Chemical Characterization and Temporal Variability of Pasta Condiment By-Products for Sustainable Waste Management
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Samples and Storage Conditions
2.3. Determination of pH
2.4. Determination of Total Phenolic Content
2.5. Qualitative Determination of Lycopene
2.6. Near-Infrared Analysis
2.7. Determination of the Volatile Fraction by SPME-GC-MS
2.8. Data Analysis
2.9. Software
3. Results
3.1. pH and Total Phenolic Content
3.2. Qualitative Lycopene Analysis Results
3.3. NIR Spectra Analysis
3.4. Putatively Identification of the Volatile Compounds by SPME-GC-MS
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Conti, V.; Romi, M.; Parri, S.; Aloisi, I.; Marino, G.; Cai, G.; Cantini, C. Morpho-Physiological Classification of Italian Tomato Cultivars (Solanum lycopersicum L.) According to Drought Tolerance during Vegetative and Reproductive Growth. Plants 2021, 10, 1826. [Google Scholar] [CrossRef] [PubMed]
- Secondi, L.; Principato, L.; Ruini, L.; Guidi, M. Reusing Food Waste in Food Manufacturing Companies: The Case of the Tomato-Sauce Supply Chain. Sustainability 2019, 11, 2154. [Google Scholar] [CrossRef]
- Eslami, E.; Carpentieri, S.; Pataro, G.; Ferrari, G. A Comprehensive Overview of Tomato Processing By-Product Valorization by Conventional Methods versus Emerging Technologies. Foods 2023, 12, 166. [Google Scholar] [CrossRef] [PubMed]
- Benítez, J.J.; Castillo, P.M.; Del Río, J.C.; León-Camacho, M.; Domínguez, E.; Heredia, A.; Guzmán-Puyol, S.; Athanassiou, A.; Heredia-Guerrero, J.A. Valorization of Tomato Processing By-Products: Fatty Acid Extraction and Production of Bio-Based Materials. Materials 2018, 11, 2211. [Google Scholar] [CrossRef]
- Coelho, M.C.; Rodrigues, A.S.; Teixeira, J.A.; Pintado, M.E. Integral Valorisation of Tomato By-Products towards Bioactive Compounds Recovery: Human Health Benefits. Food Chem. 2023, 410, 135319. [Google Scholar] [CrossRef]
- Kaboré, K.; Konaté, K.; Sanou, A.; Dakuyo, R.; Sama, H.; Santara, B.; Compaoré, E.W.R.; Dicko, M.H. Tomato By-Products, a Source of Nutrients for the Prevention and Reduction of Malnutrition. Nutrients 2022, 14, 2871. [Google Scholar] [CrossRef]
- Martínez-Valverde, I.; Periago, M.J.; Provan, G.; Chesson, A. Phenolic Compounds, Lycopene and Antioxidant Activity in Commercial Varieties of Tomato (Lycopersicum esculentum). J. Sci. Food Agric. 2002, 82, 323–330. [Google Scholar] [CrossRef]
- Szabo, K.; Cătoi, A.-F.; Vodnar, D.C. Bioactive Compounds Extracted from Tomato Processing By-Products as a Source of Valuable Nutrients. Plant Foods Hum. Nutr. Dordr. Neth. 2018, 73, 268–277. [Google Scholar] [CrossRef]
- Viuda-Martos, M.; Sanchez-Zapata, E.; Sayas-Barberá, E.; Sendra, E.; Pérez-Álvarez, J.A.; Fernández-López, J. Tomato and Tomato Byproducts. Human Health Benefits of Lycopene and Its Application to Meat Products: A Review. Crit. Rev. Food Sci. Nutr. 2014, 54, 1032–1049. [Google Scholar] [CrossRef]
- Omoni, A.O.; Aluko, R.E. The Anti-Carcinogenic and Anti-Atherogenic Effects of Lycopene: A Review. Trends Food Sci. Technol. 2005, 16, 344–350. [Google Scholar] [CrossRef]
- Stagos, D.; Amoutzias, G.D.; Matakos, A.; Spyrou, A.; Tsatsakis, A.M.; Kouretas, D. Chemoprevention of Liver Cancer by Plant Polyphenols. Food Chem. Toxicol. 2012, 50, 2155–2170. [Google Scholar] [CrossRef] [PubMed]
