In Vivo Tissue Distribution and Pharmacokinetics of FITC-Labelled Hizikia fusiforme Polyphenol–Polysaccharide Complex in Mice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation and Purification of HPC
2.3. Preparation of FITC Labelled HPC and Its Purified Fractions
2.4. Chemical Composition Analysis before and after FITC Labelling
2.4.1. Chemical Composition Analyses
2.4.2. Monophenols, Monosaccharide Composition, and Molecular Weights
2.5. Determination of HPC-FITC, PC1-FITC, and PC4-FITC Substitution Degree
2.6. Fourier Transform Infrared Spectroscopy Analysis
2.7. Animal Experiments
2.8. Development of a Method for the Quantitative Analysis of FITC by HPC and Its Purified Fractions
2.8.1. Establishment of Quantitative Analytical Methods and Sample Preparation
2.8.2. Determination of Sample Recovery, Precision, and Stability
2.9. Establishment of Standard Curves for Plasma and Homogenised Tissue, and Excreta
2.10. Analysis of Plasma Pharmacokinetics
2.11. Determination of Tissue and Faecal Samples
2.12. Statistical Analyses
3. Results and Discussion
3.1. Chemical Composition Analysis of HPC and Purified Fractions before and after FITC Labelling
3.2. Validation of Fluorescent Labelling
3.2.1. Degree of Substitution
3.2.2. Fourier Transform Infrared Spectroscopy
3.3. Establishment and Validation of Quantitative Analysis Methods
3.3.1. Standard Curve Plotting
3.3.2. Recovery, Precision, and Stability
3.4. In Vivo Pharmacokinetic and Tissue Distribution Studies of Labelled Polyphenol–Polysaccharide Complex
3.4.1. Pharmacokinetic Parameters of HPC-FITC, PC1-FITC, PC4-FITC in Mice by Gavage
3.4.2. Excretion Ratios of Gavage HPC-FITC, PC1-FITC, and PC4-FITC in Mice
3.4.3. Tissue Distribution Pattern of HPC-FITC, PC1-FITC, and PC4-FITC in Mice by Gavage
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Meinita, M.D.N.; Harwanto, D.; Sohn, J.-H.; Kim, J.-S.; Choi, J.-S. Hizikia fusiformis: Pharmacological and nutritional properties. Foods 2021, 10, 1660. [Google Scholar] [CrossRef]
- Wang, L.; Jayawardena, T.U.; Yang, H.-W.; Lee, H.G.; Kang, M.-C.; Sanjeewa, K.A.; Oh, J.Y.; Jeon, Y.-J. Isolation, characterization, and antioxidant activity evaluation of a fucoidan from an enzymatic digest of the edible seaweed, Hizikia fusiforme. Antioxidants 2020, 9, 363. [Google Scholar] [CrossRef]
- Tang, M.T.; Jiang, H.; Wan, C.; Wang, X.L.; Zhou, S.; Zhou, T. Hypolipidemic Activity and Mechanism of Action of Sargassum fusiforme Polysaccharides. J. Chem. Biodivers. 2023, 20, e202300264. [Google Scholar] [CrossRef]
- Shen, P.; Gu, Y.; Zhang, C.; Sun, C.; Qin, L.; Yu, C.; Qi, H.J. Metabolomic approach for characterization of polyphenolic compounds in Laminaria japonica, Undaria pinnatifida, Sargassum fusiforme and Ascophyllum nodosum. Foods 2021, 10, 192. [Google Scholar] [CrossRef]
- Yiming, Z.; Ziye, Z.; Zhenxing, L.; Xiu-Min, L.; Hao, W.; Hong, L. Insight into the conformational and allergenicity alterations of shrimp tropomyosin induced by Sargassum fusiforme polyphenol. J. Food Res. Int. 2023, 165, 112521. [Google Scholar]
