 28.63 ± 5.30 a |
RN | 60.83 ± 0.33 a | 66.88 ± 0.16 a | 73.05 ± 0.07 a | 8.71 ± 0.22 b | 2.35 ± 0.21 b | 26.98 ± 3.04 b | |
RNDP | 60.90 ± 0.14 a | 67.03 ± 0.38 a | 73.27 ± 1.04 a | 9.17 ± 0.64 ab | 2.47 ± 0.07 b | 26.94 ± 1.14 b | |
2020 | CN | 59.07 ± 0.38 a | 66.86 ± 0.01 a | 76.94 ± 0.38 a | 11.55 ± 0.42 a | 3.07 ± 0.99 a | 26.57 ± 9.50 a |
RN | 58.98 ± 0.12 a | 66.78 ± 0.12 a | 76.08 ± 0.12 a | 10.63 ± 0.93 ab | 2.35 ± 0.20 b | 22.08 ± 3.78 b | |
RNDP | 59.25 ± 0.35 a | 66.81 ± 0.22 a | 76.08 ± 0.35 a | 9.61 ± 1.09 b | 2.21 ± 0.93 b | 23.01 ± 12.41 ab |
Year | Treatment | Peak Viscosity (cP) | Trough Viscosity (cP) | Breakdown (cP) | Final Viscosity (cP) | Setback (cP) | Pasting Temperature (°C) |
---|---|---|---|---|---|---|---|
2019 | CN | 2420.0 ± 50.0 b | 1515.0 ± 28.0 a | 905.0 ± 22.0 b | 2095.0 ± 25.0 a | −325.0 ± 25.0 a | 72.8 ± 0.0 a |
RN | 2569.0 ± 0.0 a | 1514.5 ± 29.5 a | 1054.5 ± 29.5 a | 2107.5 ± 17.5 a | −461.5 ± 17.5 b | 72.4 ± 0.4 a | |
RNDP | 2555.0 ± 67.0 a | 1581.5 ± 74.5 a | 973.5 ± 7.5 ab | 2203.5 ± 67.5 a | −351.5 ± 0.5 ab | 72.8 ± 0.0 a | |
2020 | CN | 2135.0 ± 86.0 b | 1364.5 ± 100.5 a | 770.5 ± 14.5 b | 1899.5 ± 92.5 a | −235.5 ± 6.5 a | 74.0 ± 0.4 a |
RN | 2292.0 ± 108.0 a | 1400.5 ± 122.5 a | 891.5 ± 14.5 a | 1955.5 ± 126.5 a | −336.5 ± 18.5 b | 73.7 ± 0.0 a | |
RNDP | 2246.0 ± 135.0 a | 1374.0 ± 156.0 a | 872.0 ± 21.0 a | 1927.0 ± 169.0 a | −319.0 ± 34.0 b | 73.7 ± 0.0 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, Y.; Sun, L.; Xue, J.; Cai, Q.; Xu, Y.; Guo, J.; Wei, H.; Huo, Z.; Xu, K.; Zhang, H. Reduced Nitrogen Application with Dense Planting Achieves High Eating Quality and Stable Yield of Rice. Foods 2024, 13, 3017. https://doi.org/10.3390/foods13183017
Hu Y, Sun L, Xue J, Cai Q, Xu Y, Guo J, Wei H, Huo Z, Xu K, Zhang H. Reduced Nitrogen Application with Dense Planting Achieves High Eating Quality and Stable Yield of Rice. Foods. 2024; 13(18):3017. https://doi.org/10.3390/foods13183017
Chicago/Turabian StyleHu, Yajie, Liang Sun, Jiantao Xue, Qin Cai, Yi Xu, Jinghao Guo, Haiyan Wei, Zhongyang Huo, Ke Xu, and Hongcheng Zhang. 2024. "Reduced Nitrogen Application with Dense Planting Achieves High Eating Quality and Stable Yield of Rice" Foods 13, no. 18: 3017. https://doi.org/10.3390/foods13183017
APA StyleHu, Y., Sun, L., Xue, J., Cai, Q., Xu, Y., Guo, J., Wei, H., Huo, Z., Xu, K., & Zhang, H. (2024). Reduced Nitrogen Application with Dense Planting Achieves High Eating Quality and Stable Yield of Rice. Foods, 13(18), 3017. https://doi.org/10.3390/foods13183017