- Nour, V.; Panaite, T.D.; Ropota, M.; Turcu, R.; Trandafir, I.; Corbu, A.R. Nutritional and Bioactive Compounds in Dried Tomato Processing Waste. CYTA J. Food 2018, 16, 222–229. [Google Scholar] [CrossRef]
- Stewart, A.J.; Bozonnet, S.; Mullen, W.; Jenkins, G.I.; Lean, M.E.; Crozier, A. Occurrence of Flavonols in Tomatoes and Tomato-Based Products. J. Agric. Food Chem. 2000, 48, 2663–2669. [Google Scholar] [CrossRef] [PubMed]
- Farinon, B.; Felli, M.; Sulli, M.; Diretto, G.; Savatin, D.V.; Mazzucato, A.; Merendino, N.; Costantini, L. Tomato Pomace Food Waste from Different Variants as a High Antioxidant Potential Resource. Food Chem. 2024, 452, 139509. [Google Scholar] [CrossRef] [PubMed]
- Ouatmani, T.; Haddadi-Guemghar, H.; Hadjal, S.; Boulekbache-Makhlouf, L.; Madani, K. Tomato By-Products: A Potentially Promising Bioresource for the Recovery of Bioactive Compounds and Nutraceuticals. In Nutraceutics from Agri-Food By-Products; Wiley: Hoboken, NJ, USA, 2023; pp. 137–171. [Google Scholar]
- Clément, A.; Dorais, M.; Vernon, M. Multivariate Approach to the Measurement of Tomato Maturity and Gustatory Attributes and Their Rapid Assessment by Vis−NIR Spectroscopy. J. Agric. Food Chem. 2008, 56, 1538–1544. [Google Scholar] [CrossRef]
- Pellacani, S.; Cocchi, M.; Durante, C.; Strani, L. Exploring the Effect of Different Storage Conditions on the Aroma Profile of Bread by Using Arrow-SPME GC-MS and Chemometrics. Molecules 2023, 28, 3587. [Google Scholar] [CrossRef]
- Baccolo, G.; Quintanilla-Casas, B.; Vichi, S.; Augustijn, D.; Bro, R. From Untargeted Chemical Profiling to Peak Tables—A Fully Automated AI Driven Approach to Untargeted GC-MS. TrAC Trends Anal. Chem. 2021, 145, 116451. [Google Scholar] [CrossRef]
- Pellacani, S.; Durante, C.; Celli, S.; Mariani, M.; Marchetti, A.; Cocchi, M.; Strani, L. Optimization of an Analytical Method Based on SPME-Arrow and Chemometrics for the Characterization of the Aroma Profile of Commercial Bread. Chemom. Intell. Lab. Syst. 2023, 241, 104940. [Google Scholar] [CrossRef]
- Li Vigni, M.; Durante, C.; Cocchi, M. Data Handling in Science and Technology. In Chemometrics in Food Chemistry; Chapter 3—Exploratory Data Analysis; Marini, F., Ed.; Elsevier: Amsterdam, The Netherlands, 2013; Voluem 28, pp. 55–126. [Google Scholar]
- ASTM D1193—91; Test Method for Oxygen Gas Transmission Rate Through Plastic Film and Sheeting Using a Coulometric Sensor. A Novel NIR Spectroscopic Method for Rapid Analyses of Lycopene, Total Acid, Sugar, Phenols and Antioxidant Activity in Dehydrated Tomato Samples. ASTM International: West Conshohocken, PA, USA, 2017. [CrossRef]
- Ding, X.; Guo, Y.; Ni, Y.; Kokot, S. A Novel NIR Spectroscopic Method for Rapid Analyses of Lycopene, Total Acid, Sugar, Phenols and Antioxidant Activity in Dehydrated Tomato Samples. Vib. Spectrosc. 2016, 82, 1–9. [Google Scholar] [CrossRef]
- Zardetto, S.; Barbanti, D. Shelf Life Assessment of Fresh Green Pesto Using an Accelerated Test Approach. Food Packag. Shelf Life 2020, 25, 100524. [Google Scholar] [CrossRef]
- Santos, J.E.; Villarino, B.; Zosa, A.; Dayrit, F. Analysis of Volatile Organic Compounds in Virgin Coconut Oil and Their Sensory Attibutes. Philipp. J. Sci. 2011, 140, 161–171. [Google Scholar]
- Commission Regulation (EEC) No 1764/86 of 27 May 1986 on Minimum Quality Requirements for Tomato-Based Products Eligible for Production Aid. 1986, Volume 153. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:31986R1764:EN:pdf (accessed on 19 July 2024).