- Nie, J.; Chen, D.; Ye, J.; Lu, Y.; Dai, Z. Optimization and kinetic modeling of ultrasonic-assisted extraction of fucoxanthin from edible brown algae Sargassum fusiforme using green solvents. Ultrason. Sonochemistry 2021, 77, 105671. [Google Scholar] [CrossRef]
- Liyanage, N.M.; Lee, H.G.; Nagahawatta, D.P.; Jayawardhana, H.H.A.C.K.; Song, K.M.; Choi, Y.S. Fucoidan from Sargassum autumnale Inhibits Potential Inflammatory Responses via NF-κB and MAPK Pathway Suppression in Lipopolysaccharide-Induced RAW 264.7 Macrophages. J. Mar. Drugs 2023, 21, 374. [Google Scholar] [CrossRef]
- Chaudhary, P.; Kim, S.J.; Dahal, S.; Joshi, S.; Son, S.B.; Kim, S.Y.; Eom, S.-H.; Kim, K.T.; Kim, J.-A. Potent inhibitory effect of Hizikia fusiformis cold water extract on human macrophages and mouse colon inflammatory responses. J. Funct. Foods 2023, 109, 105795. [Google Scholar] [CrossRef]
- Wan, C.; Jiang, H.; Tang, M.T.; Zhou, S.; Zhou, T. Purification, physico-chemical properties and antioxidant activity of polysaccharides from Sargassum fusiforme by hydrogen peroxide/ascorbic acid-assisted extraction. Int. J. Biol. Macromol. 2022, 223, 490–499. [Google Scholar] [CrossRef]
- Chang, S.; Chen, X.; Chen, Y.; You, L.; Hileuskaya, K. UV/H2O2-Degraded Polysaccharides fromSargassum fusiforme : Purification, Structural Properties, and Anti-Inflammatory Activity. J. Mar. Drugs 2023, 21, 561. [Google Scholar] [CrossRef]
- Zheng, Q.; Jia, R.B.; Ou, Z.R.; Li, Z.R.; Zhao, M.; Luo, D.; Lin, L. Comparative study on the structural characterization and α-glucosidase inhibitory activity of polysaccharide fractions extracted from Sargassum fusiforme at different pH conditions. J. Int. J. Biol. Macromol. 2021, 194, 602–610. [Google Scholar] [CrossRef]
- Liu, X.; Xi, X.; Jia, A.; Zhang, M.; Cui, T.; Bai, X.; Shi, Y.; Liu, C. A fucoidan from Sargassum fusiforme with novel structure and its regulatory effects on intestinal microbiota in high-fat diet-fed mice. J. Food Chem. 2021, 358, 129908. [Google Scholar] [CrossRef]
- Li, S.; He, Y.; Zhong, S.; Li, Y.; Di, Y.; Wang, Q.; Ren, D.; Liu, S.; Li, D.; Cao, F. Antioxidant and Anti-Aging Properties of Polyphenol–Polysaccharide Complex Extract fromHizikia fusiforme. J. Foods 2023, 12, 3725. [Google Scholar] [CrossRef]
- Oliver, S.; Vittorio, O.; Cirillo, G.; Boyer, C. Enhancing the therapeutic effects of polyphenols with macromolecules. Polym. Chem. 2016, 7, 1529–1544. [Google Scholar] [CrossRef]
- Szejk-Arendt, M.; Czubak-Prowizor, K.; Macieja, A.; Poplawski, T.; Olejnik, A.K.; Pawlaczyk-Graja, I.; Gancarz, R.; Zbikowska, H. Polyphenolic-polysaccharide conjugates from medicinal plants of Rosaceae/Asteraceae family protect human lymphocytes but not myeloid leukemia K562 cells against radiation-induced death. Int. J. Biol. Macromol. 2020, 156, 1445–1454. [Google Scholar] [CrossRef]