- Díaz, P.; Garrido, M.D.; Bañón, S. The Effects of Packaging Method (Vacuum Pouch vs. Plastic Tray) on Spoilage in a Cook-Chill Pork-Based Dish Kept under Refrigeration. Meat Sci. 2010, 84, 538–544. [Google Scholar] [CrossRef] [PubMed]
- Nicosia, C.; Mezza, I.; Pulvirenti, A.; Licciardello, F. Assessment of the Secondary Shelf Life of Bolognese Sauce Based on Domestic Use Simulation. Food Packag. Shelf Life 2023, 40, 101172. [Google Scholar] [CrossRef]
- Vallverdú-Queralt, A.; Arranz, S.; Medina-Remón, A.; Casals-Ribes, I.; Lamuela-Raventós, R.M. Changes in Phenolic Content of Tomato Products during Storage. J. Agric. Food Chem. 2011, 59, 9358–9365. [Google Scholar] [CrossRef] [PubMed]
- Perea-Domínguez, X.P.; Hernández-Gastelum, L.Z.; Olivas-Olguin, H.R.; Espinosa-Alonso, L.G.; Valdez-Morales, M.; Medina-Godoy, S. Phenolic Composition of Tomato Varieties and an Industrial Tomato By-Product: Free, Conjugated and Bound Phenolics and Antioxidant Activity. J. Food Sci. Technol. 2018, 55, 3453–3461. [Google Scholar] [CrossRef]
- Lavelli, V.; Peri, C.; Rizzolo, A. Antioxidant Activity of Tomato Products as Studied by Model Reactions Using Xanthine Oxidase, Myeloperoxidase, and Copper-Induced Lipid Peroxidation. J. Agric. Food Chem. 2000, 48, 1442–1448. [Google Scholar] [CrossRef]
- Górecka, D.; Wawrzyniak, A.; Jędrusek-Golińska, A.; Dziedzic, K.; Hamułka, J.; Kowalczewski, P.Ł.; Walkowiak, J. Lycopene in Tomatoes and Tomato Products. Open Chem. 2020, 18, 752–756. [Google Scholar] [CrossRef]
- Masino, F.; Ulrici, A.; Antonelli, A. Extraction and Quantification of Main Pigments in Pesto Sauces. Eur. Food Res. Technol. 2008, 226, 569–575. [Google Scholar] [CrossRef]
- Borello, E.; Roncucci, D.; Domenici, V. Study of the Evolution of Pigments from Freshly Pressed to ‘On-the-Shelf’ Extra-Virgin Olive Oils by Means of Near-UV Visible Spectroscopy. Foods 2021, 10, 1891. [Google Scholar] [CrossRef]
- Shi, J.; Le Maguer, M. Lycopene in Tomatoes: Chemical and Physical Properties Affected by Food Processing. Crit. Rev. Biotechnol. 2000, 20, 293–334. [Google Scholar] [CrossRef]
- Workman, J. Spectral Interpretation. In Handbook of Near-Infrared Analysis; CRC Press: Boca Raton, FL, USA, 2021; ISBN 978-1-351-26988-9. [Google Scholar]
- Strani, L.; D’Alessandro, A.; Ballestrieri, D.; Durante, C.; Cocchi, M. Fast GC E-Nose and Chemometrics for the Rapid Assessment of Basil Aroma. Chemosensors 2022, 10, 105. [Google Scholar] [CrossRef]