- Obaroakpo, J.U.; Liu, L.; Zhang, S.; Lu, J.; Liu, L.; Pang, X.; Lv, J. In vitro modulation of glucagon-like peptide release by DPP-IV inhibitory polyphenol-polysaccharide conjugates of sprouted quinoa yoghurt. J. Food Chem. 2020, 324, 126857. [Google Scholar] [CrossRef]
- Pawlaczyk-Graja, I.; Balicki, S.; Wilk, K.A. Effect of various extraction methods on the structure of polyphenolic-polysaccharide conjugates from Fragaria vesca L. Leaf. J. Int. J. Biol. Macromol. 2019, 130, 664–674. [Google Scholar] [CrossRef]
- Wu, Z.; Zhang, Y.; Nie, G.; Liu, J.; Mei, H.; He, Z.; Dou, P.; Wang, K. Tracking the gastrointestinal digestive and metabolic behaviour of Dendrobium officinale polysaccharides by fluorescent labelling. J. Food Funct. 2022, 13, 7274–7286. [Google Scholar] [CrossRef]
- Thomas, D.J.; Riley, C.; Devi, S.; Kurpad, A.V.; Preston, T.; Francis, R. Determination of indispensable amino acid digestibility of the red kidney bean in humans using a dual stable isotope tracer method. J. Nutr. 2023, 153, 2979–2984. [Google Scholar] [CrossRef]
- Futaki, M.; Inamura, K.; Hashimoto, M.; Motegi, S.; Itakura, S.; Sugibayashi, K.; Todo, H. Effects of Intradermal Administration Volume Using a Hollow Microneedle on the Pharmacokinetics of Fluorescein Isothiocyanate Dextran (M.W. 4000). J Pharm. Res. 2023, 40, 1953–1963. [Google Scholar]
- DUPLICATE Bai, X.; Zhang, E.; Hu, B.; Liang, H.; Song, S.; Ji, A. Study on Absorption Mechanism and Tissue Distribution of Fucoidan. Molecules 2020, 25, 1087. [Google Scholar] [CrossRef]
- Li, F.; Wei, Y.; Zhao, J.; Zhang, L.; Li, Q. In vivo pharmacokinetic study of a Cucurbita moschata polysaccharide after oral administration. J. Int. J. Biol. Macromol. 2022, 203, 19–28. [Google Scholar] [CrossRef]
- Zhang, J.; He, J.; Huang, J.; Li, X.; Fan, X.; Li, W.; Wu, G.; Xie, C.; Fan, X.X.; Zhang, J.; et al. Pharmacokinetics, absorption and transport mechanism for ginseng polysaccharides. J. Biomed. Pharmacother. Biomed. Pharmacother. 2023, 162, 114610. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Jin, X.; Wang, F.; Zhou, H.; Gu, Y.; Yang, Y. Multi-channel Small Animal Drug Metabolism Real-Time Monitoring Fluorescence System. J. Mol. Imaging Biol. 2023, 26, 138–147. [Google Scholar] [CrossRef]
- Pozharitskaya, O.N.; Shikov, A.N.; Faustova, N.M.; Obluchinskaya, E.D.; Kosman, V.M.; Vuorela, H.; Makarov, V.G. Pharmacokinetic and tissue distribution of fucoidan from Fucus vesiculosus after oral administration to rats. Mar. Drugs 2018, 16, 132. [Google Scholar] [CrossRef]
- Li, L.; Yao, H.; Li, X.; Zhang, Q.; Wu, X.; Wong, T.; Zheng, H.; Fung, H.; Yang, B.; Ma, D.; et al. Destiny of Dendrobium officinale polysaccharide after oral administration: Indigestible and nonabsorbing, ends in modulating gut microbiota. J. Agric. Food Chem. 2019, 67, 5968–5977. [Google Scholar] [CrossRef]
- Chen, W.; Gao, L.; Song, L.; Sommerfeld, M.; Hu, Q. An improved phenol-sulfuric acid method for the quantitative measurement of total carbohydrates in algal biomass. J. Algal Res. 2023, 70, 102986. [Google Scholar] [CrossRef]
- Torres, P.; Osaki, S.; Silveira, E.; Santos, D.Y.A.C.D.; Chow, F. Comprehensive evaluation of Folin-Ciocalteu assay for total phenolic quantification in algae (Chlorophyta, Phaeophyceae, and Rhodophyta). J. Algal Res. 2024, 80, 103503. [Google Scholar] [CrossRef]
- Grintzalis, K.; Georgiou, C.D.; Schneider, Y.-J. An accurate and sensitive Coomassie Brilliant Blue G-250-based assay for protein determination. J. Anal. Biochem. 2015, 480, 28–30. [Google Scholar] [CrossRef]
- Dong, Y.; Chen, C.; Fu, X.; Liu, R. Study on the pharmacokinetics of mulberry fruit polysaccharides through fluorescence labeling. J. Int. J. Biol. Macromol. 2021, 186, 462–471. [Google Scholar]
- Wang, Y.; Guo, M.J. Purification and structural characterization of polysaccharides isolated from Auricularia cornea var. Li. Carbohydr. Polym. 2020, 230, 115680. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Li, Y.; Shen, P.; Li, S.; Zhang, L.; Wang, Q.; Ren, D.; Liu, S.; Zhang, D.; Zhou, H. Anti-Hyperlipidemic Effect of Fucoidan Fractions Prepared from Iceland Brown Algae Ascophyllum nodosum in an Hyperlipidemic Mice Model. J. Mar. Drugs 2023, 21, 468. [Google Scholar] [CrossRef]
- Waghmode, A.; Khilare, C.J. RP-HPLC profile of major phenolics from brown marine macro algae. J. Appl. Pharm. 2018, 10, e202300264. [Google Scholar]
- Liu, Y.; Xiao, M.; Zhao, J.; Zhang, X.; Hu, X.; Goff, H.D.; Guo, Q. Fluorescent labeling affected the structural/conformational properties of arabinoxylans. J. Carbohydr. Polym. 2021, 265, 118064. [Google Scholar] [CrossRef]
- Min, T.; Sun, J.; Yi, Y.; Wang, H.-X.; Hang, F.; Ai, Y.-W.; Wang, L.-M. Microanalysis, Pharmacokinetics and Tissue Distribution of Polysaccharide-Protein Complexes from Longan Pulp in Mice. Int. J. Mol. Sci. 2015, 16, 24403–24416. [Google Scholar] [CrossRef]
- Li, P.; Li, C.; Xue, Y.; Zhang, Y.; Liu, H.; Zhao, X.; Yu, G.; Guan, H. Preparation, characterization and pharmacokinetics of fluorescence labeled propylene glycol alginate sodium sulfate. J. Ocean Univ. China 2014, 13, 683–690. [Google Scholar] [CrossRef]
- Li, S.; Liu, W.; Li, Y.; Che, X.; Xiao, P.; Liu, S.; Ma, Y.; Ren, D.; Wu, L.; Wang, Q.; et al. Extraction, purification, structural characterization and anti-hyperlipidemia activity of fucoidan from Laminaria digitata. J. Int. J. Biol. Macromol. 2024, 279, 135223. [Google Scholar]
- Lin, X.; Wang, Z.-J.; Wang, S.; Shen, L.; Feng, Y.; Ruan, K.-F.; Xu, D. Comparison of tissue distribution of a PEGylated Radix Ophiopogonis polysaccharide in mice with normal and ischemic myocardium. Eur. J. Pharm. Biopharm. 2011, 79, 621–626. [Google Scholar]
- Bi, J.; Zhao, C.; Jin, W.; Chen, Q.; Fan, B.; Qian, C. Study on pharmacokinetics and tissue distribution of Polygonatum sibiricum polysaccharide in rats by fluorescence labeling. Int. J. Biol. Macromol. 2022, 215, 541–549. [Google Scholar] [CrossRef]
- Zhang, W.; Sun, D.; Zhao, X.; Jin, W.; Wang, J.; Zhang, Q. Limnology. Microanalysis and preliminary pharmacokinetic studies of a sulfated polysaccharide from Laminaria japonica. Chin. J. Oceanol. Limnol. 2016, 34, 177–185. [Google Scholar] [CrossRef]