- Hyldgaard, M.; Mygind, T.; Meyer, R.L. Essential Oils in Food Preservation: Mode of Action, Synergies, and Interactions with Food Matrix Components. Front. Microbiol. 2012, 3, 12. [Google Scholar] [CrossRef] [PubMed]
- Falleh, H.; Ben Jemaa, M.; Saada, M.; Ksouri, R. Essential Oils: A Promising Eco-Friendly Food Preservative. Food Chem. 2020, 330, 127268. [Google Scholar] [CrossRef] [PubMed]
- Fongang Fotsing, Y.S.; Kezetas Bankeu, J.J. Terpenoids as Important Bioactive Constituents of Essential Oils. In Essential oils—Bioactive Compounds, New Perspectives and Application; Intech Open: London, UK, 2020. [Google Scholar]
- Amadei, G.; Ross, B.M. Quantification of Character-Impacting Compounds in Ocimum Basilicum and “Pesto Alla Genovese” with Selected Ion Flow Tube Mass Spectrometry. Rapid Commun. Mass Spectrom. 2012, 26, 219–225. [Google Scholar] [CrossRef] [PubMed]
- Salvadeo, P.; Boggia, R.; Evangelisti, F.; Zunin, P. Analysis of the Volatile Fraction of “Pesto Genovese” by Headspace Sorptive Extraction (HSSE). Food Chem. 2007, 105, 1228–1235. [Google Scholar] [CrossRef]
- Saini, R.K.; Bekhit, A.A.E.-D.; Roohinejad, S.; Rengasamy, K.R.R.; Keum, Y.-S. Chemical Stability of Lycopene in Processed Products: A Review of the Effects of Processing Methods and Modern Preservation Strategies. J. Agric. Food Chem. 2020, 68, 712–726. [Google Scholar] [CrossRef]
- Shi, K.; Hu, T.; Zhang, P.; Zhang, S.; Xu, Y.; Zhang, Z.; Pan, S. Thermal Conditions and Active Substance Stability Affect the Isomerization and Degradation of Lycopene. Food Res. Int. 2022, 162, 111987. [Google Scholar] [CrossRef]
Compound Name | Match Factor | Retention Time (min) |
---|---|---|
Acetic acid | 96 | 8.87 |
3-methyl-Butanal | 90 | 9.39 |
Heptane | 88 | 12.41 |
4-methyl-2-Pentanol | 92 | 13.98 |
Octane | 94 | 16.57 |
(Z)-3-Hexen-1-ol | 96 | 18.31 |
1-Hexanol | 87 | 18.87 |
1,3-dimethyl-benzene | 96 | 19.40 |
Heptanal | 90 | 20.23 |
Nonane | 86 | 21.14 |
(E)-2-Heptenal | 93 | 22.66 |
Benzaldehyde | 87 | 22.83 |
α-Pinene | 95 | 22.94 |
Hexanoic acid | 97 | 23.37 |
Heptanol | 96 | 23.50 |
Camphene | 95 | 23.64 |
6-Methyl-5-hepten-2-one | 92 | 23.99 |
Sabinene | 93 | 24.45 |
Myrcene | 97 | 24.88 |
2-β-Pinene | 91 | 24.81 |
(Z)-3-Hexen-1-ol acetate | 85 | 24.94 |
Octanal | 93 | 24.81 |
2-ethyl-1-hexanol, | 85 | 26.15 |
Benzeneacetaldehyde | 87 | 26.29 |
P-Cymene | 93 | 26.42 |
Limonene | 95 | 26.86 |
Eucalyptol | 98 | 26.91 |
2-Octenal | 93 | 27.10 |
δ-3-Carene | 96 | 27.24 |
Heptanoic acid | 87 | 27.46 |
n-Octanol | 92 | 27.80 |