- Wang, Z.; Gao, Z.; Wang, A.; Jia, L.; Zhang, X.; Fang, M.; Yi, K.; Li, Q.; Hu, H. Comparative oral and intravenous pharmacokinetics of phlorizin in rats having type 2 diabetes and in normal rats based on phase II metabolism. Food Funct. 2019, 10, 1582–1594. [Google Scholar] [CrossRef] [PubMed]
- Kaneo, Y.; Uemura, T.; Tanaka, T.; Kanoh, S.J.B. Polysaccharides as Drug Carriers: Biodisposition of Fluorescein-Labeled Dextrans in Mice. Biol. Pharm. Bull. 1997, 20, 181–187. [Google Scholar] [CrossRef] [PubMed]
- Woting, A.; Blaut, M. Small intestinal permeability and gut-transit time determined with low and high molecular weight fluorescein isothiocyanate-dextrans in C3H mice. Nutrients 2018, 10, 685. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.; Pan, X.; Xu, J.; Wu, Z.; Zhang, Y.; Wang, K. Advances in tracking of polysaccharides in vivo: Labeling strategies, potential factors and applications based on pharmacokinetic characteristics. Int. J. Biol. Macromol. 2020, 163, 1403–1420. [Google Scholar] [CrossRef]
- Shen, S.; Yang, W.; Li, L.; Zhu, Y.; Yang, Y.; Ni, H.; Jiang, Z.; Zheng, M.J.F. In vitro fermentation of seaweed polysaccharides and tea polyphenol blends by human intestinal flora and their effeScts on intestinal inflammation. Food Funct. 2023, 14, 1133–1147. [Google Scholar] [CrossRef]
- Li, Z.; Wu, N.; Wang, J.; Yue, Y.; Geng, L.; Zhang, Q. Low molecular weight fucoidan alleviates cerebrovascular damage by promoting angiogenesis in type 2 diabetes mice. J. Int. J. Biol. Macromol. 2022, 217, 345–355. [Google Scholar] [CrossRef]
- Wu, T.; Xu, J.; Chen, Y.; Liu, R.; Zhang, M. Oolong tea polysaccharide and polyphenols prevent obesity development in Sprague–Dawley rats. Food Nutr. Res. 2018, 62, 1599. [Google Scholar] [CrossRef]
- Zhao, X.; Guo, F.; Hu, J.; Zhang, L.; Xue, C.; Zhang, Z.; Li, B. Antithrombotic activity of oral administered low molecular weight fucoidan from Laminaria Japonica. J. Thromb. Res. 2016, 144, 46–52. [Google Scholar] [CrossRef]
- Yang, C.; Xia, H.; Tang, H.; Yang, L.; Sun, G.J.F.S.; Wellness, H. Tissue distribution of Lycium barbarum polysaccharides in rat tissue by fluorescein isothiocyanate labeling. Food Sci. Hum. Wellness 2022, 11, 837–844. [Google Scholar] [CrossRef]
- Wubuli, A.; Chai, J.; Liu, H.; Nijat, D.; Li, J.; Xia, G.; Cao, Q.; Zhang, S.; Huang, W.; Aipire, A. In vivo pharmacokinetics of Glycyrrhiza uralensis polysaccharides. Foods 2024, 15, 1431221. [Google Scholar] [CrossRef]
- Batiha, G.E.-S.; Beshbishy, A.M.; Ikram, M.; Mulla, Z.S.; El-Hack, M.E.A.; Taha, A.E.; Algammal, A.M.; Elewa, Y.H.A. The pharmacological activity, biochemical properties, and pharmacokinetics of the major natural polyphenolic flavonoid: Quercetin. Int. J. Biol. Macromol. 2020, 9, 374. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhu, K.; Zhang, M.; Zhou, Q.; Ji, W.; Yao, Z.; Li, D. Pharmacokinetics, tissue distribution, and subacute toxicity of oral carrageenan in mice. J. Int. J. Biol. Macromol. 2024, 266, 130725. [Google Scholar] [CrossRef] [PubMed]
- Zhang, E.; Chu, F.; Xu, L.; Liang, H.; Song, S.; Ji, A.J.B.; Disposition, D. Use of fluorescein isothiocyanate isomer I to study the mechanism of intestinal absorption of fucoidan sulfate in vivo and in vitro. Biopharm. Drug Dispos. 2018, 39, 298–307. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.-J.; Liu, S.; Xing, J.-P.; Liu, Z.-Q.; Song, F.-R. Effect of type 2 diabetes mellitus on flavonoid pharmacokinetics and tissue distribution after oral administration of Radix Scutellaria extract in rats. Chin. J. Nat. Med. 2018, 16, 418–427. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Yang, F.; Guo, L.; Xu, Y.; Yu, X.; Zhang, Z.; Zhang, Y. Plasma Pharmacokinetics and Tissue Distribution of Doxorubicin in Rats following Treatment with Astragali Radix. J. Pharm. 2022, 15, 1104. [Google Scholar] [CrossRef]
- Ying, L.; Hang, S.; Zhong-Ping, Y.; Jing-En, L.; En, Y.; Qing-Feng, Z. Metabolism, tissue distribution and excretion of taxifolin. in rat. J. Biomed. Pharmacother. 2022, 150, 112959. [Google Scholar]
- Duo, S.-Y.; Zhang, X.-B.; Wu, Y.-H.; Li, J.-T.; Yang, Y.-H. Fluorescence labeling, identification, and in vivo distribution of Millettia speciosa polysaccharide. Feed Res. 2024, 47, 88. [Google Scholar]
- Song, S.; Wei, Q.; Wang, K.; Yang, Q.; Wang, Y.; Ji, A.; Chen, G. Fluorescent labeling of polymannuronic acid and its distribution in mice by tail vein injection. Mar. Drugs 2022, 20, 289. [Google Scholar] [CrossRef]
HPC | PC1 | PC4 | HPC-FITC | PC1-FITC | PC4-FITC | |
---|---|---|---|---|---|---|
Total carbohydrates (%, w/w) | 68.32 ± 0.28 a | 45.61 ± 0.16 a | 50.43 ± 0.25 a | 60.81 ± 0.21 b | 38.52 ± 0.37 b | 43.67 ± 0.17 b |
Total phenols (mg GAE/g) | 59.43 ± 0.07 a | 18.42 ± 0.03 a | 40.33 ± 0.21 a | 49.28 ± 0.18 b | 12.96 ± 0.10 b | 35.71 ± 0.07 b |
Protein content (%) | 3.17 ± 0.19 a | 1.13 ± 0.09 a | 1.43 ± 0.43 a | 1.98 ± 0.03 b | 0.46 ± 0.01 b | 0.93 ± 0.01 b |
Molecular weight (kDa) | 346.8 | 328.0 | 129.3 | 337.6 | 319.8 | 121.4 |
Monosaccharide composition (%) | ||||||
Man | 14.58 | 11.97 | 10.30 | 13.47 | 12.01 | 10.68 |
Rha | 1.40 | 1.79 | 2.91 | 1.43 | 1.81 | 2.37 |
GluA | 0.45 | 0.21 | 5.25 | 0.77 | 0.18 | 4.86 |
GalA | 0.94 | 0.40 | 2.06 | 1.06 | 0.45 | 2.94 |
Glu | 9.91 | 1.14 | 5.99 | 9.76 | 1.37 | 5.14 |
Gal | 24.60 | 25.53 | 15.71 | 24.77 | 25.84 | 14.28 |
Xyl | 2.75 | 2.05 | 1.91 | 2.61 | 1.68 | 2.03 |
Fuc | 45.35 | 56.87 | 55.83 | 46.12 | 56.65 | 57.69 |
Monophenol composition (%) | ||||||
GA | 59.30 | 22.75 | 37.07 | 58.96 | 23.16 | 36.28 |
EGC | 24.66 | 68.32 | 47.76 | 24.18 | 68.47 | 48.11 |
EC | -- | 4.03 | -- | -- | 3.65 | -- |
ECG | 12.32 | 4.89 | -- | 13.28 | 4..27 | -- |
CG | 3.8 | -- | 15.16 | 3.57 | -- | 15.60 |
HPC-FITC | PC1-FITC | PC4-FITC | ||||
---|---|---|---|---|---|---|
Heart | y = 1525.7x − 551.44 | R2 = 0.9992 | y = 1063.9x − 263.73 | R2 = 0.9991 | y = 1464.6x − 175.6 | R2 = 0.9995 |