γ-Terpinene | 93 | 27.97 |
Nonanal | 96 | 29.19 |
Linalool | 94 | 29.22 |
Benzeneethanol | 93 | 29.44 |
p-Cymenene | 86 | 28.98 |
p-Mentha-1,5,8-triene | 95 | 30.02 |
Nonenal | 96 | 31.10 |
(+)-camphor | 94 | 31.12 |
Octanoic acid | 85 | 31.20 |
(−)-Borneol | 92 | 31.99 |
3-Pinanone | 86 | 32.07 |
5-(hydroxymethyl)-2-Furancarboxaldehyde | 96 | 32.30 |
δ-Terpineol | 87 | 32.26 |
Estragole | 93 | 32.53 |
(−)-α-Terpineol | 93 | 32.55 |
n-Decanal | 86 | 32.64 |
(+)-Verbenone | 96 | 32.97 |
Dodecane | 86 | 33.00 |
Neral | 88 | 33.64 |
2-Phenylethyl acetate | 96 | 33.95 |
Nonanoic acid | 96 | 34.08 |
(E)-2-Decenal | 97 | 34.19 |
Geranial | 85 | 34.35 |
(E,E)-2,4-Decadienal | 86 | 35.03 |
Carvacrol | 95 | 35.14 |
(−)-Bornyl acetate | 96 | 35.27 |
Undecanal | 86 | 35.39 |
Triacetin | 85 | 35.53 |
Decanoic acid | 87 | 36.48 |
Eugenol | 98 | 36.56 |
2-Undecenal | 96 | 36.72 |
Methyleugenol | 85 | 37.31 |
β-Elemene | 93 | 38.01 |
Caryophyllene | 96 | 38.85 |
α-Bergamotene | 96 | 38.85 |
α-Humulene | 90 | 39.49 |
(E)-β-Farnesene | 88 | 39.79 |
Myristicin | 96 | 39.83 |
β-Cubebene | 85 | 39.92 |
Lauric acid | 86 | 40.37 |
Myristic acid | 86 | 43.84 |
Palmitic acid | 96 | 48.48 |
Palmitic acid, ethyl ester | 86 | 49.64 |
(Z,Z)-9,12-Octadecadienoic acid | 85 | 54.43 |
cis-13-Octadecenoic acid | 96 | 54.74 |
Stearic acid | 86 | 55.59 |
Oleic acid, ethyl ester | 95 | 56.19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Strani, L.; Farioli, G.; Cocchi, M.; Durante, C.; Olarini, A.; Pellacani, S. Chemical Characterization and Temporal Variability of Pasta Condiment By-Products for Sustainable Waste Management. Foods 2024, 13, 3018. https://doi.org/10.3390/foods13183018
Strani L, Farioli G, Cocchi M, Durante C, Olarini A, Pellacani S. Chemical Characterization and Temporal Variability of Pasta Condiment By-Products for Sustainable Waste Management. Foods. 2024; 13(18):3018. https://doi.org/10.3390/foods13183018
Chicago/Turabian StyleStrani, Lorenzo, Giulia Farioli, Marina Cocchi, Caterina Durante, Alessandra Olarini, and Samuele Pellacani. 2024. "Chemical Characterization and Temporal Variability of Pasta Condiment By-Products for Sustainable Waste Management" Foods 13, no. 18: 3018. https://doi.org/10.3390/foods13183018
APA StyleStrani, L., Farioli, G., Cocchi, M., Durante, C., Olarini, A., & Pellacani, S. (2024). Chemical Characterization and Temporal Variability of Pasta Condiment By-Products for Sustainable Waste Management. Foods, 13(18), 3018. https://doi.org/10.3390/foods13183018