Liver | y = 1474.2x − 462.06 | R2 = 0.9990 | y = 981x − 44.61 | R2 = 0.9998 | y = 1486.7x − 202.96 | R2 = 0.9998 |
Splenic | y = 1526.7x − 321.98 | R2 = 0.9994 | y = 1090x − 155.77 | R2 = 0.9990 | y = 1559.3x − 244.09 | R2 = 0.9994 |
Stomach | y = 1477.4x − 183.7 | R2 = 0.9964 | y = 1058x − 76.085 | R2 = 0.9995 | y = 1468.9x − 163.09 | R2 = 0.9994 |
Kidney | y = 1609.8x − 578.4 | R2 = 0.9993 | y = 1048.6x − 59.47 | R2 = 0.9994 | y = 1533.6x − 190.5 | R2 = 0.9986 |
Large intestine | y = 1700.6x − 106.23 | R2 = 0.9993 | y = 1251.2x − 178.64 | R2 = 0.9955 | y = 1699.7x − 173.27 | R2 = 0.9996 |
Small intestine | y = 1866.8x − 242.15 | R2 = 0.9994 | y = 1388.1x − 378.35 | R2 = 0.9979 | y = 1888x + 136.49 | R2 = 0.9999 |
Faeces | y = 2347.6x − 372.51 | R2 = 0.9996 | y = 1609x − 242.69 | R2 = 0.9995 | y = 2231.7x − 42.249 | R2 = 0.9988 |
Urine | y = 2411.8x + 1003.9 | R2 = 0.9995 | y = 1563.3x + 936.52 | R2 = 0.9998 | y = 2353.1x + 444.9 | R2 = 0.9999 |
Plasma | y = 1332x − 155.09 | R2 = 0.9991 | y = 1025.9x − 43.727 | R2 = 0.9989 | y = 1440.8x − 75.757 | R2 = 0.9992 |
Pharmacokinetic Parameters | Result ± SD | ||
---|---|---|---|
HPC-FITC | PC1-FITC | PC4-FITC | |
Cmax (mg/mL) | 3.71 ± 0.16 | 3.48 ± 0.18 | 2.79 ± 0.06 |
Tmax (h) | 4.00 ± 0.31 | 2.00 ± 0.01 | 1.00 ± 0.03 |
T1/2 (h) | 26.92 ± 0.76 | 25.04 ± 1.25 | 24.12 ± 0.61 |
AUC0–t (mg/L h) | 47.63 ± 1.13 | 64.28 ± 3.38 | 147.82 ± 15.62 |
AUC0–∞ (mg/L h) | 56.02 ± 3.92 | 66.37 ± 2.03 | 169.38 ± 13.38 |
MRT0–∞ (h) | 36.48 ± 0.10 | 18.06 ± 0.21 | 16.88 ± 0.17 |
CL/F (L/h/kg) | 1.27 ± 0.02 | 0.76 ± 0.10 | 0.31 ± 0.04 |
Tiusse | Group | Time (h) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
0.5 | 1 | 2 | 4 | 6 | 8 | 12 | 24 | 48 | ||
Heart | HPC-FITC | 2.27 ± 0.03 | 2.59 ± 0.07 | 2.85 ± 0.02 | 2.86 ± 0.04 | 2.83 ± 0.02 | 2.68 ± 0.05 | 2.59 ± 0.01 | 1.52 ± 0.03 | 1.24 ± 0.03 |
PC1-FITC | 3.01 ± 0.04 | 3.60 ± 0.08 | 3.53 ± 0.06 | 3.30 ± 0.05 | 3.05 ± 0.08 | 2.88 ± 0.02 | 2.58 ± 0.09 | 2.71 ± 0.02 | 1.66 ± 0.05 | |
PC4-FITC | 2.14 ± 0.11 | 2.17 ± 0.14 | 2.67 ± 0.16 | 2.73 ± 0.12 | 2.63 ± 0.15 | 2.41 ± 0.09 | 2.52 ± 0.07 | 2.21 ± 0.04 | 1.45 ± 0.03 | |
Liver | HPC-FITC | 3.21 ± 0.22 | 3.18 ± 0.11 | 3.71 ± 0.05 | 3.75 ± 0.04 | 3.35 ± 0.06 | 2.91 ± 0.05 | 2.64 ± 0.13 | 2.30 ± 0.02 | 1.14 ± 0.04 |
PC1-FITC | 1.93 ± 0.17 | 3.36 ± 0.06 | 4.25 ± 0.12 | 4.61 ± 0.14 | 4.39 ± 0.08 | 3.71 ± 0.13 | 3.65 ± 0.09 | 3.54 ± 0.05 | 1.37 ± 0.12 | |
PC4-FITC | 2.12 ± 0.22 | 2.54 ± 0.21 | 2.64 ± 0.12 | 2.60 ± 0.18 | 2.48 ± 0.17 | 2.22 ± 0.04 | 2.16 ± 0.13 | 1.41 ± 0.17 | 0.97 ± 0.12 | |
Splenic | HPC-FITC | 0.79 ± 0.02 | 0.63 ± 0.04 | 0.77 ± 0.03 | 0.74 ± 0.11 | 1.24 ± 0.03 | 1.11 ± 0.05 | 0.99 ± 0.04 | 0.83 ± 0.07 | 0.61 ± 0.02 |
PC1-FITC | 0.96 ± 0.06 | 0.99 ± 0.12 | 1.15 ± 0.13 | 1.16 ± 0.11 | 1.61 ± 0.22 | 1.57 ± 0.18 | 1.35 ± 0.12 | 0.93 ± 0.10 | 0.74 ± 0.16 | |
PC4-FITC | 0.72 ± 0.06 | 0.69 ± 0.04 | 0.82 ± 0.03 | 0.97 ± 0.11 | 1.17 ± 0.09 | 1.13 ± 0.17 | 0.83 ± 0.08 | 0.72 ± 0.06 | 0.59 ± 0.05 | |
Stomach | HPC-FITC | 23.64 ± 0.06 | 23.34 ± 0.05 | 10.28 ± 0.11 | 7.55 ± 0.02 | 6.61 ± 0.04 | 5.66 ± 0.07 | 3.40 ± 0.04 | 2.24 ± 0.13 | 2.09 ± 0.06 |
PC1-FITC | 22.53 ± 0.02 | 7.30 ± 0.06 | 5.46 ± 0.05 | 4.54 ± 0.04 | 3.95 ± 0.08 | 3.93 ± 0.02 | 3.84 ± 0.05 | 2.97 ± 0.01 | 2.72 ± 0.04 | |
PC4-FITC | 9.98 ± 0.05 | 8.22 ± 0.04 | 5.85 ± 0.03 | 2.50 ± 0.02 | 2.51 ± 0.16 | 1.73 ± 0.09 | 1.72 ± 0.08 | 1.42 ± 0.06 | 1.34 ± 0.12 | |
Kidney | HPC-FITC | 2.63 ± 0.14 | 4.02 ± 0.06 | 5.88 ± 0.15 | 13.35 ± 0.03 | 4.30 ± 0.03 | 4.25 ± 0.15 | 4.09 ± 0.05 | 2.49 ± 0.03 | 1.68 ± 0.14 |
PC1-FITC | 6.15 ± 0.08 | 6.97 ± 0.04 | 7.63 ± 0.17 | 8.37 ± 0.12 | 6.28 ± 0.09 | 6.01 ± 0.08 | 5.70 ± 0.07 | 2.89 ± 0.02 | 2.49 ± 0.10 | |
PC4-FITC | 3.96 ± 0.04 | 4.38 ± 0.22 | 4.36 ± 0.04 | 4.36 ± 0.08 | 4.35 ± 0.12 | 4.00 ± 0.05 | 3.74 ± 0.07 | 2.58 ± 0.16 | 1.77 ± 0.07 | |
Large intestine | HPC-FITC | 1.83 ± 0.18 | 4.12 ± 0.06 | 5.13 ± 0.05 | 8.61 ± 0.05 | 10.78 ± 0.1 | 7.31 ± 0.17 | 4.42 ± 0.10 | 1.36 ± 0.14 | 1.07 ± 0.03 |
PC1-FITC | 3.45 ± 0.10 | 4.47 ± 0.02 | 6.65 ± 0.06 | 7.8 ± 0.10 | 9.77 ± 0.05 | 7.12 ± 0.03 | 6.24 ± 0.06 | 3.31 ± 0.13 | 1.61 ± 0.13 | |
PC4-FITC | 0.79 ± 0.08 | 1.49 ± 0.13 | 2.21 ± 0.10 | 3.61 ± 0.12 | 4.67 ± 0.06 | 2.85 ± 0.09 | 1.67 ± 0.03 | 1.34 ± 0.04 | 1.21 ± 0.11 | |
Small intestine | HPC-FITC | 2.25 ± 0.09 | 3.26 ± 0.03 | 8.78 ± 0.04 | 14.76 ± 0.13 | 9.27 ± 0.05 | 3.73 ± 0.05 | 2.02 ± 0.11 | 1.56 ± 0.07 | 1.28 ± 0.11 |
PC1-FITC | 2.74 ± 0.07 | 4.08 ± 0.013 | 8.91 ± 0.21 | 5.56 ± 0.03 | 2.46 ± 0.13 | 2.37 ± 0.08 | 2.15 ± 0.19 | 1.83 ± 0.17 | 1.87 ± 0.14 | |
PC4-FITC | 2.64 ± 0.05 | 6.95 ± 0.14 | 1.59 ± 0.06 | 1.26 ± 0.03 | 1.21 ± 0.12 | 1.19 ± 0.10 | 1.19 ± 0.06 | 1.03 ± 0.08 | 0.99 ± 0.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Li, S.; Li, D.; Gao, Y.; Kong, S.; Liu, J.; Liu, S.; Ma, Y.; Zhou, H.; Ren, D.; et al. In Vivo Tissue Distribution and Pharmacokinetics of FITC-Labelled Hizikia fusiforme Polyphenol–Polysaccharide Complex in Mice. Foods 2024, 13, 3019. https://doi.org/10.3390/foods13183019
Li Y, Li S, Li D, Gao Y, Kong S, Liu J, Liu S, Ma Y, Zhou H, Ren D, et al. In Vivo Tissue Distribution and Pharmacokinetics of FITC-Labelled Hizikia fusiforme Polyphenol–Polysaccharide Complex in Mice. Foods. 2024; 13(18):3019. https://doi.org/10.3390/foods13183019
Chicago/Turabian StyleLi, Yutong, Shangkun Li, Di Li, Yuan Gao, Shuhua Kong, Jingyi Liu, Shu Liu, Yichao Ma, Hui Zhou, Dandan Ren, and et al. 2024. "In Vivo Tissue Distribution and Pharmacokinetics of FITC-Labelled Hizikia fusiforme Polyphenol–Polysaccharide Complex in Mice" Foods 13, no. 18: 3019. https://doi.org/10.3390/foods13183019
APA StyleLi, Y., Li, S., Li, D., Gao, Y., Kong, S., Liu, J., Liu, S., Ma, Y., Zhou, H., Ren, D., Wang, Q., & He, Y. (2024). In Vivo Tissue Distribution and Pharmacokinetics of FITC-Labelled Hizikia fusiforme Polyphenol–Polysaccharide Complex in Mice. Foods, 13(18), 3019. https://doi.org/10.3390/foods13183019